What is the problem with this?
struct foo {
void process(int, char, bool) {}
};
foo myfoo;
template <typename Method> struct thing {
void doit() {
Method m = Method{};
(myfoo.*m)(5, 'a', true);
}
};
int main() {
thing<decltype(&foo::process)> t;
t.doit();
}
I think this isolates the problem. What is the workaround if I have to use the type Method, as in the case of my original post below?
Original post:
In the following attempted test:
struct Foo { int play (char, bool) {return 3;} };
struct Bar { double jump (int, short, float) {return 5.8;} };
struct Baz { char run (double) {return 'b';} };
int main() {
Foo foo; Bar bar; Baz baz;
Functor<decltype(&Foo::play), decltype(&Bar::jump), decltype(&Baz::run)> func;
func(foo, bar, baz, 'c', true, 5, 2, 4.5, 6.8);
}
As you can predict, func is supposed to carry out
foo.play('c', true); bar.jump(5, 2, 4.5); baz.run(6.8);
My implementation of the Functor class so far (ignoring perfect forwarding and such for now) is
template <typename... Members>
struct Functor {
using m = many_members<Members...>;
template <typename... Args>
typename m::return_types operator()(Args... args) const { // perfect forwarding to do later
auto t = std::make_tuple(args...);
auto objects = utilities::tuple_head<sizeof...(Members)>(t);
auto arguments = utilities::extract_subtuple<sizeof...(Members), sizeof...(Args) - sizeof...(Members)>(t);
call(objects, arguments); // Won't compile on GCC 7.2 or clang 6.0.
}
private:
template <typename Tuple1, typename Tuple2>
auto call (Tuple1& objects, const Tuple2& args) const {
std::invoke(typename utilities::nth_element<0, Members...>::type{}, std::get<0>(objects), 'c', true);
}
};
where my last line using std::invoke is just to test the concept before I continue. It however will not compile on either GCC 7.2 or clang 6.0, so I cannot continue with the generalization. Any workaround here, or a completely different implementation altogether?
Here is everything I have so far:
namespace utilities {
template <std::size_t N, typename... Ts>
struct nth_element : std::tuple_element<N, std::tuple<Ts...>> { };
template <std::size_t Skip, std::size_t Take, typename Tuple>
auto extract_subtuple (const Tuple&, std::enable_if_t<(Take == 0)>* = nullptr) {
return std::tuple<>();
}
template <std::size_t Skip, std::size_t Take, typename Tuple>
auto extract_subtuple (const Tuple& tuple, std::enable_if_t<(Take > 0)>* = nullptr) {
return std::tuple_cat (std::make_tuple(std::get<Skip>(tuple)), extract_subtuple<Skip + 1, Take - 1>(tuple));
}
template <std::size_t N, typename Tuple>
auto tuple_head (const Tuple& tuple) {
return extract_subtuple<0, N>(tuple);
}
}
template <typename Rs, typename Ts, typename ArgsPacks, typename AllArgs, typename... Members> struct many_members_h;
template <typename Rs, typename Ts, typename ArgsPacks, typename AllArgs>
struct many_members_h<Rs, Ts, ArgsPacks, AllArgs> {
using return_types = Rs;
using classes = Ts;
using args_packs = ArgsPacks;
using all_args = AllArgs;
};
template <typename... Rs, typename... Ts, typename... ArgsPacks, typename... AllArgs, typename R, typename T, typename... Args, typename... Rest>
struct many_members_h<std::tuple<Rs...>, std::tuple<Ts...>, std::tuple<ArgsPacks...>, std::tuple<AllArgs...>, R(T::*)(Args...), Rest...> :
many_members_h<std::tuple<Rs..., R>, std::tuple<Ts..., T>, std::tuple<ArgsPacks..., std::tuple<Args...>>, std::tuple<AllArgs..., Args...>, Rest...> { };
template <typename... Members>
struct many_members : many_members_h<std::tuple<>, std::tuple<>, std::tuple<>, std::tuple<>, Members...> { };
template <typename... Members>
struct Functor {
using m = many_members<Members...>;
template <typename... Args>
typename m::return_types operator()(Args... args) const { // perfect forwarding to do later
auto t = std::make_tuple(args...);
auto objects = utilities::tuple_head<sizeof...(Members)>(t);
auto arguments = utilities::extract_subtuple<sizeof...(Members), sizeof...(Args) - sizeof...(Members)>(t);
call(objects, arguments); // Won't compile on GCC 7.2 or clang 6.0.
}
private:
template <typename Tuple1, typename Tuple2>
auto call (Tuple1& objects, const Tuple2& args) const {
std::invoke(typename utilities::nth_element<0, Members...>::type{}, std::get<0>(objects), 'c', true);
}
};
// Testing
#include <iostream>
struct Foo { int play (char, bool) {return 3;} };
struct Bar { double jump (int, short, float) {return 5.8;} };
struct Baz { char run (double) {return 'b';} };
int main() {
Foo foo; Bar bar; Baz baz;
Functor<decltype(&Foo::play), decltype(&Bar::jump), decltype(&Baz::run)> func;
func(foo, bar, baz, 'c', true, 5, 2, 4.5, 6.8);
}
Taking your smaller first example, note that decltype(&foo::process) is the type called void (foo::*)(int, char, bool).
This type does not contain or imply any association with the original function foo::process itself. Just like the type int doesn't let you get the value of some particular int elsewhere in your program, or the type SomeClass doesn't let you refer to a SomeClass object elsewhere in your program, the type alone doesn't carry a value or identity.
The expression Method{} value-initializes this pointer to member type. Which means the resulting value is a null pointer value. Which means calling it is undefined behavior (and on many systems is likely to result in a segfault).
If you're using C++17 mode, you could use a template <auto Method> non-type parameter and simply pass &foo::process (without using decltype) as the template argument. Some SFINAE techniques could enforce that the argument is actually a pointer to member function, and some helper traits could be used to get the class type and parameter list tuple.
Or if you're using a standard earlier than C++17, you'll have to either make the function pointer a function argument, or make it a template parameter which follows the type, as in template <typename MethodType, MethodType Method>, then call as thing<decltype(&foo::process), &foo::process>.
Thanks to aschepler's answer and advice to use auto... instead of typename... for the member function pointers, I was able to carry the original goal:
#include <tuple>
#include <functional> // std::invoke
#include <type_traits>
#include <utility>
namespace utilities {
template <std::size_t N, auto I, auto... Is>
struct nth_element : nth_element<N - 1, Is...> { };
template <auto I, auto... Is>
struct nth_element<0, I, Is...> {
static constexpr decltype(I) value = I;
};
template <std::size_t N, typename Pack> struct nth_index;
template <std::size_t N, std::size_t... Is>
struct nth_index<N, std::index_sequence<Is...>> : nth_element<N, Is...> { };
template <std::size_t Skip, std::size_t Take, typename Tuple>
auto extract_subtuple (const Tuple&, std::enable_if_t<(Take == 0)>* = nullptr) {
return std::tuple<>();
}
template <std::size_t Skip, std::size_t Take, typename Tuple>
auto extract_subtuple (const Tuple& tuple, std::enable_if_t<(Take > 0)>* = nullptr) {
return std::tuple_cat (std::make_tuple(std::get<Skip>(tuple)), extract_subtuple<Skip + 1, Take - 1>(tuple));
}
template <std::size_t N, typename Tuple>
auto tuple_head (const Tuple& tuple) {
return extract_subtuple<0, N>(tuple);
}
template <typename F, typename T, typename Tuple, std::size_t... Is>
decltype(auto) invoke_with_tuple_h (F&& f, T&& t, Tuple&& tuple, std::index_sequence<Is...>&&) {
return std::invoke(std::forward<F>(f), std::forward<T>(t), std::get<Is>(std::forward<Tuple>(tuple))...);
}
template <typename F, typename T, typename Tuple>
decltype(auto) invoke_with_tuple (F&& f, T&& t, Tuple&& tuple) {
return invoke_with_tuple_h (std::forward<F>(f), std::forward<T>(t), std::forward<Tuple>(tuple), std::make_index_sequence<std::tuple_size_v<std::decay_t<Tuple>>>{});
}
template <typename PartialSums, std::size_t Sum, std::size_t... Is> struct all_partial_sums_h;
template <std::size_t... PartialSums, std::size_t Sum>
struct all_partial_sums_h<std::index_sequence<PartialSums...>, Sum> {
using type = std::index_sequence<PartialSums..., Sum>;
using type_without_last_sum = std::index_sequence<PartialSums...>; // We define this because this is what we need actually.
};
template <std::size_t... PartialSums, std::size_t Sum, std::size_t First, std::size_t... Rest>
struct all_partial_sums_h<std::index_sequence<PartialSums...>, Sum, First, Rest...> :
all_partial_sums_h<std::index_sequence<PartialSums..., Sum>, Sum + First, Rest...> { };
template <typename Pack> struct all_partial_sums;
template <std::size_t... Is>
struct all_partial_sums<std::index_sequence<Is...>> : all_partial_sums_h<std::index_sequence<>, 0, Is...> { };
template <typename Pack> struct pack_size;
template <template <typename...> class P, typename... Ts>
struct pack_size<P<Ts...>> : std::integral_constant<std::size_t, sizeof...(Ts)> { };
template <typename PackOfPacks> struct get_pack_sizes;
template <template <typename...> class P, typename... Packs>
struct get_pack_sizes<P<Packs...>> {
using type = std::index_sequence<pack_size<Packs>::value...>;
};
}
template <typename Method> struct method_traits;
template <typename R, typename C, typename... Args>
struct method_traits<R(C::*)(Args...)> {
using return_type = R;
using class_type = C;
using args_type = std::tuple<Args...>;
};
template <typename Rs, typename Cs, typename ArgsPacks, auto... Members> struct many_members_h;
template <typename Rs, typename Cs, typename ArgsPacks>
struct many_members_h<Rs, Cs, ArgsPacks> {
using return_types = Rs;
using classes = Cs;
using args_packs = ArgsPacks;
};
template <typename... Rs, typename... Cs, typename... ArgsPacks, auto F, auto... Rest>
struct many_members_h<std::tuple<Rs...>, std::tuple<Cs...>, std::tuple<ArgsPacks...>, F, Rest...> :
many_members_h<std::tuple<Rs..., typename method_traits<decltype(F)>::return_type>, std::tuple<Cs..., typename method_traits<decltype(F)>::class_type>, std::tuple<ArgsPacks..., typename method_traits<decltype(F)>::args_type>, Rest...> { };
template <auto... Members>
struct many_members : many_members_h<std::tuple<>, std::tuple<>, std::tuple<>, Members...> { };
template <auto... Members>
struct Functor {
using m = many_members<Members...>;
using starting_points = typename utilities::all_partial_sums<typename utilities::get_pack_sizes<typename m::args_packs>::type>::type;
template <typename... Args>
typename m::return_types operator()(Args&&... args) const {
constexpr std::size_t M = sizeof...(Members);
auto t = std::make_tuple(std::forward<Args>(args)...);
auto objects = utilities::tuple_head<M>(t);
auto arguments = utilities::extract_subtuple<M, sizeof...(Args) - M>(t);
return call(objects, arguments, std::make_index_sequence<M>{});
}
private:
template <typename Tuple1, typename Tuple2, std::size_t... Is>
auto call (Tuple1& objects, const Tuple2& args, std::index_sequence<Is...>&&) const { // perfect forwarding to do later
return std::make_tuple(call_helper<Is>(objects, args)...);
}
template <std::size_t N, typename Tuple1, typename Tuple2>
auto call_helper (Tuple1& objects, const Tuple2& args) const { // perfect forwarding to do later
constexpr std::size_t s = std::tuple_size_v<std::tuple_element_t<N, typename m::args_packs>>;;
constexpr std::size_t a = utilities::nth_index<N, starting_points>::value;
const auto args_tuple = utilities::extract_subtuple<a, s>(args);
return utilities::invoke_with_tuple (utilities::nth_element<N, Members...>::value, std::get<N>(objects), args_tuple);
}
};
// Testing
#include <iostream>
struct Foo { int play (char c, bool b) { std::cout << std::boolalpha << "Foo::play(" << c << ", " << b << ") called.\n"; return 3; } };
struct Bar { double jump (int a, short b, float c) { std::cout << "Bar::jump(" << a << ", " << b << ", " << c << ") called.\n"; return 5.8; } };
struct Baz { char run (double d) { std::cout << "Baz::run(" << d << ") called.\n"; return 'b'; } };
int main() {
Foo foo; Bar bar; Baz baz;
Functor<&Foo::play, &Bar::jump, &Baz::run> func;
const auto tuple = func(foo, bar, baz, 'c', true, 5, 2, 4.5, 6.8);
std::cin.get();
}
Output:
Baz::run(6.8) called.
Bar::jump(5, 2, 4.5) called.
Foo::play(c, true) called.
Related
I'd like to implement something like same_type() function in C++11 like below (this is what I have tried so far but it can not cope with the use cases mentioned below). The function is to check if T is of the same type of the n-th argument of Args, currently n=0 should be enough for my requirement, although n=other meaningful value would be something better to have (not very important if not straightforward).
template<typename T, typename... Args>
struct MyClass
{
// check if T is of the same type of the n-th argument of Args
bool same_type() {
// currently, I only check the first argument
// but if possible, it would be more useful to extend
// this function to check the n-th argument
return std::is_same<T,typename std::tuple_element<0, std::tuple<Args...> >::type>;
}
};
I have already had a look at this answer, but it does not consider the following use cases.
Use cases:
1.use with references and const qualifier:
MyClass<int,const int&> c;
// expect to see 1, type of int should match const int&, i.e. reference or const should NOT affect the result
std::cout<<c.same_type();
2.use with no argument supplied:
MyClass<int> c;
// expect to see 0 as there is no variadic argument provided to compare with int
std::cout<<c.same_type();
I propose to develop a type traits isSameNth as follows
template <std::size_t, typename...>
struct isSameNth;
template <std::size_t N, typename T, typename A0, typename ... As>
struct isSameNth<N, T, A0, As...> : public isSameNth<N-1U, T, As...>
{ };
template <std::size_t N, typename T>
struct isSameNth<N, T> : public std::false_type
{ };
template <typename T, typename A0, typename ... As>
struct isSameNth<0U, T, A0, As...> : public std::is_same<
typename std::remove_reference<T>::type const,
typename std::remove_reference<A0>::type const>
{ };
to transform same_type() in a template static method (where the template value is N)
template <typename T, typename... Args>
struct MyClass
{
template <std::size_t N>
static constexpr bool same_type()
{ return isSameNth<N, T, Args...>::value; }
};
The following is a full example (C++11 compliant)
#include <type_traits>
template <std::size_t, typename...>
struct isSameNth;
template <std::size_t N, typename T, typename A0, typename ... As>
struct isSameNth<N, T, A0, As...> : public isSameNth<N-1U, T, As...>
{ };
template <std::size_t N, typename T>
struct isSameNth<N, T> : public std::false_type
{ };
template <typename T, typename A0, typename ... As>
struct isSameNth<0U, T, A0, As...> : public std::is_same<
typename std::remove_reference<T>::type const,
typename std::remove_reference<A0>::type const>
{ };
template <typename T, typename... Args>
struct MyClass
{
template <std::size_t N>
static constexpr bool same_type()
{ return isSameNth<N, T, Args...>::value; }
};
int main ()
{
static_assert(
false == MyClass<int, long, int, short>::template same_type<0U>(), "!");
static_assert(
true == MyClass<int, long, int, short>::template same_type<1U>(), "!");
static_assert(
false == MyClass<int, long, int, short>::template same_type<2U>(), "!");
static_assert(
true == MyClass<int const, int &>::template same_type<0U>(), "!");
static_assert(
false == MyClass<int const &>::template same_type<0U>(), "!");
}
I think you're looking to check compatibility more than 'sameness'. here's one way:
#include <tuple>
#include <type_traits>
#include <iostream>
#include <string>
template<class...Ts>
struct nth_is_compatible
{
using tuple = std::tuple<Ts...>;
template<class T, std::size_t N> static constexpr bool check()
{
return std::is_convertible<decltype(std::get<N>(std::declval<tuple>())), T>::value;
}
};
struct Monkey
{
Monkey(std::string) {} // conversion constructor
};
int main()
{
using checklist = nth_is_compatible<const int&, float, std::string>;
constexpr auto list = checklist();
std::cout << list.check<int, 0>() << std::endl;
std::cout << list.check<int, 1>() << std::endl;
std::cout << list.check<int, 2>() << std::endl;
// prove it's a constexpr and that it works for conversions
constexpr auto monkeyable = checklist::check<Monkey, 2>();
std::cout << monkeyable << std::endl;
}
for example
// we have a variadic function
void print(...);
// I need such a function to filter parameters of specific type
template<typename... Args>
void print_filter(const Args&... args)
{
// filter non-integral type
print(integral args);
}
// my goal, all non-integral type can be ignored:
print_filter(1.0, 2, "abc", 3) == print(2, 3)
I have used up my knowledge to do that... can you help? or just to prove it's impossible, which also be very helpful. Thanks
A neat trick is to convert the arguments you want into a 1-element forwarding tuple, the arguments you don't want into an empty tuple, tuple_cat the results, then apply (C++17) the resulting tuple to the function you want to invoke:
template<typename... Args>
void print_filter(Args&&... args) {
std::apply(
[](auto&&... args) { return print(std::forward<decltype(args)>(args)...); },
std::tuple_cat(
std::get<std::is_integral<typename std::decay<Args>::type>::value ? 0 : 1>(
std::make_tuple(
[](Args&& arg) { return std::tuple<Args&&>{std::forward<Args>(arg)}; },
[](Args&&) { return std::tuple<>{}; }))(
std::forward<Args>(args))...));
}
Note that this employs another trick, which is to use get to conditionally apply one of two functions to an argument.
Example.
#include <cstddef>
#include <type_traits>
#include <utility>
#include <tuple>
template <typename S, typename M, typename O = std::index_sequence<>>
struct filter : O {};
template <std::size_t I, std::size_t... Is, std::size_t... Js, std::size_t... Ks>
struct filter<std::index_sequence<I, Is...>, std::index_sequence<0, Js...>, std::index_sequence<Ks...>>
: filter<std::index_sequence<Is...>, std::index_sequence<Js...>, std::index_sequence<Ks...>> {};
template <std::size_t I, std::size_t... Is, std::size_t... Js, std::size_t... Ks>
struct filter<std::index_sequence<I, Is...>, std::index_sequence<1, Js...>, std::index_sequence<Ks...>>
: filter<std::index_sequence<Is...>, std::index_sequence<Js...>, std::index_sequence<Ks..., I>> {};
template <template <typename T> class F, typename... Args>
using Filter = filter<std::make_index_sequence<sizeof...(Args)>, std::index_sequence<F<Args>{}...>>;
template <typename... Args, std::size_t... Is>
void print_filter_impl(std::tuple<Args...>&& tuple, std::index_sequence<Is...>)
{
print(std::get<Is>(std::move(tuple))...);
}
template <typename... Args>
void print_filter(Args&&... args)
{
print_filter_impl(std::forward_as_tuple(std::forward<Args>(args)...), Filter<std::is_integral, std::decay_t<Args>...>{});
}
DEMO
Here's one way to do it. Start by creating a dummy separator class:
class SEP { };
Then, a helper function that discards all non-integral arguments by pushing the other arguments to the end of the argument list:
template <class T, class... R>
void print_filter_(T x, R... a) {
if (std::is_integral<T>::value) {
print_filter_(a..., x);
} else {
print_filter_(a...);
}
}
After going through all the initial arguments, it is left with only the integral ones:
template <class... T>
void print_filter_(SEP, T... a) {
print(a...);
}
Finally, call the helper function:
template <class... T>
void print_filter(T... a) {
print_filter_(a..., SEP());
}
#include <iostream>
#include <type_traits>
#include <utility>
#include <tuple>
template <template <typename> class Predicate, std::size_t N, typename Output, typename... Args> struct find_indices_h;
template <template <typename> class Predicate, std::size_t N, std::size_t... Is, typename First, typename... Rest>
struct find_indices_h<Predicate, N, std::index_sequence<Is...>, First, Rest...> : std::conditional_t<
Predicate<First>::value,
find_indices_h<Predicate, N+1, std::index_sequence<Is..., N>, Rest...>,
find_indices_h<Predicate, N+1, std::index_sequence<Is...>, Rest...>
> {};
template <template <typename> class Predicate, std::size_t N, typename Sequence>
struct find_indices_h<Predicate, N, Sequence> {
using type = Sequence;
};
template <template <typename> class Predicate, typename... Args>
using find_indices = typename find_indices_h<Predicate, 0, std::index_sequence<>, Args...>::type;
template <typename... Args>
void print (Args&&... args) {
const int a[] = {(std::cout << args << ' ', 0)...};
static_cast<void>(a);
std::cout << '\n';
}
template <typename F, typename Tuple, std::size_t... Is>
void partial_apply (F f, Tuple&& tuple, std::index_sequence<Is...>) {
f(std::get<Is>(std::forward<Tuple>(tuple))...);
}
template<typename... Args>
void print_filter (const Args&... args) {
const auto partial_print = [](auto&&... ps) { return print(std::forward<decltype(ps)>(ps)...); };
partial_apply(partial_print, std::forward_as_tuple(args...), find_indices<std::is_integral, Args...>{});
}
int main() {
std::cout << std::boolalpha;
print_filter(1, "hello", 'a', true, 1.3, 1000); // 1 a true 1000
}
Consider this output:
int foo (int, char) {std::cout << "foo\n"; return 0;}
double bar (bool, double, long ) {std::cout << "bar\n"; return 3.5;}
bool baz (char, short, float) {std::cout << "baz\n"; return true;}
int main() {
const auto tuple = std::make_tuple(5, 'a', true, 3.5, 1000, 't', 2, 5.8);
multiFunction<2,3,3> (tuple, foo, bar, baz); // foo bar baz
}
So multiFunction<2,3,3> takes the first 2 elements of tuple and passes them to foo, the next 3 elements of tuple and passes them to bar, etc... I got this working (except when the functions have overloads, which is a separate problem). But the return values of each function called are lost. I want those return values stored somewhere, something like
std::tuple<int, double, bool> result = multiFunction<2,3,3> (tuple, foo, bar, baz);
But I don't know how to implement that. For those who want to help get this done, here is my (updated) working code so far, which stores the outputs into a stringstream only. Not easy to get all the values back, especially if the objects saved in the stream are complex classes.
#include <iostream>
#include <tuple>
#include <utility>
#include <sstream>
template <std::size_t N, typename Tuple>
struct TupleHead {
static auto get (const Tuple& tuple) { // The subtuple from the first N components of tuple.
return std::tuple_cat (TupleHead<N-1, Tuple>::get(tuple), std::make_tuple(std::get<N-1>(tuple)));
}
};
template <typename Tuple>
struct TupleHead<0, Tuple> {
static auto get (const Tuple&) { return std::tuple<>{}; }
};
template <std::size_t N, typename Tuple>
struct TupleTail {
static auto get (const Tuple& tuple) { // The subtuple from the last N components of tuple.
return std::tuple_cat (std::make_tuple(std::get<std::tuple_size<Tuple>::value - N>(tuple)), TupleTail<N-1, Tuple>::get(tuple));
}
};
template <typename Tuple>
struct TupleTail<0, Tuple> {
static auto get (const Tuple&) { return std::tuple<>{}; }
};
template <typename Tuple, typename F, std::size_t... Is>
auto functionOnTupleHelper (const Tuple& tuple, F f, const std::index_sequence<Is...>&) {
return f(std::get<Is>(tuple)...);
}
template <typename Tuple, typename F>
auto functionOnTuple (const Tuple& tuple, F f) {
return functionOnTupleHelper (tuple, f, std::make_index_sequence<std::tuple_size<Tuple>::value>{});
}
template <typename Tuple, typename... Functions> struct MultiFunction;
template <typename Tuple, typename F, typename... Fs>
struct MultiFunction<Tuple, F, Fs...> {
template <std::size_t I, std::size_t... Is>
static inline auto execute (const Tuple& tuple, std::ostringstream& oss, const std::index_sequence<I, Is...>&, F f, Fs... fs) {
const auto headTuple = TupleHead<I, Tuple>::get(tuple);
const auto tailTuple = TupleTail<std::tuple_size<Tuple>::value - I, Tuple>::get(tuple);
// functionOnTuple (headTuple, f); // Always works, though return type is lost.
oss << std::boolalpha << functionOnTuple (headTuple, f) << '\n'; // What about return types that are void???
return MultiFunction<std::remove_const_t<decltype(tailTuple)>, Fs...>::execute (tailTuple, oss, std::index_sequence<Is...>{}, fs...);
}
};
template <>
struct MultiFunction<std::tuple<>> {
static auto execute (const std::tuple<>&, std::ostringstream& oss, std::index_sequence<>) { // End of recursion.
std::cout << std::boolalpha << oss.str();
// Convert 'oss' into the desired tuple? But how?
return std::tuple<int, double, bool>(); // This line is just to make the test compile.
}
};
template <std::size_t... Is, typename Tuple, typename... Fs>
auto multiFunction (const Tuple& tuple, Fs... fs) {
std::ostringstream oss;
return MultiFunction<Tuple, Fs...>::execute (tuple, oss, std::index_sequence<Is...>{}, fs...);
}
// Testing
template <typename T> int foo (int, char) {std::cout << "foo<T>\n"; return 0;}
double bar (bool, double, long ) {std::cout << "bar\n"; return 3.5;}
template <int...> bool baz (char, short, float) {std::cout << "baz<int...>\n"; return true;}
int main() {
const auto tuple = std::make_tuple(5, 'a', true, 3.5, 1000, 't', 2, 5.8);
std::tuple<int, double, bool> result = multiFunction<2,3,3> (tuple, foo<bool>, bar, baz<2,5,1>); // foo<T> bar baz<int...>
}
Here's an approach where the number of arguments is deduced greedily:
#include <tuple>
namespace detail {
using namespace std;
template <size_t, size_t... Is, typename Arg>
constexpr auto call(index_sequence<Is...>, Arg&&) {return tuple<>{};}
template <size_t offset, size_t... Is, typename ArgT, typename... Fs>
constexpr auto call(index_sequence<Is...>, ArgT&&, Fs&&...);
template <size_t offset, size_t... Is,
typename ArgT, typename F, typename... Fs,
typename=decltype(declval<F>()(get<offset+Is>(declval<ArgT>())...))>
constexpr auto call(index_sequence<Is...>, ArgT&& argt, F&& f, Fs&&... fs) {
return tuple_cat(make_tuple(f(get<offset+I>(forward<ArgT>(argt))...)),
call<offset+sizeof...(Is)>(index_sequence<>{},
forward<ArgT>(argt),
forward<Fs>(fs)...));}
template <size_t offset, size_t... Is, typename ArgT, typename... Fs>
constexpr auto call(index_sequence<Is...>, ArgT&& argt, Fs&&... fs) {
return call<offset>(index_sequence<Is..., sizeof...(Is)>{},
forward<ArgT>(argt), forward<Fs>(fs)...);}
}
template <typename ArgT, typename... Fs>
constexpr auto multifunction(ArgT&& argt, Fs&&... fs) {
return detail::call<0>(std::index_sequence<>{},
std::forward<ArgT>(argt), std::forward<Fs>(fs)...);}
Demo. However, the above has quadratic time complexity in the number of return values, because tuple_cat is called recursively. Instead, we can use a slightly modified version of call to obtain the indices for each call - the actual tuple is then obtained directly:
#include <tuple>
namespace detail {
using namespace std;
template <size_t, size_t... Is, typename Arg>
constexpr auto indices(index_sequence<Is...>, Arg&&) {return tuple<>{};}
template <size_t offset, size_t... Is, typename ArgT, typename... Fs>
constexpr auto indices(index_sequence<Is...>, ArgT&&, Fs&&...);
template <size_t offset, size_t... Is, typename ArgT, typename F, class... Fs,
typename=decltype(declval<F>()(get<offset+Is>(declval<ArgT>())...))>
constexpr auto indices(index_sequence<Is...>, ArgT&& argt, F&& f, Fs&&... fs){
return tuple_cat(make_tuple(index_sequence<offset+Is...>{}),
indices<offset+sizeof...(Is)>(index_sequence<>{},
forward<ArgT>(argt),
forward<Fs>(fs)...));}
template <size_t offset, size_t... Is, typename ArgT, typename... Fs>
constexpr auto indices(index_sequence<Is...>, ArgT&& argt, Fs&&... fs) {
return indices<offset>(index_sequence<Is..., sizeof...(Is)>{},
forward<ArgT>(argt), forward<Fs>(fs)...);}
template <typename Arg, typename F, size_t... Is>
constexpr auto apply(Arg&& a, F&& f, index_sequence<Is...>) {
return f(get<Is>(a)...);}
template <typename ITuple, typename Args, size_t... Is, typename... Fs>
constexpr auto apply_all(Args&& args, index_sequence<Is...>, Fs&&... fs) {
return make_tuple(apply(forward<Args>(args), forward<Fs>(fs),
tuple_element_t<Is, ITuple>{})...);
}
}
template <typename ArgT, typename... Fs>
constexpr auto multifunction(ArgT&& argt, Fs&&... fs) {
return detail::apply_all<decltype(detail::indices<0>(std::index_sequence<>{},
std::forward<ArgT>(argt),
std::forward<Fs>(fs)...))>
(std::forward<ArgT>(argt), std::index_sequence_for<Fs...>{},
std::forward<Fs>(fs)...);}
Demo 2.
Building from the ground up and ignoring perfect forwarding so that I have to type less. We need a couple helpers. First, we need a partial version of apply that takes which indices from the tuple we want to apply to the function:
<class Tuple, class F, size_t... Is>
auto partial_apply(Tuple tuple, F f, std::index_sequence<Is...>) {
return f(get<Is>(tuple)...);
}
Then, we need to call that function for each subset of the tuple. Let's say we have all of our functions and indexes wrapped in a tuple already:
template <class Tuple, class FsTuple, class IsTuple, size_t... Is>
auto multi_apply(Tuple tuple, FsTuple fs, IsTuple indexes, std::index_sequence<Is...>) {
return std::make_tuple(
partial_apply(tuple,
std::get<Is>(fs),
std::get<Is>(indexes)
)...
);
}
So in this case, we'd want to end up calling multi_apply(tuple, <foo,bar,baz>, <<0,1>,<2,3,4>,<5,6,7>>, <0, 1, 2>).
All we need know is to build the indexes part. We're starting with <2,3,3>. We need to get the partial sums (<0,2,5>) and add that to the index sequences <<0,1>,<0,1,2>,<0,1,2>>. So we can write a partial sum function:
template <size_t I>
using size_t_ = std::integral_constant<size_t, I>;
template <class R, size_t N>
R partial_sum_(std::index_sequence<>, R, size_t_<N> ) {
return R{};
}
template <size_t I, size_t... Is, size_t... Js, size_t S>
auto partial_sum_(std::index_sequence<I, Is...>,
std::index_sequence<Js...>, size_t_<S> )
{
return partial_sum_(std::index_sequence<Is...>{},
std::index_sequence<Js..., S>{}, size_t_<S+I>{} );
}
template <size_t... Is>
auto partial_sum_(std::index_sequence<Is...> is)
{
return partial_sum_(is, std::index_sequence<>{}, size_t_<0>{} );
};
Which we can use to generate all of our indexes as a tuple:
template <size_t... Is, size_t N>
auto increment(std::index_sequence<Is...>, size_t_<N> )
{
return std::index_sequence<Is+N...>{};
}
template <class... Seqs, size_t... Ns>
auto make_all_indexes(std::index_sequence<Ns...>, Seqs... seqs)
{
return std::make_tuple(increment(seqs, size_t_<Ns>{})...);
}
Like so:
template <size_t... Is, class Tuple, class... Fs>
auto multiFunction(Tuple tuple, Fs... fs)
{
static_assert(sizeof...(Is) == sizeof...(Fs));
return multi_apply(tuple,
std::make_tuple(fs...),
make_all_indexes(
partial_sum_(std::index_sequence<Is...>{}),
std::make_index_sequence<Is>{}...
),
std::make_index_sequence<sizeof...(Is)>{}
);
}
If you want to handle void returns, then just make partial_apply return a tuple of a single element (or an empty tuple) and change the make_tuple() usage in multi_apply to tuple_cat().
Here's yet another impl:
template<std::size_t N>
constexpr Array<std::size_t, N> scan(std::size_t const (&a)[N])
{
Array<std::size_t, N> b{};
for (int i = 0; i != N - 1; ++i)
b[i + 1] = a[i] + b[i];
return b;
}
template<std::size_t O, std::size_t... N, class F, class Tuple>
inline decltype(auto) eval_from(std::index_sequence<N...>, F f, Tuple&& t)
{
return f(std::get<N + O>(std::forward<Tuple>(t))...);
}
template<std::size_t... O, std::size_t... N, class Tuple, class... F>
inline auto multi_function_impl1(std::index_sequence<O...>, std::index_sequence<N...>, Tuple&& t, F... f)
{
return pack(eval_from<O>(std::make_index_sequence<N>(), f, std::forward<Tuple>(t))...);
}
template<std::size_t... I, std::size_t... N, class Tuple, class... F>
inline auto multi_function_impl0(std::index_sequence<I...>, std::index_sequence<N...>, Tuple&& t, F... f)
{
constexpr std::size_t ns[] = {N...};
constexpr auto offsets = scan(ns);
return multi_function_impl1(std::index_sequence<offsets[I]...>(), std::index_sequence<N...>(), std::forward<Tuple>(t), f...);
}
template<std::size_t... N, class Tuple, class... F>
auto multi_function(Tuple&& t, F... f)
{
return multi_function_impl0(std::make_index_sequence<sizeof...(N)>(), std::index_sequence<N...>(), std::forward<Tuple>(t), f...);
}
where pack and Array are similar to std::make_tuple and std::array respectively, but to overcome some problems:
std::make_tuple decays it args, so references are lost
std::array cannot have its elems written in constexpr in c++14
DEMO
Here's my solution after following T.C.'s advice, adding to my previous (albeit inefficient) solution:
#include <iostream>
#include <tuple>
#include <utility>
struct NoReturnValue {
friend std::ostream& operator<< (std::ostream& os, const NoReturnValue&) {
return os << "[no value returned]";
}
};
template <std::size_t N, typename Tuple>
struct TupleHead {
static auto get (const Tuple& tuple) { // The subtuple from the first N components of tuple.
return std::tuple_cat (TupleHead<N-1, Tuple>::get(tuple), std::make_tuple(std::get<N-1>(tuple)));
}
};
template <typename Tuple>
struct TupleHead<0, Tuple> {
static auto get (const Tuple&) { return std::tuple<>{}; }
};
template <std::size_t N, typename Tuple>
struct TupleTail {
static auto get (const Tuple& tuple) { // The subtuple from the last N components of tuple.
return std::tuple_cat (std::make_tuple(std::get<std::tuple_size<Tuple>::value - N>(tuple)), TupleTail<N-1, Tuple>::get(tuple));
}
};
template <typename Tuple>
struct TupleTail<0, Tuple> {
static auto get (const Tuple&) { return std::tuple<>{}; }
};
template <typename Tuple, typename F, std::size_t... Is>
auto functionOnTupleHelper (const Tuple& tuple, F f, const std::index_sequence<Is...>&,
std::enable_if_t< !std::is_void<std::result_of_t<F(std::tuple_element_t<Is, Tuple>...)>>::value >* = nullptr) { // This overload is called only if f's return type is not void.
return std::make_tuple(f(std::get<Is>(tuple)...)); // Thanks to T.C.'s advice on returning a single tuple and then calling std::tuple_cat on all the single tuples.
}
template <typename Tuple, typename F, std::size_t... Is>
auto functionOnTupleHelper (const Tuple& tuple, F f, const std::index_sequence<Is...>&,
std::enable_if_t< std::is_void<std::result_of_t<F(std::tuple_element_t<Is, Tuple>...)>>::value >* = nullptr) { // This overload is called only if f's return type is void.
f(std::get<Is>(tuple)...);
return std::tuple<NoReturnValue>(); // Thanks to T.C.'s advice on returning std::tuple<NoReturnValue>() if the return type of 'f' is void.
}
template <typename Tuple, typename F>
auto functionOnTuple (const Tuple& tuple, F f) {
return functionOnTupleHelper (tuple, f, std::make_index_sequence<std::tuple_size<Tuple>::value>{});
}
template <typename Tuple, typename... Functions> struct MultiFunction;
template <typename Tuple, typename F, typename... Fs>
struct MultiFunction<Tuple, F, Fs...> {
template <std::size_t I, std::size_t... Is>
static inline auto execute (const Tuple& tuple, const std::index_sequence<I, Is...>&, F f, Fs... fs) {
const auto headTuple = TupleHead<I, Tuple>::get(tuple);
const auto tailTuple = TupleTail<std::tuple_size<Tuple>::value - I, Tuple>::get(tuple);
const auto r = functionOnTuple(headTuple, f); // Which overload of 'functionOnTupleHelper' is called dedends on whether f's return type is void or not.
return std::tuple_cat (r, MultiFunction<std::remove_const_t<decltype(tailTuple)>, Fs...>::execute (tailTuple, std::index_sequence<Is...>{}, fs...)); // T.C.'s idea of tuple_cat with all the single return tuples.
}
};
template <>
struct MultiFunction<std::tuple<>> {
static auto execute (const std::tuple<>&, std::index_sequence<>) { return std::tuple<>(); }
};
template <std::size_t... Is, typename Tuple, typename... Fs>
auto multiFunction (const Tuple& tuple, Fs... fs) {
return MultiFunction<Tuple, Fs...>::execute (tuple, std::index_sequence<Is...>{}, fs...);
}
// Testing
template <typename T> int foo (int, char) {std::cout << "foo<T>\n"; return 0;}
double bar (bool, double, long) {std::cout << "bar\n"; return 3.5;}
double bar (bool, int) {return 1.4;}
void voidFunction() {std::cout << "voidFunction\n";}
template <int...> bool baz (char, short, float) {std::cout << "baz<int...>\n"; return true;}
int main() {
const auto tuple = std::make_tuple(5, 'a', true, 3.5, 1000, 't', 2, 5.8);
const auto firstBar = [](bool b, double d, long l) {return bar(b, d, l);};
const auto t = multiFunction<2,3,0,3> (tuple, foo<bool>, firstBar, voidFunction, baz<2,5,1>); // Note that since 'bar' has an overload, we have to define 'firstBar' to indicate which 'bar' function we want to use.
std::cout << std::boolalpha << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t) << ' ' << std::get<3>(t) << '\n';
// 0 3.5 [no value returned] true
}
This solution should have linear time complexity. It uses std::tie instead of std::make_tuple, so neither the functions nor the arguments are copied unnecessarily. I think it should be fairly easy to follow compared to some other answers here.
First, we need a utility to invoke a function using a std::tuple of arguments.
template <typename F, typename Args, std::size_t... Is>
auto invoke_impl(F const& f, Args const& args, std::index_sequence<Is...>)
{
return f(std::get<Is>(args)...);
}
template <typename F, typename Args>
auto invoke(F const& f, Args const& args)
{
return invoke_impl(f, args, std::make_index_sequence<std::tuple_size<Args>::value>());
}
Secondly, we need a utility to std::tie a sub-range of tuple elements.
template <std::size_t Offset, typename Tuple, std::size_t... Is>
auto sub_tie_impl(Tuple const& tuple, std::index_sequence<Is...>)
{
return std::tie(std::get<Offset + Is>(tuple)...);
}
template <std::size_t Offset, std::size_t Count, typename Tuple>
auto sub_tie(Tuple const& tuple)
{
return sub_tie_impl<Offset>(tuple, std::make_index_sequence<Count>());
}
Now we can create our utility to consume a std::tuple of arguments using a sequence of functions.
First we std::tie the functions into a tuple, then we split the argument list into a parameter pack of sub-argument lists, and finally we invoke a function for each sub-argument list, packing the results into a tuple which we then return.
template <typename Fs, std::size_t... Is, typename... SubArgs>
auto consume_impl(Fs const& fs, std::index_sequence<Is...>, SubArgs const&... sub_args)
{
return std::make_tuple(invoke(std::get<Is>(fs), sub_args)...);
}
template <std::size_t, typename Args, typename Fs, typename... SubArgs>
auto consume_impl(Args const&, Fs const& fs, SubArgs const&... sub_args)
{
return consume_impl(fs, std::make_index_sequence<sizeof...(SubArgs)>(), sub_args...);
}
template <std::size_t Offset, std::size_t Count, std::size_t... Counts,
typename Args, typename Fs, typename... SubArgs>
auto consume_impl(Args const& args, Fs const& fs, SubArgs const&... sub_args)
{
return consume_impl<Offset + Count, Counts...>(args, fs, sub_args...,
sub_tie<Offset, Count>(args));
}
template <std::size_t... Counts, typename Args, typename... Fs>
auto consume(Args const& args, Fs const&... fs)
{
return consume_impl<0, Counts...>(args, std::tie(fs...));
}
Here's another solution borrowing Barry's partial_apply idea but avoiding the use of his partial_sum function altogether. It is shorter as a result. I think this is linear in time complexity.
#include <iostream>
#include <tuple>
#include <utility>
template <std::size_t Offset, typename F, typename Tuple, std::size_t... Is>
auto partial_apply_impl (F f, const Tuple& tuple, const std::index_sequence<Is...>&) {
return f(std::get<Offset + Is>(tuple)...);
}
template <typename Off, typename F, typename Tuple> // Off must be of type OffsetIndexSequence<A,B> only.
auto partial_apply (F f, const Tuple& tuple) {
return partial_apply_impl<Off::value>(f, tuple, typename Off::sequence{});
}
template <std::size_t Offset, std::size_t Size>
struct OffsetIndexSequence : std::integral_constant<std::size_t, Offset> {
using sequence = std::make_index_sequence<Size>;
};
template <typename Output, std::size_t... Is> struct OffsetIndexSequenceBuilder;
template <template <typename...> class P, typename... Out, std::size_t Offset, std::size_t First, std::size_t... Rest>
struct OffsetIndexSequenceBuilder<P<Out...>, Offset, First, Rest...> :
OffsetIndexSequenceBuilder<P<Out..., OffsetIndexSequence<Offset, First>>, Offset + First, Rest...> {};
template <template <typename...> class P, typename... Out, std::size_t Offset>
struct OffsetIndexSequenceBuilder<P<Out...>, Offset> {
using type = P<Out...>;
};
template <std::size_t... Is>
using offset_index_sequences = typename OffsetIndexSequenceBuilder<std::tuple<>, 0, Is...>::type;
template <typename> struct MultiFunction;
template <template <typename...> class P, typename... Offs>
struct MultiFunction<P<Offs...>> {
template <typename ArgsTuple, typename... Fs>
static auto execute (const ArgsTuple& argsTuple, Fs... fs) {
using ResultTuple = std::tuple<decltype(partial_apply<Offs>(fs, argsTuple))...>;
return ResultTuple{partial_apply<Offs>(fs, argsTuple)...};
}
};
template <std::size_t... Is, typename ArgsTuple, typename... Fs>
auto multiFunction (const ArgsTuple& argsTuple, Fs... fs) {
return MultiFunction<offset_index_sequences<Is...>>::execute(argsTuple, fs...);
}
// Testing
int foo (int, char) {std::cout << "foo\n"; return 0;}
double bar (bool, double, long) {std::cout << "bar\n"; return 3.5;}
bool baz (char, short, float) {std::cout << "baz\n"; return true;}
int main() {
const auto tuple = std::make_tuple(5, 'a', true, 3.5, 1000, 't', 2, 5.8);
const std::tuple<int, double, bool> t = multiFunction<2,3,3> (tuple, foo, bar, baz); // foo bar baz
std::cout << std::boolalpha << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t) << '\n'; // 0 3.5 true
}
If I have a tuple with different element types like
std::tuple<T0, T1, T2, ...>
And how to get the index of a element type?
template<class T, class Tuple>
struct Index
{
enum {value = ?;}
};
Thanks.
template <class T, class Tuple>
struct Index;
template <class T, class... Types>
struct Index<T, std::tuple<T, Types...>> {
static const std::size_t value = 0;
};
template <class T, class U, class... Types>
struct Index<T, std::tuple<U, Types...>> {
static const std::size_t value = 1 + Index<T, std::tuple<Types...>>::value;
};
See it live at Coliru.
This implementation returns the index of the first occurrence of a given type. Asking for the index of a type that is not in the tuple results in a compile error (and a fairly ugly one at that).
template< size_t I, typename T, typename Tuple_t>
constexpr size_t index_in_tuple_fn(){
static_assert(I < std::tuple_size<Tuple_t>::value,"The element is not in the tuple");
typedef typename std::tuple_element<I,Tuple_t>::type el;
if constexpr(std::is_same<T,el>::value ){
return I;
}else{
return index_in_tuple_fn<I+1,T,Tuple_t>();
}
}
template<typename T, typename Tuple_t>
struct index_in_tuple{
static constexpr size_t value = index_in_tuple_fn<0,T,Tuple_t>();
};
The example above avoids generating tons of sub tuples, which makes compilation fail (out of memory) when you call index_in_tuple for large tuples
With constexpr "function" (or lambda), you might do
template <class T, class Tuple>
struct Index;
template <class T, typename... Ts>
struct Index<T, std::tuple<Ts...>>
{
static constexpr std::size_t index = [](){
constexpr std::array<bool, sizeof...(Ts)> a{{ std::is_same<T, Ts>::value... }};
// You might easily handle duplicate index too (take the last, throw, ...)
// Here, we select the first one.
const auto it = std::find(a.begin(), a.end(), true);
// You might choose other options for not present.
// As we are in constant expression, we will have compilation error.
// and not a runtime expection :-)
if (it == a.end()) throw std::runtime_error("Not present");
return std::distance(a.begin(), it);
}();
};
Actually requires C++20 as missing constexpr for std functions,
but can easily be rewritten for previous version. (C++11 would be trickier with the strong restriction for constexpr).
Yet another one using fold expression.
It also sets the value to -1 when not found.
template <class X, class Tuple>
class Idx;
template <class X, class... T>
class Idx<X, std::tuple<T...>> {
template <std::size_t... idx>
static constexpr ssize_t find_idx(std::index_sequence<idx...>) {
return -1 + ((std::is_same<X, T>::value ? idx + 1 : 0) + ...);
}
public:
static constexpr ssize_t value = find_idx(std::index_sequence_for<T...>{});
};
live: https://onlinegdb.com/SJE8kOYdv
EDIT:
As suggested by #Jarod42, one may use std::max:
template <class X, class Tuple>
class Idx;
template <class X, class... T>
class Idx<X, std::tuple<T...>> {
template <std::size_t... idx>
static constexpr ssize_t find_idx(std::index_sequence<idx...>) {
return std::max({static_cast<ssize_t>(std::is_same_v<X, T> ? idx : -1)...});
}
public:
static constexpr ssize_t value = find_idx(std::index_sequence_for<T...>{});
};
template<typename X, class Tuple>
inline constexpr ssize_t Idx_v = Idx<X, Tuple>::value;
In case of duplicate type, this version returns the index of the last one.
live: https://onlinegdb.com/WenEBQs0L
template <typename T, typename U, typename... Us>
constexpr auto getIndex() {
if constexpr (is_same_v<T, U>) {
return 0;
} else {
if constexpr (sizeof...(Us)) {
return 1 + getIndex<T, Us...>();
} else {}
}
}
template <typename T, typename U, typename... Us>
constexpr auto getIndex(const tuple<U, Us...> &) {
return getIndex<T, U, Us...>();
}
usage
tuple the_tuple{'\0', 1, 2L, 3.0, "4", string{"5"}};
cout << getIndex<char>(the_tuple) << endl; // 0
cout << getIndex<double>(the_tuple) << endl; // 3
cout << getIndex<const char *>(the_tuple) << endl; // 4
cout << getIndex<string>(the_tuple) << endl; // 5
/* cout << getIndex<short>(the_tuple) << endl; // compile error */
Try this one, which reports error if the tuple is empty, T doesn't exist or not unique in the tuple:
template <template <typename ...> class TT, std::size_t I, typename ...Ts>
struct defer
{
using type = TT<I, Ts...>;
};
template <std::size_t, typename, typename>
struct tuple_index_helper;
template <std::size_t I, typename T, typename U, typename ...Vs>
struct tuple_index_helper<I, T, std::tuple<U, Vs...>>
{
static_assert(!std::is_same_v<T, U>, "Type not unique.");
static constexpr std::size_t index = tuple_index_helper<I, T, std::tuple<Vs...>>::index;
};
template <std::size_t I, typename T>
struct tuple_index_helper<I, T, std::tuple<>>
{
static constexpr std::size_t index = I;
};
template <std::size_t, typename, typename>
struct tuple_index;
template <std::size_t I, typename T, typename U, typename ...Vs>
struct tuple_index<I, T, std::tuple<U, Vs...>>
{
static constexpr std::size_t index = std::conditional_t<std::is_same_v<T, U>, defer<tuple_index_helper, I, T, std::tuple<Vs...>>, defer<tuple_index, I + 1, T, std::tuple<Vs...>>>::type::index;
};
template <std::size_t I, typename T>
struct tuple_index<I, T, std::tuple<>>
{
static_assert(!(I == 0), "Empty tuple.");
static_assert(!(I != 0), "Type not exist.");
};
template <typename T, typename U>
inline constexpr std::size_t tuple_index_v = tuple_index<0, T, U>::index;
Example:
std::tuple<int, float, const char*> t1{};
std::tuple<int, float, int> t2{};
std::tuple<> t3{};
constexpr auto idx = tuple_index_v<float, decltype(t1)>; // idx = 1
// constexpr auto idx2 = tuple_index_v<long long, decltype(t1)> // Error: Type not exist.
// constexpr auto idx3 = tuple_index_v<int, decltype(t2)> // Error: Type not unique.
// constexpr auto idx4 = tuple_index_v<int, decltype(t3)> // Error: Empty tuple.
This does what Qiang does, but it doesn't have that strange looking empty else branch.
It also makes sure that a tuple with unique types gets passed to it for good measure.
template <typename...>
inline constexpr auto is_unique = std::true_type{};
template <typename T, typename... Rest>
inline constexpr auto is_unique<T, Rest...> = std::bool_constant<(!std::is_same_v<T, Rest> && ...) && is_unique<Rest...>>{};
template <typename T, typename U, typename... Us>
constexpr auto getIndexImpl() {
if constexpr (std::is_same<T, U>::value) {
return 0;
} else {
static_assert(sizeof...(Us) > 0, "This tuple does not have that type");
return 1 + getIndexImpl<T, Us...>();
}
}
template <typename T, typename U, typename... Us>
constexpr auto getIndex(const std::tuple<U, Us...> &) {
static_assert(is_unique<U, Us...>, "getIndex should only be called on tuples with unique types.");
return getIndexImpl<T, U, Us...>();
}
I have the following code :
template<size_t sz,typename T=float> class Vec{
T v[sz];
Vec(const T& val,const T&... nv){
//how do i assign `sz` number of first arguments into `this->v` array
}
}
I want to create constructor, that receive generic number of constructor argument, and assign the first sz number of arguments into member variable of v
what I want to do, is to be able doing like this: Vec<3> var(1.0,2.0,3.0);
This is possible, but complicated. Here is some code that does it. It may be possible to eliminate the holder type, but I leave that as an exercise for the reader. This has been tested with g++ 4.6.
#include <iostream>
#include <typeinfo>
template<size_t ... Indices> struct indices_holder
{};
template<size_t index_to_add,typename Indices=indices_holder<> >
struct make_indices_impl;
template<size_t index_to_add,size_t...existing_indices>
struct make_indices_impl<index_to_add,indices_holder<existing_indices...> >
{
typedef typename make_indices_impl<
index_to_add-1,
indices_holder<index_to_add-1,existing_indices...> >::type type;
};
template<size_t... existing_indices>
struct make_indices_impl<0,indices_holder<existing_indices...> >
{
typedef indices_holder<existing_indices...> type;
};
template<size_t max_index>
typename make_indices_impl<max_index>::type make_indices()
{
return typename make_indices_impl<max_index>::type();
}
template<unsigned index,typename ... U>
struct select_nth_type;
template<unsigned index,typename T,typename ... U>
struct select_nth_type<index,T,U...>
{
typedef typename select_nth_type<index-1,U...>::type type;
static type&& forward(T&&,U&&... u)
{
return select_nth_type<index-1,U...>::forward(static_cast<U&&>(u)...);
}
};
template<typename T,typename ... U>
struct select_nth_type<0,T,U...>
{
typedef T type;
static type&& forward(T&&t,U&&...)
{
return static_cast<T&&>(t);
}
};
template<unsigned index,typename ... U>
typename select_nth_type<index,U...>::type&& forward_nth(U&&... u)
{
return static_cast<typename select_nth_type<index,U...>::type&&>(
select_nth_type<index,U...>::forward(
static_cast<U&&>(u)...));
}
template<size_t sz,typename T=float> struct Vec{
struct holder
{
T data[sz];
};
holder v;
template<typename ... U>
struct assign_helper
{
template<size_t... Indices>
static holder create_array(indices_holder<Indices...>,Vec* self,U&&... u)
{
holder res={{static_cast<T>(forward_nth<Indices>(u...))...}};
return res;
}
};
template<typename ... U>
Vec(U&&... u):
v(assign_helper<U...>::create_array(make_indices<sz>(),this,static_cast<U&&>(u)...))
{}
};
int main()
{
Vec<3> v(1.2,2.3,3.4,4.5,5.6,7.8);
std::cout<<"v[0]="<<v.v.data[0]<<std::endl;
std::cout<<"v[1]="<<v.v.data[1]<<std::endl;
std::cout<<"v[2]="<<v.v.data[2]<<std::endl;
}
I believe this satisfies all the requirements:
template <size_t sz,typename T,typename... Args> struct Assign;
template <typename T,typename First,typename...Rest>
struct Assign<1,T,First,Rest...> {
static void assign(T *v,const First &first,const Rest&... args)
{
*v = first;
}
};
template <size_t sz,typename T,typename First,typename... Rest>
struct Assign<sz,T,First,Rest...> {
static void assign(T *v,const First &first,const Rest&... rest)
{
*v = first;
Assign<sz-1,T,Rest...>::assign(v+1,rest...);
}
};
template<size_t sz,typename T=float>
struct Vec{
T v[sz];
template <typename... Args>
Vec(const T& val,const Args&... nv){
Assign<sz,T,T,Args...>::assign(v,val,nv...);
}
};
This is another technique which is much simpler if it is ok not to have at least sz parameters:
template<size_t sz,typename T=float>
struct Vec {
T v[sz];
template <typename... Args>
Vec(const T& val,const Args&... nv)
{
T data[] = {val,static_cast<const T &>(nv)...};
int i=0;
for (; i<sz && i<(sizeof data)/sizeof(T); ++i) {
v[i] = data[i];
}
for (; i<sz; ++i) {
v[i] = T();
}
}
};
First declare this utility function:
template <typename T> inline void push(T* p) {}
template <typename T, typename First, typename... Args>
inline void push(T* p, First&& first, Args&&... args)
{
*p = first;
push(++p, std::forward<Args>(args)...);
}
Then, in your class:
template<size_t sz,typename T=float>
class Vec
{
T v[sz];
template <typename... Args>
Vec(T first, Args&&... args) // << we have changed const T& to T&&
{
//how do i assign `sz` number of first arguments into `this->v` array
// like this:
push(&v[0], first, std::forward<Args>(args)...);
}
}
sz is a template argument, you can directly use it in your code.
The following could work:
template <typename T, std::size_t N>
struct Foo
{
T arr[N];
template <typename ...Args> Foo(Args &&... args) : arr{std::forward<Args>(args)...} { }
};
Usage:
Foo<int, 3> a(1,2,3);
This allows you to construct the array elements from anything that's convertible to T. You can obtain the number of parameters (which can be anything not exceeding N) with sizeof...(Args).
Can you make use of something like this?
template <typename... Args> class Vec {
std :: tuple <Args...> m_args;
Vec (const Foo & a, const Bar & b, Args&&... args)
: m_args (args...)
{
// ... something with a, b
}
};
There are a few rules to constrain you:
you can only have one template... Args-style packed argument list per template class
methods which use it must have the templated arguments on the right-hand-side
You need to unpack the argument pack while keeping a count and do the necessary runtime operation in a functor. This should get you started:
template<unsigned, typename...>
struct unroll;
template<unsigned size, typename Head, typename... Tail>
struct unroll<size, Head, Tail...> {
void operator()(Head&& h, Tail&&... tail) {
// do your stuff, pass necessary arguments through the ctor of the
// struct
unroll<size - 1, Tail...>()(std::forward<Tail>(tail)...);
}
};
template<typename Head, typename... Tail>
struct unroll<1, Head, Tail...> {
void operator()(Head&& h, Tail&&... tail) {
// do your stuff the last time and do not recurse further
}
};
int main()
{
unroll<3, int, double, int>()(1, 3.0, 2);
return 0;
}
The following almost works (and for the last N arguments instead of the first, but hey). Perhaps someone can help with the compile error in the comments below:
#include <iostream>
void foo (int a, int b) {
std :: cout << "3 args: " << a << " " << b << "\n";
}
void foo (int a, int b, int c) {
std :: cout << "3 args: " << a << " " << b << " " << c << "\n";
}
template <int n, typename... Args>
struct CallFooWithout;
template <typename... Args>
struct CallFooWithout <0, Args...> {
static void call (Args... args)
{
foo (args...);
}
};
template <int N, typename T, typename... Args>
struct CallFooWithout <N, T, Args...> {
static void call (T, Args... args)
{
CallFooWithout <N-1, Args...> :: call (args...);
// ambiguous class template instantiation for 'struct CallFooWithout<0, int, int, int>'
// candidates are: struct CallFooWithout<0, Args ...>
// struct CallFooWithout<N, T, Args ...>
}
};
template <int n, typename... Args>
void call_foo_with_last (Args... args)
{
CallFooWithout <sizeof...(Args)-n, Args...> :: call (args...);
}
int main ()
{
call_foo_with_last <2> (101, 102, 103, 104, 105);
call_foo_with_last <3> (101, 102, 103, 104, 105);
}
I don't see why it's ambiguous because 0 is more specialised than N so that should satisfy the partial order ?!?!?
By contrast, the below is fine.
template <int N, typename... T>
struct Factorial
{
enum { value = N * Factorial<N - 1,T...>::value };
};
template <typename... T>
struct Factorial<0, T...>
{
enum { value = 1 };
};
void foo()
{
int x = Factorial<4,int>::value;
}
What's the difference?