Call class method instide template class - c++

I'm pretty new about template programming and I could not find any related question, sorry if already exists a similar question.
I have my template class
template<class T>
class MyTemplate
{
public:
virtual void set(const T& val) { value_ = val; }
virtual T get() const { return value_; }
// other stuff
private:
T value_;
}
and a custom class
class Foo
{
void bar();
}
Then I declare a variable
MyTemplate<Foo> var;
How can I call the bar() method from var ?

To call bar() you need an instance of Foo somewhere. As already mentioned, you could use inheritance. I see that the question has been edited to add such a member. You can't call members of the template type directly. You could add a wrapper in the MyTemplate, for instance 'doBar()'. You could also (though it's not a good idea) expose the Foo member by making it public.
#include <iostream>
template<class T>
class MyTemplate
{
public:
void doBar() { value_.bar(); }
public:
T value_;
};
class Foo
{
public:
void bar();
};
void Foo::bar()
{
std::cout << "Foo::bar()\n";
}
int main()
{
MyTemplate<Foo> var;
var.doBar();
var.value_.bar();
}
BTW any other old timers reminded of Swaine's Flames in Dr Dobbs journal?

Related

C++ How to get a member from a templated derived class? [duplicate]

I am trying to solve a programming problem that consists of an object (call it Diagram), that contains several parameters. Each parameter (the Parameter class) can be one of several types: int, double, complex, string - to name a few.
So my first instinct was to define my Diagram class as having a vector of template parameters, which would look like this.
class Diagram
{
private:
std::vector<Parameter<T> > v;
};
This doesn't compile, and I understand why. So, based on the recommendations on this page How to declare data members that are objects of any type in a class, I modified my code to look like:
class ParameterBase
{
public:
virtual void setValue() = 0;
virtual ~ParameterBase() { }
};
template <typename T>
class Parameter : public ParameterBase
{
public:
void setValue() // I want this to be
// void setValue(const T & val)
{
// I want this to be
// value = val;
}
private:
T value;
};
class Diagram
{
public:
std::vector<ParameterBase *> v;
int type;
};
I'm having trouble figuring out how to call the setValue function with an appropriate templated parameter. It is not possible to have a templated parameter in the ParameterBase abstract base class. Any help is greatly appreciated.
P.S. I don't have the flexibility to use boost::any.
You got very close. I added a few bits because they're handy
class ParameterBase
{
public:
virtual ~ParameterBase() {}
template<class T> const T& get() const; //to be implimented after Parameter
template<class T, class U> void setValue(const U& rhs); //to be implimented after Parameter
};
template <typename T>
class Parameter : public ParameterBase
{
public:
Parameter(const T& rhs) :value(rhs) {}
const T& get() const {return value;}
void setValue(const T& rhs) {value=rhs;}
private:
T value;
};
//Here's the trick: dynamic_cast rather than virtual
template<class T> const T& ParameterBase::get() const
{ return dynamic_cast<const Parameter<T>&>(*this).get(); }
template<class T, class U> void ParameterBase::setValue(const U& rhs)
{ return dynamic_cast<Parameter<T>&>(*this).setValue(rhs); }
class Diagram
{
public:
std::vector<ParameterBase*> v;
int type;
};
Diagram can then do stuff like these:
Parameter<std::string> p1("Hello");
v.push_back(&p1);
std::cout << v[0]->get<std::string>(); //read the string
v[0]->set<std::string>("BANANA"); //set the string to something else
v[0]->get<int>(); //throws a std::bad_cast exception
It looks like your intent is to store resource-owning pointers in the vector. If so, be careful to make Diagram have the correct destructor, and make it non-copy-constructable, and non-copy-assignable.
The bellow implementation uses a few C++11 features but you will be
able to pick them apart.
#include <vector>
#include <memory>
class Parameter
{
private:
class ParameterBase {
public:
virtual ~ParameterBase() {}
virtual ParameterBase* copy() = 0;
virtual void foo() = 0;
};
template <typename T>
class ParameterModel : public ParameterBase {
public:
// take by value so we simply move twice, if movable
ParameterModel(const T& t) : t(t) {}
ParameterModel(T&& t) : t(t) {}
void foo() { t.foo(); }
ParameterModel* copy() { return new ParameterModel(*this); }
private:
T t;
};
public:
template <typename T>
Parameter(T&& t)
: pp(new ParameterModel< typename std::remove_reference<T>::type >(std::forward<T>(t))) {}
// Movable and Copyable only
Parameter(Parameter&&) = default;
Parameter& operator=(Parameter&&) = default;
Parameter(const Parameter& other) : pp(other.pp->copy()) {};
Parameter operator=(const Parameter& other) {
pp.reset(other.pp->copy());
return *this;
};
// members
void foo() { pp->foo(); }
private:
std::unique_ptr<ParameterBase> pp;
};
class Diagram
{
public:
std::vector<Parameter> v;
int type;
};
struct X {
void foo() {}
};
struct Y {
void foo() {}
};
int main()
{
Diagram d;
d.v.emplace_back(X()); // int
// parameters are copyable and can be reassigned even with different
// impls
Parameter p = d.v.back();
Parameter other((Y()));
other = p;
return 0;
}
What does this code do? It hides the fact that we use inheritance to
implement parameters from our users. All they should need to know is
that we require a member function called foo. These requirements are
expressed in our ParameterBase. You need to identify these
requirements and add the to ParameterBase. This is basically a more
restrictive boost::any.
It is also quite close to what is described in Sean Parent's value semantics talk.

Is a C++ template able to "forward any class function" from parent class?

class Foo {
public:
void methodA();
};
class ManagedFoo {
Foo fooInst;
public:
void methodA() { doSomething(); fooInst.methodA();}
};
Now I want to make ManagedFoo as a template, managing any class not only Foo, and before any of Foo's function is called, call doSomething first.
template<typename _TyManaged>
class Manager {
_TyManaged _managedInst;
void doSomething();
public:
/*Forward every function called by _managedInst*/
/*How to write this?*/
};
I want to make it the same, make it replaceable between this two class, like this :
Foo* foo = new Foo();
foo->methodA();
Manager<Foo> managedFoo = new Manager<Foo>();
managedFoo->methodA(); //Hope it call Manager::doSomething() first then call _managedInst.methodA();
Can C++11 template do such thing? if answer is yes, how to?
Solution based on operator-> overloading:
#include <iostream>
#include <memory>
class A {
public:
void foo() { std::cout << "foo\n"; }
void bar() { std::cout << "bar\n"; }
};
template <typename T>
class ManagedBase {
std::shared_ptr<T> _inst;
public:
ManagedBase(const std::shared_ptr<T> inst) : _inst(inst) { }
virtual ~ManagedBase() { }
std::shared_ptr<T> operator->() {
before();
return this->_inst;
}
virtual void before() =0;
};
template <typename T>
class ManagedPrint : public ManagedBase<T> {
public:
ManagedPrint(const std::shared_ptr<T> inst) : ManagedBase(inst) { }
virtual void before() {
std::cout << "Said: ";
}
};
int main() {
auto ma = ManagedPrint<A>(std::make_shared<A>());
ma->bar(); // Said: foo
ma->bar(); // Said: bar
}
Something like this?
template<typename _TyManaged>
class Manager {
_TyManaged _managedInst;
void doSomething();
public:
_TyManaged* operator->() {
doSomething();
return &_managedInst;
}
};
This can solve your problem. But I'm still not sure what you want to do with your Manager class.
class Foo {
public:
void methodA();
};
template<typename T>
class ManagedFoo : public T {
public:
// some further extensions
};
And of course in this way you change the semantic of the Foo class by the manager from:
It has a
to
It is a
So I'm not sure if this is true in your case.

Calling a class protected method from a template

I want to have a template that can access the protected method of it's typename parameter. How can I make that work?
For example:
class Foo{
...
protected:
int Bar();
}
template <class T> FooTempl{
...
int SomeMethod(T* ptr) { return ptr->Bar();};
...
}
The reason is that I want the method Foo::Bar() to be accessible to the template, but not to any other external caller. I hope there's some friend syntax there that can make it work...
An alternate to declaring FooTempl as a friend of Foo would be to have the former derive from the latter. In this case, since Foo is a base class for FooTempl, so FooTempl::SomeMethod would not need to have a Foo * parameter anymore.
class Foo
{
protected:
int Bar() { return 42; }
};
template <class T>
class FooTempl : public T
{
public:
int SomeMethod() { return T::Bar();}
};
int main()
{
FooTempl<Foo> bar;
bar.SomeMethod();
}
Which of these methods is more appropriate depends on your use case.
Add the following line into Foo:
template<typename T> friend class FooTempl;

looking for solution of c++ member function override (non virtual)

I've two classes:
struct A {
template <typename T>
void print(T& t){
// do sth specific for A
}
};
struct B : A {
template <typename T>
void print(T& t){
// do sth specific for B
}
};
In such case, the more general Base class with virtual functions (which A and B both inherit from) cannot be compiled, since there is no virtual for template. As I try to delegate generally all A or B objects under same "interface", does anyone has the idea to resolve such problem? Thank you in advance.
Sincerely,
Jun
You can think about using using CRTP.
template<typename Derived>
struct Base {
template <typename T>
void print(T& t){
static_cast<Derived*>(this)->print(t);
}
};
struct A : Base<A> {
// template print
};
struct B : Base<B> {
// template print
};
Example Usage:
template<typename T, typename ARG>
void foo (Base<T>* p, ARG &a)
{
p->print(a);
}
This method will be called as,
foo(pA, i); // pA is A*, i is int
foo(pB, d); // pB is B*, d is double
Here is another demo code.
Using a proxy class to get B's method
class A {
public:
friend class CProxyB;
virtual CProxyB* GetCProxyB() = 0;
};
class B;
class CProxyB
{
public:
CProxyB(B* b){mb = b;}
template <typename T>
void printB(T& t)
{
mb->print(t);
}
B* mb;
};
class B:public A {
public:
virtual CProxyB* GetCProxyB(){return new CProxyB(this);};
template <typename T>
void print(T& t){
printf("OK!!!!!\n");
}
};
int _tmain(int argc, _TCHAR* argv[])
{
A* a = new B;
CProxyB* pb = a->GetCProxyB();
int t = 0;
pb->printB(t);
return 0;
}
Two options:
Option one: Virtualize the method where if the user does not provide an implementation, the Base class' is used.
template <typename T>
struct A {
virtual void print(T& t);
};
template <typename T>
void A::print(T& t) {
// do sth specific for A
}
template <typename T>
struct B : A {
virtual void print(T& t);
};
void B::print(T& t) {
// do sth specific for B
}
Option two: Abstract the method where if the user does not provide an implementation, the code will not compile.
template <typename T>
struct A {
virtual void print(T& t)=0;
};
template <typename T>
struct B : A {
virtual void print(T& t){
// do sth specific for B
}
};
template <typename T>
void B::print(T& t){
// do sth specific for B
}
Other than the above mentioned, if you do not make them virtual, the Derived class will Shadow the Base class method and that is most certainly not what you intended. Hence, impossible.
my question is how to use single pointer to different A or B objects.
You can do this without virtual functions per-se. But all you will really be doing is writing an implementation of a V-table and virtual functions.
If I were going to manually implement virtual functions, I would base it all on a Boost.Variant object. The variant would effectively hold the member data for each class. To call a function, you use a variant visitor functor. Each "virtual function" would have its own visitor functor, which would have different overloads of operator() for each of the possible types within the variant.
So you might have this:
typedef boost::variant<StructA, StructB, StructC> VirtualClass;
You could store any one of those objects in the variant. You would call a "virtual function" on the object like this:
VirtualClass someObject(StructA());
boost::apply_visitor(FunctorA(), someObject);
The class FunctorA is your virtual function implementation. It is a visitor, defined like this:
class FunctorA : public boost::static_visitor<>
{
void operator()(StructA &arg){
//Do something for StructA
}
void operator()(StructB &arg){
//Do something for StructB
}
void operator()(StructC &arg){
//Do something for StructC
}
}
Visitors can have return values, which are returned by apply_visitor. They can take arguments, by storing the arguments as members of the visitor class. And so forth.
Best of all, if you ever change your variant type, to add new "derived classes", you will get compiler errors for any functors that don't have overloads for the new types.
But to be honest, you should just be using virtual functions.
By using CRTP(Curiously recurring template pattern), you can achieve static polymorphsim without virtual.
#include <iostream>
using namespace std;
#define MSG(msg) cout << msg << endl;
template<class Derived>
class Base{
public:
void print()
{
static_cast<Derived*>(this)->print();
}
};
class Derived1 : public Base<Derived1>
{
public:
void print()
{
MSG("Derived 1::print");
}
};
class Derived2 : public Base<Derived2>
{
public:
void print()
{
MSG("Derived 2::print");
}
};
template<class T>
void callme(Base<T>& p)
{
p.print();
}
int main()
{
Base<Derived1> p1;
Base<Derived2> p2;
callme(p1);
callme(p2);
system("pause");
return 0;
}
//Result :
//Derived 1::print
//Derived 2::print

C++ interface style programming. Need a way out

template <typename T>
class BaseQueue
{
public :
virtual void push_back(T value) = 0;
//other virtual methods
};
template <typename T>
class BaseDeque: public virtual BaseQueue<T>
{
public:
virtual void push_front(T value) = 0;
//other virtual methods
};
//Realisation
template <typename T>
class VectorQueue: public BaseQueue<T>
{
typedef typename std::vector<T> array;
private: array adata;
public:
VectorQueue()
{
adata = array();
}
void push_back(T value)
{
adata.push_back(value);
}
};
template <typename T>
class VectorDeque: virtual public VectorQueue<T>, virtual protected BaseDeque<T>//,
{
void push_front(T value)
{
VectorQueue::adata.push_front(value);
}
};
int _tmain(int argc, _TCHAR* argv[])
{
VectorDeque<int> vd = VectorDeque<int>();//here is a error
int i;
std::cin >> i;
return 0;
}
I have such error: "C2259: 'VectorDeque' : cannot instantiate abstract class ...". How can I fix it? Class VectorQueue has realize every virtual method of BaseQueue class already. But the compiler doesn't know it. The only way I see is to write something like this:
template <typename T>
class VectorDeque: virtual public VectorQueue<T>, virtual protected BaseDeque<T>//,
{
void push_front(T value)
{
VectorQueue::adata.push_front(value);
}
void push_back(T value)
{
VectorQueue::push_back(value);
}
//repeat it fo every virtual method of BaseQueue class (interface)
};
But it's awful.
push_back from BaseQueue isn't implemented on the BaseDeque side of the inheritance chain, and thus the childmost class is still abstract.
I think you're trying to force a class relationship here that shouldn't exist. Note how in the standard library deque and vector are distinct container types and things like queue adapt those containers to very precise interfaces rather than trying to inherit.
Even if you solve your diamond issue (or follow #Mark B's advice and keep them separate), you have a few other issues in there:
template <typename T>
class VectorQueue: public BaseQueue<T>
{
typedef typename std::vector<T> array;
private: array adata; // if this is private, VectorDeque can't reach it
public:
// constructors have an initializer section
// member variables should be initialized there, not in the body
VectorQueue()
// : adata() // however, no need to explicitly call default constructor
{
// adata = array();
}
};
template <typename T>
class VectorDeque: virtual public VectorQueue<T>, virtual protected BaseDeque<T>
{
void push_front(T value)
{
// if adata is protected, you can just access it. No need for scoping
/*VectorQueue::*/ adata.push_front(value);
// Error: std::vector doesn't have a method push_front.
// Perhaps you meant to use std::list?
}
};
Multiple inheritance and static polymorphism are of help, for instance:
// Abstract bases
template <typename T, typename Val>
class BaseQueue
{
public :
void push_back(Val val)
{
static_cast<T*>(this)->push_back(val);
}
// ...
};
template <typename T, typename Val>
class BaseDeque
{
public:
void push_front(Val val)
{
static_cast<T*>(this)->push_front(val);
}
// ...
};
// Concrete class
#include <deque>
template <typename Val>
class QueueDeque:
public BaseQueue<QueueDeque<Val>, Val>,
public BaseDeque<QueueDeque<Val>, Val>
{
std::deque<Val> vals;
public:
void push_front(Val val)
{
vals.push_front(val);
}
void push_back(Val val)
{
vals.push_back(val);
}
// etc..
};
int main()
{
QueueDeque<int> vd;// no more error
vd.push_front(5);
vd.push_back(0);
return 0;
}