I am currently creating arithmetic operators libraries for high level synthesis.
For this, I am also creating a library to manipulate bits and bit vectors like it would be done in VHDL. To make my libraries synthesizable, nearly everything must be resolved at compile time.
However, I have an issue with loops.
Indeed, I would like to be able to write things like that:
const int N = 5;
for(int i = 0; i < N-2; i++) {
x.bit<i+2>() = x.bit<i>();
}
Of course, it does not compile since i is a variable and not a constant determined at compile time.
However, N being a constant, this code is strictly equivalent to:
x.bit<2>() = x.bit<0>();
x.bit<3>() = x.bit<1>();
x.bit<4>() = x.bit<2>();
which compiles and works perfectly.
Is there a way to make the compiler (gcc in my case) unroll the loop since N is constant? Or to define a macro or a constexpr which could do it with a clean syntax? This would be the equivalent of for generate in VHDL.
While constexpr has got much more powerful in C++14/17 it is not yet possible to mix this kind of compile time / template code with an ordinary loop. There is some talk of introducing a construct that might enable that in a future version of C++. For now you have a few choices, either recursive calls to a function with an integer template argument or probably simpler in this case a C++17 fold expression. You could also use C++11 variadic template expansion to get a similar result to fold expressions in this example, though fold expressions are more powerful.
Just saw your comment about being stuck with C++11, you're probably better off using the recursive function approach I think. I've added that approach to the example.
If you were able to use C++14 you might also want to consider moving entirely into constexpr function / type land so your bit<I>() function would not be templated but would be just a constexpr function bit(i). You could then use normal functions and loops. Given the C++11 restrictions on constexpr functions that is probably less useful in your case however. I've added an example using that approach.
#include <iostream>
#include <utility>
template <size_t N>
struct bits {
bool bs[N];
template <size_t I>
constexpr const bool& bit() const {
return bs[I];
}
template <size_t I>
constexpr bool& bit() {
return bs[I];
}
constexpr bool bit(int i) const { return bs[i]; }
constexpr void bit(int i, bool x) { bs[i] = x; }
};
// Using C++17 fold expressions
template <size_t N, size_t... Is>
constexpr bits<N> set_bits_helper(bits<N> x, std::index_sequence<Is...>) {
((x.bit<Is + 2>() = x.bit<Is>()), ...);
return x;
}
template <size_t N>
constexpr bits<N> set_bits(bits<N> x) {
return set_bits_helper(x, std::make_index_sequence<N - 2>{});
}
// Using recursive template function, should work on C++11
template <size_t I, size_t N>
constexpr bits<N> set_bits_recursive_helper(bits<N> x, std::integral_constant<size_t, I>) {
x.bit<N - I>() = x.bit<N - I - 2>();
return set_bits_recursive_helper(x, std::integral_constant<size_t, I - 1>{});
}
template <size_t N>
constexpr bits<N> set_bits_recursive_helper(bits<N> x, std::integral_constant<size_t, 0>) { return x; }
template <size_t N>
constexpr bits<N> set_bits_recursive(bits<N> x) {
return set_bits_recursive_helper(x, std::integral_constant<size_t, N - 2>{});
}
// Using non template constexpr functions
template <size_t N>
constexpr bits<N> set_bits_constexpr(bits<N> x) {
for (int i = 0; i < N - 2; ++i) {
x.bit(i + 2, x.bit(i));
}
return x;
}
// Test code to show usage
template <size_t N>
void print_bits(const bits<N>& x) {
for (auto b : x.bs) {
std::cout << b << ", ";
}
std::cout << '\n';
}
void test_set_bits() {
constexpr bits<8> x{ 1, 0 };
print_bits(x);
constexpr auto y = set_bits(x);
static_assert(y.bit<2>() == x.bit<0>());
print_bits(y);
}
void test_set_bits_recursive() {
constexpr bits<8> x{ 1, 0 };
print_bits(x);
constexpr auto y = set_bits_recursive(x);
static_assert(y.bit<2>() == x.bit<0>());
print_bits(y);
}
void test_set_bits_constexpr() {
constexpr bits<8> x{ 1, 0 };
print_bits(x);
constexpr auto y = set_bits_constexpr(x);
static_assert(y.bit<2>() == x.bit<0>());
print_bits(y);
}
int main() {
test_set_bits();
test_set_bits_recursive();
test_set_bits_constexpr();
}
Also without std::integer_sequence (but I suggest to implement a substitute and use it), in C++11 you can use template partial specialization.
I mean that you can implement something like
template <int I, int Sh, int N>
struct shiftVal
{
template <typename T>
static int func (T & t)
{ return t.template bit<I+Sh>() = t.template bit<I>(),
shiftVal<I+1, Sh, N>::func(t); }
};
template <int I, int Sh>
struct shiftVal<I, Sh, I>
{
template <typename T>
static int func (T &)
{ return 0; }
};
and your cycle become
shiftVal<0, 2, N-2>::func(x);
The following is a full working example
#include <array>
#include <iostream>
template <std::size_t N>
struct foo
{
std::array<int, N> arr;
template <int I>
int & bit ()
{ return arr[I]; }
};
template <int I, int Sh, int N>
struct shiftVal
{
template <typename T>
static int func (T & t)
{ return t.template bit<I+Sh>() = t.template bit<I>(),
shiftVal<I+1, Sh, N>::func(t); }
};
template <int I, int Sh>
struct shiftVal<I, Sh, I>
{
template <typename T>
static int func (T &)
{ return 0; }
};
int main ()
{
foo<10U> f { { { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 } } };
for ( auto const & i : f.arr )
std::cout << i << ' ';
std::cout << std::endl;
shiftVal<0, 2, 10-2>::func(f);
for ( auto const & i : f.arr )
std::cout << i << ' ';
std::cout << std::endl;
}
Nobody else produce an example based on a C++11 simulation of std::integer_sequence (as suggested by W.F., Passer By and Sopel and the simpler solution, IMHO) so I propose the following one (of std::index_sequence and std::make_index_sequence in reality: simulate std::integer_sequence is more complicated)
template <std::size_t ...>
struct indexSequence
{ };
template <std::size_t N, std::size_t ... Next>
struct indexSequenceHelper : public indexSequenceHelper<N-1U, N-1U, Next...>
{ };
template <std::size_t ... Next>
struct indexSequenceHelper<0U, Next ... >
{ using type = indexSequence<Next ... >; };
template <std::size_t N>
using makeIndexSequence = typename indexSequenceHelper<N>::type;
So a function (with function helper) to reproduce the asked loop can be written as
template
void shiftValHelper (T & t, indexSequence<Is...> const &)
{
using unused = int[];
(void)unused { 0,
(t.template bit<Is+Sh>() = t.template bit<Is>(), 0)... };
}
template <std::size_t Sh, std::size_t N, typename T>
void shiftVal (T & t)
{ shiftValHelper<Sh>(t, makeIndexSequence<N>{}); }
and called ad follows
shiftVal<2, N-2>(x);
The following is a full working example
#include <array>
#include <iostream>
template <std::size_t ...>
struct indexSequence
{ };
template <std::size_t N, std::size_t ... Next>
struct indexSequenceHelper : public indexSequenceHelper<N-1U, N-1U, Next...>
{ };
template <std::size_t ... Next>
struct indexSequenceHelper<0U, Next ... >
{ using type = indexSequence<Next ... >; };
template <std::size_t N>
using makeIndexSequence = typename indexSequenceHelper<N>::type;
template <std::size_t N>
struct foo
{
std::array<int, N> arr;
template <std::size_t I>
int & bit ()
{ return arr[I]; }
};
template <std::size_t Sh, typename T, std::size_t ... Is>
void shiftValHelper (T & t, indexSequence<Is...> const &)
{
using unused = int[];
(void)unused { 0,
(t.template bit<Is+Sh>() = t.template bit<Is>(), 0)... };
}
template <std::size_t Sh, std::size_t N, typename T>
void shiftVal (T & t)
{ shiftValHelper<Sh>(t, makeIndexSequence<N>{}); }
int main ()
{
foo<10U> f { { { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 } } };
for ( auto const & i : f.arr )
std::cout << i << ' ';
std::cout << std::endl;
shiftVal<2, 10-2>(f);
for ( auto const & i : f.arr )
std::cout << i << ' ';
std::cout << std::endl;
}
Related
I'm using C++17. I'd like to get an element of a tuple that satisfies some type trait. It would be amazing if the trait could be supplied generically, but I'd be satisfied with a specific function for a certain trait. Usage might look something like this:
auto my_tuple = std::make_tuple { 0.f, 1 };
auto basic = get_if_integral (my_tuple);
auto fancy = get_if<std::is_floating_point> (my_tuple);
std::cout << basic; // '1'
std::cout << fancy; // '0.f'
Ideally this would fail to compile if more than one element satisfies the trait, like std::get (std::tuple).
Here's a surprisingly simple way without using recursion:
template <template <typename...> typename T, typename... Ts>
constexpr int index_of_integral(const T<Ts...>&)
{
const bool a[] = { std::is_integral_v<Ts>... };
for (int i = 0; i < sizeof...(Ts); ++i) if (a[i]) return i;
return -1;
}
template <typename T>
constexpr decltype(auto) get_if_integral(T&& t)
{
return std::get<index_of_integral(t)>(std::forward<T>(t));
}
int main()
{
constexpr auto t = std::make_tuple(3.14, 42, "xyzzy");
static_assert(get_if_integral(t) == 42);
}
It could easily be extended to be parametrized on the trait.
The only things that make it C++17 are the is_integral_v variable template and the single-argument static_assert. Everything else is C++14.
Note that in C++20 the for loop could be replaced with std::find and std::distance.
Ideally it should throw an exception instead of returning -1, but compilers don't seem to like that.
Inspired by this answer.
If I understand correctly what you want... I propose an helper struct gf_h ("get first helper") as follows
template <std::size_t, bool ...>
struct gf_h
{ };
template <std::size_t I, bool ... Bs>
struct gf_h<I, false, Bs...> : public gf_h<I+1u, Bs...>
{ };
template <std::size_t I, bool ... Bs>
struct gf_h<I, true, Bs...> : public std::integral_constant<std::size_t, I>
{ };
and a couple of functions that use it:
template <typename ... Us,
std::size_t I = gf_h<0, std::is_integral<Us>::value...>::value>
auto get_first_integral (std::tuple<Us...> const & t)
{ return std::get<I>(t); }
template <typename ... Us,
std::size_t I = gf_h<0, std::is_floating_point<Us>::value...>::value>
auto get_first_floating (std::tuple<Us...> const & t)
{ return std::get<I>(t); }
Observe that are SFINAE enabled/disabled functions, so are enabled only if there is an integral (or float) value in the tuple
The following is a full compiling example
#include <tuple>
#include <iostream>
template <std::size_t, bool ...>
struct gf_h
{ };
template <std::size_t I, bool ... Bs>
struct gf_h<I, false, Bs...> : public gf_h<I+1u, Bs...>
{ };
template <std::size_t I, bool ... Bs>
struct gf_h<I, true, Bs...> : public std::integral_constant<std::size_t, I>
{ };
template <typename ... Us,
std::size_t I = gf_h<0, std::is_integral<Us>::value...>::value>
auto get_first_integral (std::tuple<Us...> const & t)
{ return std::get<I>(t); }
template <typename ... Us,
std::size_t I = gf_h<0, std::is_floating_point<Us>::value...>::value>
auto get_first_floating (std::tuple<Us...> const & t)
{ return std::get<I>(t); }
int main()
{
auto tup1 = std::make_tuple(3.f, 2., 1, 0);
std::cout << get_first_integral(tup1) << std::endl; // 1
std::cout << get_first_floating(tup1) << std::endl; // 3
auto tup2 = std::make_tuple("abc", 4, 5);
std::cout << get_first_integral(tup2) << std::endl; // 4
// std::cout << get_first_floating(tup2) << std::endl; // error
auto tup3 = std::make_tuple("xyz", 6., 7.f);
// std::cout << get_first_integral(tup3) << std::endl; // error
std::cout << get_first_floating(tup3) << std::endl; // 6
}
Ok, I figured out a way to accomplish this in a way that is not generic over the trait, but that's good enough for my current purpose. Using if constexpr this really doesn't look too bad. I'm sure this isn't hugely idiomatic, but it works for me:
template <std::size_t Idx, typename... Us>
auto& get_if_integral_impl (std::tuple<Us...>& t)
{
static_assert (Idx < std::tuple_size_v<std::tuple<Us...>>,
"No integral elements in this tuple.");
if constexpr (std::is_integral<std::tuple_element_t<Idx, std::tuple<Us...>>>::value)
return std::get<Idx> (t);
else
return get_if_integral_impl<Idx + 1> (t);
}
template<typename... Us>
auto& get_if_integral (std::tuple<Us...>& t)
{
return get_if_integral_impl<0> (t);
}
auto tup = std::make_tuple (3.f, 2., 1, 0);
std::cout << get_if_integral (tup); // '1'
My use case is a little more complex, involving returning the first nested tuple which itself contains another type, but this should convey the basic idea.
Suppose we have function such as
template <typename T, unsigned N> void foo();
and for simplicity assume that we know that only (constant) values N_1, N_2 ... N_k are valid for N.
Now, suppose I want to make that compile-time parameter a run-time one, using foo() as a black-box, i.e. implement:
template <typename T> void foo(unsigned n);
by making foo<,>() calls. How should I go about doing that? Obviously, I can write:
template <typename T> void foo(unsigned n) {
switch(n) {
case N_1 : foo<T, N_1>(); break;
case N_2 : foo<T, N_2>(); break;
// etc. etc.
case N_k : foo<T, N_k>(); break;
}
}
... but this makes me feel all dirty. I could use a MAP() meta-macro to generate these k lines, I suppose; but can I do anything better and less-macroish to achieve the same? Is it possible to write something like the above that's general, and works for every variadic template and a fixed sequence of constant values?
Notes:
C++11/14/17-specific suggestions are obviously welcome.
The N's are not necessarily contiguous, nor small, nor sorted. e.g. suppose N_2 = 123456789 and N_5 = 1.
You could make a function pointer table:
using F = void(*)();
template <class T, class >
struct Table;
template <class T, size_t... Is>
struct Table<T, std::index_sequence<Is...> > {
static constexpr F fns[] = {
foo<T, Is>...
};
};
template <class T, size_t... Is>
constexpr F Table<T, std::index_sequence<Is...> >::fns[sizeof...(Is)];
And then just invoke the one you want:
template <class T, size_t N>
struct MakeTable : Table<T, std::make_index_sequence<N>> { };
template <typename T>
void foo(unsigned n) {
MakeTable<T, MaxN>::fns[n]();
}
If the N_ks aren't contiguous, then we can use a lambda for inline parameter unpacking:
template <class T>
void foo(unsigned n) {
using seq = std::index_sequence<N_1, N_2, ..., N_k>;
indexer(seq)([n](auto i){
if (n == i) {
f<T, i>();
}
});
}
If the above is too slow, then I guess just manually build a std::unordered_map<unsigned, void(*)()> or something.
In these kind of situations I like to build a static table of function pointers, with a dynamic parameter deciding which one to dispatch to. Below is an implementation that achieves this, in the function foo_dynamic. To this function, you specify the maximum value of N you'd like to support, and it builds a static table of function pointers using some recursive templates. You then dereference into this table with your dynamic parameter.
using ftype = void (*)();
template <typename T, unsigned N> void foo()
{
std::cout << N << std::endl;
}
template <typename T, unsigned max>
struct TablePopulator
{
static void populateFTable(ftype* table)
{
table[max] = foo<T,max>;
TablePopulator<T,max-1>::populateFTable(table);
}
};
template <typename T>
struct TablePopulator<T, 0>
{
static void populateFTable(ftype* table)
{
table[0] = foo<T,0>;
}
};
template<typename T, unsigned max_N>
std::array<ftype, max_N>& initTable()
{
static std::array<ftype, max_N> table;
TablePopulator<T, max_N-1>::populateFTable(table.data());
return table;
}
template<typename T, unsigned max_N>
void foo_dynamic(unsigned actualN)
{
static auto ftable = initTable<T, max_N>();
if(actualN >= max_N)
throw std::runtime_error("Max param exceeded");
ftable[actualN]();
}
int main()
{
foo_dynamic<int, 10>(1);
foo_dynamic<int, 10>(5);
return 0;
}
EDIT: Given the constraints in the question edit, here's an approach where valid indices are specified manually, which uses an unordered_map instead of an array:
using ftype = void (*)();
template <typename T, unsigned N> void foo()
{
std::cout << N << std::endl;
}
template<typename T, size_t ... Indices>
void foo_dynamic_indices(size_t actual_index)
{
static std::unordered_map<size_t, ftype> fmap = {{Indices, foo<T,Indices>}...};
auto fIt = fmap.find(actual_index);
if(fIt == fmap.end())
throw std::runtime_error("Index not found");
fIt->second();
}
int main()
{
foo_dynamic_indices<int, 0, 3, 400, 1021, 10000000>(10000000);
foo_dynamic_indices<int, 0, 3, 400, 1021, 10000000>(4); //Exception
return 0;
}
I'm now learning a little about templates and templates in C++11, C++14 and C++1z. I'm trying to write a variadic class template with an inside class that will associate an int to every template argument - and have a constexpr method that returns its array representation.
Let's say that I have ensured that the template cannot receive two of the same type as an argument. I was thinking about doing it somewhat like this:
template <typename... Types>
struct MyVariadicTemplate {
//we know that all types in Types... are different
template <int... Values>
struct MyInnerTemplate {
//I need to make sure that sizeof...(Values) == sizeof...(Types)
constexpr std::array<int, sizeof...(Values)> to_array() {
std::array<int, sizeof...(Values)> result = {Values...};
return result;
// this is only valid since C++14, as far as I know
}
};
};
this code should be valid (if it's not, I'd love to know why). Now, I'd like to add another inner template:
template <typedef Type>
struct AnotherInnerTemplate {};
that has a public typedef, which represents MyInnerTemplate with one on the position of Type in Types... and zeros elsewhere - and here I'm lost. I don't know how to proceed
I would appreciate any hint on how that can be done - and if I'm heading towards the wrong direction, I hope somebody can give me a hint on how to do that.
I think what you're looking for is something like this.
#include <array>
#include <cstddef>
#include <iostream>
#include <type_traits>
template <typename NeedleT, typename... HaystackTs>
constexpr auto get_type_index_mask() noexcept
{
constexpr auto N = sizeof...(HaystackTs);
return std::array<bool, N> {
(std::is_same<NeedleT, HaystackTs>::value)...
};
}
template <typename T, std::size_t N>
constexpr std::size_t ffs(const std::array<T, N>& array) noexcept
{
for (auto i = std::size_t {}; i < N; ++i)
{
if (array[i])
return i;
}
return N;
}
int
main()
{
const auto mask = get_type_index_mask<float, bool, int, float, double, char>();
for (const auto& bit : mask)
std::cout << bit;
std::cout << "\n";
std::cout << "float has index " << ffs(mask) << "\n";
}
Output:
00100
float has index 2
The magic happens in the parameter pack expansion
(std::is_same<NeedleT, HaystackTs>::value)...
where you test each type in HaystackTs against NeedleT. You might want to apply std::decay to either type if you want to consider, say, const int and int the same type.
template <int size, int... Values> struct AnotherImpl {
using Type = typename AnotherImpl<size - 1, Values..., 0>::Type;
};
template <int... Values> struct AnotherImpl<0, Values...> {
using Type = Inner<Values...>;
};
template <class T> struct Another {
using Type = typename AnotherImpl<sizeof...(Types) - 1, 1>::Type;
};
Full:
template <class... Types> struct My {
template <int... Values> struct Inner {
constexpr std::array<int, sizeof...(Values)> to_array() {
return std::array<int, sizeof...(Values)>{Values...};
}
};
template <int size, int... Values> struct AnotherImpl {
using Type = typename AnotherImpl<size - 1, Values..., 0>::Type;
};
template <int... Values> struct AnotherImpl<0, Values...> {
using Type = Inner<Values...>;
};
template <class T> struct Another {
using Type = typename AnotherImpl<sizeof...(Types) - 1, 1>::Type;
};
};
auto main() -> int {
My<int, float, char>::Another<int>::Type s;
auto a = s.to_array();
for (auto e : a) {
cout << e << " ";
}
cout << endl;
return 0;
}
prints:
1 0 0
Is this what you want?
For example, I have a class:
class A
{
enum {N = 5};
double mVariable;
template<class T, int i>
void f(T& t)
{
g(mVariable); // call some function using mVariable.
f<T, i+1>(t); // go to next loop
}
template<class T>
void f<T, N>(T& t)
{} // stop loop when hit N.
};
Partial specialization is not allowed in function template. How do I work around it in my case?
I slightly changed the example of Arne Mertz, like:
template<int n>
struct A
{
enum {N = n};
...
};
and use A like:
A<5> a;
The I cannot compile on Visual Studio 2012. Is it a compiler bug or something else? It is quite strange.
EDIT: Checked. It is a Visual Studio bug. :(
I think Nim gives the most simple way to implement it.
The most straight forward solution is to use a template class instead of a function:
class A
{
enum {N = 5};
double mVariable;
template <class T, int i>
struct fImpl {
static_assert(i<N, "i must be equal to or less than N!");
static void call(T& t, A& a) {
g(a.mVariable);
fImpl<T, i+1>::call(t, a);
}
};
template<class T>
struct fImpl<T,N> {
static void call(T&, A&) {} // stop loop when hit N.
};
public:
template<class T, int i>
void f(T& t)
{
fImpl<T, i>::call(t,*this);
}
};
Example link
You can define a helper class:
template <int i, int M>
struct inc_up_to
{
static const int value = i + 1;
};
template <int i>
struct inc_up_to<i, i>
{
static const int value = i;
};
template<class T, int i>
void f(T& t)
{
if (i < N) {
g(mVariable); // call some function using mVariable.
f<T, inc_up_to<i, N>::value>(t);
}
}
It stops the compile-time recursion by making f<T, N> refer to f<T, N>, but that call is avoided by the run-time condition, breaking the loop.
A simplified and more robust version of the helper (thanks #ArneMertz) is also possible:
template <int i, int M>
struct inc_up_to
{
static const int value = (i >= M ? M : i + 1); // this caps at M
// or this:
static const int value = (i >= M ? i : i + 1); // this leaves i >= M unaffected
};
This doesn't even need the partial specialisation.
With c++11 support, you can do the following:
#include <iostream>
#include <type_traits>
using namespace std;
struct A
{
enum {N = 5};
double mVariable;
void g(int i, double v)
{ std::cout << i << " " << v << std::endl; }
template<int i, class T>
typename enable_if<i >= N>::type f(T& t)
{} // stop loop when hit N.
template<int i, class T>
typename enable_if<i < N>::type f(T& t)
{
g(i, mVariable); // call some function using mVariable.
f<i+1, T>(t); // go to next loop
}
};
int main(void)
{
A a;
int v = 0;
a.f<0>(v);
}
Main reason I like is that you don't need any of the cruft as required by the previous answers...
You can emulate partial specialization of function template with function overloading:
#include <type_traits>
class A
{
enum {N = 5};
double mVariable;
// ...
void g(double)
{
// ...
}
public:
template<class T, int i = 0>
void f(T& t, std::integral_constant<int, i> = std::integral_constant<int, i>())
{
g(mVariable);
f(t, std::integral_constant<int, i + 1>());
}
template<class T>
void f(T& t, std::integral_constant<int, N>)
{
}
};
Example of using:
A a;
int t = 0;
a.f(t);
a.f(t, std::integral_constant<int, 2>()); // if you want to start loop from 2, not from 0
It is a C++11 solution, however (not so much because of std::integral_constant class, but because of default template parameter of function template). It can be made shorter using some additional C++11 features:
template<int i>
using integer = std::integral_constant<int, i>;
template<class T, int i = 0>
void f(T& t, integer<i> = {})
{
g(mVariable);
f(t, integer<i + 1>());
}
template<class T>
void f(T& t, integer<N>)
{
}
I am new to template meta-programming but I'm trying to refactor some matrix manipulation code for a speed boost. In particular, right now my function looks like this:
template<int SIZE> void do_something(matrix A) {
for (int i = 0; i < SIZE; ++i) {
// do something on column i of A
}
}
I saw some techniques that use templates to rewrite this as
#define SIZE whatever
template<int COL> void process_column(matrix A) {
// do something on column COL of A
process_column<COL + 1>(A);
}
template<> void process_column<SIZE - 1>(matrix A) {
return;
}
void do_something(matrix A) {
process_column<0>(A);
}
When I did that to my function and set compiler flags to inline appropriately, I saw a pretty decent (~10%) speed boost. But the problem is that SIZE is #defined not a template parameter and I will definitely be using different sizes in my program. So I want something like
template<int COL, int SIZE> void process_column(matrix A) {
// do something on column COL of A
process_column<COL + 1, SIZE>(A);
}
/* HOW DO I DECLARE THE SPECIFIC INSTANCE????
The compiler rightfully complained when I tried this: */
template<int SIZE> void process_column<SIZE - 1, SIZE>(matrix A) {
return;
}
template<int SIZE> void do_something(matrix A) {
process_column<0, SIZE>(A);
}
How do I declare the specific instance to get the loop to terminate? Thanks in advance!
You cannot partially specialize a template function
but you can for template class.
Following may help you:
namespace detail {
template<int COL, int SIZE>
struct process_column
{
static void call(matrix& A) {
// do something on column COL of A
process_column<COL + 1, SIZE>::call(A);
}
};
template<int SIZE>
struct process_column<SIZE, SIZE> // Stop the recursion
{
static void call(matrix& A) { return; }
};
} // namespace detail
template<int SIZE> void do_something(matrix& A) {
detail::process_column<0, SIZE>::call(A);
}
An alternative with C++11:
#if 1 // Not in C++11, but present in C++1y
#include <cstdint>
template <std::size_t ...> struct index_sequence {};
template <std::size_t I, std::size_t ...Is>
struct make_index_sequence : make_index_sequence<I - 1, I - 1, Is...> {};
template <std::size_t ... Is>
struct make_index_sequence<0, Is...> : index_sequence<Is...> {};
#endif
namespace details {
template <template <std::size_t> class T, std::size_t ... Is, typename ... Args>
void for_each_column_apply(const index_sequence<Is...>&, Args&&...args)
{
int dummy[] = {(T<Is>()(std::forward<Args>(args)...), 0)...};
static_cast<void>(dummy); // remove warning for unused variable
}
} // namespace details
template <template <std::size_t> class T, std::size_t N, typename ... Args>
void for_each_column_apply(Args&&... args)
{
details::for_each_column_apply<T>(index_sequence<N>(), std::forward<Args>(args)...);
}
Usage:
class Matrix {};
template <std::size_t COL>
struct MyFunctor
{
void operator() (Matrix&m /* other needed args*/) const
{
// Do the job for Nth column
}
};
int main() {
constexpr SIZE = 42;
Matrix m;
for_each_column_apply<MyFunctor, SIZE>(m /* other args needed by MyFunctor*/);
return 0;
}