Consider this pseudo-snippet:
class SomeClass
{
public:
SomeClass()
{
if(true)
{
fooCall = [](auto a){ cout << a.sayHello(); };
}
else
{
fooCall = [](auto b){ cout << b.sayHello(); };
}
}
private:
template<typename T>
std::function<void(T)> fooCall;
};
What I want is a class member fooCall which stores a generic lambda, which in turn is assigned in the constructor.
The compiler complains that fooCall cannot be a templated data member.
Is there any simple solution on how i can store generic lambdas in a class?
There is no way you'll be able to choose between two generic lambdas at run-time, as you don't have a concrete signature to type-erase.
If you can make the decision at compile-time, you can templatize the class itself:
template <typename F>
class SomeClass
{
private:
F fooCall;
public:
SomeClass(F&& f) : fooCall{std::move(f)} { }
};
You can then create an helper function to deduce F:
auto makeSomeClassImpl(std::true_type)
{
auto l = [](auto a){ cout << a.sayHello(); };
return SomeClass<decltype(l)>{std::move(l)};
}
auto makeSomeClassImpl(std::false_type)
{
auto l = [](auto b){ cout << b.sayHello(); };
return SomeClass<decltype(l)>{std::move(l)};
}
template <bool B>
auto makeSomeClass()
{
return makeSomeClassImpl(std::bool_constant<B>{});
}
I was not able to store std::function<> as a generic lambda in the class directly as a member. What I was able to do was to specifically use one within the class's constructor. I'm not 100% sure if this is what the OP was trying to achieve but this is what I was able to compile, build & run with what I'm suspecting the OP was aiming for by the code they provided.
template<class>
class test {
public: // While testing I changed this to public access...
// Could not get object below to compile, build & run
/*template<class U = T>
static std::function<void(U)> fooCall;*/
public:
test();
};
template<class T>
test<T>::test() {
// This would not compile, build & run
// fooCall<T> = []( T t ) { std::cout << t.sayHello(); };
// Removed the variable within the class as a member and moved it here
// to local scope of the class's constructor
std::function<void(T)> fooCall = []( auto a ) { std::cout << a.sayHello(); };
T t; // created an instance of <Type T>
fooCall(t); // passed t into fooCall's constructor to invoke the call.
}
struct A {
std::string sayHello() { return "A say's Hello!\n"; }
};
struct B {
std::string sayHello() { return "B say's Hello!\n"; }
};
int main() {
// could not instantiate an object of SomeClass<T> with a member of
// a std::function<> type that is stored by a type of a generic lambda.
/*SomeClass<A> someA;
SomeClass<B> someB;
someA.foo();
someB.foo();*/
// Simply just used the object's constructors to invoke the locally stored lambda within the class's constructor.
test<A> a;
test<B> b;
std::cout << "\nPress any key & enter to quit." << std::endl;
char c;
std::cin >> c;
return 0;
}
With the appropriate headers the above as is should compile, build & run giving the output below (At least in MSVS 2017 on Windows 7 64bit did); I left comments where I ran into errors and tried multiple different techniques to achieve a working example, errors occurred as others suggested and I found even more while working with the above code. What I was able to compile, build and run came down to this simple bit of code here without the comments. I also added another simple class to show it will work with any type:
template<class>
class test {
public:
test();
};
template<class T>
test<T>::test() {
std::function<void( T )> fooCall = []( auto a ) { std::cout << a.sayHello(); };
T t;
fooCall( t );
}
struct A {
std::string sayHello() { return "A say's Hello!\n"; }
};
struct B {
std::string sayHello() { return "B say's Hello!\n"; }
};
struct C {
int sayHello() { return 100; }
};
int main() {
test<A> testA;
test<B> testB;
test<C> testC;
std::cout << "\nPress any key & enter to quit." << std::endl;
char c;
std::cin >> c;
return 0;
}
Output:
A say's Hello!
B say's Hello!
100
Press any key & enter to quit
I don't know if this will help the OP directly or indirectly or not but if it does or even if it doesn't it is still something that they may come back to and build off of.
you can simply use a template class or...
If you can get away with using c++17, you could make fooCall's type std::function<void(const std::any&)> and make a small wrapper for executing it.
method 1 : simply use a template class (C++14).
method 2 : seems to mimic the pseudo code exactly as the OP intended (C++17).
method 3 : is a bit simpler and easier to use than method 2 (C++17).
method 4 : allows us to change the value of fooCall (C++17).
required headers and test structures for the demo :
#include <any> //not required for method 1
#include <string>
#include <utility>
#include <iostream>
#include <functional>
struct typeA {
constexpr const char * sayHello() const { return "Hello from A\n"; }
};
struct typeB {
const std::string sayHello() const { return std::string(std::move("Hello from B\n")); }
};
method 1 :
template <typename T>
class C {
const std::function<void(const T&)> fooCall;
public:
C(): fooCall(std::move([](const T &a) { std::cout << a.sayHello(); })){}
void execFooCall(const T &arg) {
fooCall(arg);
}
};
int main (void) {
typeA A;
typeB B;
C<typeA> c1;
C<typeB> c2;
c1.execFooCall(A);
c2.execFooCall(B);
return 0;
}
method 2 :
bool is_true = true;
class C {
std::function<void(const std::any&)> fooCall;
public:
C() {
if (is_true)
fooCall = [](const std::any &a) { std::cout << std::any_cast<typeA>(a).sayHello(); };
else
fooCall = [](const std::any &a) { std::cout << std::any_cast<typeB>(a).sayHello(); };
}
template <typename T>
void execFooCall(const T &arg) {
fooCall(std::make_any<const T&>(arg));
}
};
int main (void) {
typeA A;
typeB B;
C c1;
is_true = false;
C c2;
c1.execFooCall(A);
c2.execFooCall(B);
return 0;
}
method 3 :
/*Note that this very closely resembles method 1. However, we're going to
build off of this method for method 4 using std::any*/
template <typename T>
class C {
const std::function<void(const std::any&)> fooCall;
public:
C() : fooCall(std::move([](const std::any &a) { std::cout << std::any_cast<T>(a).sayHello(); })) {}
void execFooCall(const T &arg) {
fooCall(std::make_any<const T&>(arg));
}
};
int main (void) {
typeA A;
typeB B;
C<typeA> c1;
C<typeB> c2;
c1.execFooCall(A);
c2.execFooCall(B);
return 0;
}
method 4 :
/*by setting fooCall outside of the constructor we can make C a regular class
instead of a templated one, this also complies with the rule of zero.
Now, we can change the value of fooCall whenever we want.
This will also allow us to do things like create a container that stores
a vector or map of functions that each take different parameter types*/
class C {
std::function<void(const std::any&)> fooCall; //could easily be replaced by a vector or map
public:
/*could easily adapt this to take a function as a parameter so we can change
the entire body of the function*/
template<typename T>
void setFooCall() {
fooCall = [](const std::any &a) { std::cout << std::any_cast<T>(a).sayHello(); };
}
template <typename T>
void execFooCall(const T &arg) {
fooCall(std::make_any<const T&>(arg));
}
};
int main (void) {
typeA A;
typeB B;
C c;
c.setFooCall<typeA>;
c.execFooCall(A);
c.setFooCall<typeB>;
c.execFooCall(B);
return 0;
}
Output from Any method
Hello from A
Hello from B
Related
I've got an abstract class that uses variable template.
template <class T>
class Abstract
{
public:
virtual void print(T t) = 0;
};
There can be any derivatives of the class like so:
class A : public Abstract<std::string>
{
public:
void print(std::string str)
{
std::cout << str << std::endl;
}
};
class B : public Abstract<int>
{
public:
void print(int number)
{
std::cout << std::to_string(number) << std::endl;
}
};
Now I want a function to return one of these derivatives so I can execute the print method. And here is my Problem:
template (class T); // error here
Abstract<T> &f(int n) // what should the return type look like?
{
if (n == 0)
{
A a{};
return a;
}
else
{
B b{};
return b;
}
}
int main()
{
A a{f(0)};
a.print("foo");
B b{f(1)};
b.print(42);
return 0;
}
So how is it be possible to return a class with unknown parameter type and call its methods?
I already tried returning derived classes without templates which works fine. As soon as templates are added code wont compile. I also tried void* and reinterpret_cast. Problem here is that I have manually to decide to what type to cast to.
So how can I return an arbitrary superclass of an abstract generic class and call its generic methods?
I think inheritance is the wrong approach here. Instead I would use specialization instead:
template<typename T>
struct Foo;
template<>
struct Foo<std::string>
{
void print(std::string const& s)
{
std::cout << s << '\n';
}
};
template<>
struct Foo<int>
{
void print(int value)
{
std::cout << value << '\n';
}
};
Then you don't need a selector to pick the object to create, just the correct type:
int main()
{
Foo<std::string> f1;
f1.print("hello");
Foo<int> f2;
f2.print(123);
}
If you really need a factor function, then it could be created like this:
template<typename T>
Foo<T> create()
{
return Foo<T>();
}
And use like
int main()
{
auto f1 = create<std::string>();
f1.print("hello");
auto f2 = create<int>();
f2.print(123);
}
First of all, the code is restricted to C++11, so I cannot make use of if constexpr
Following is my sample code snippet:
class A{
public:
int a;
int b;
}
class B{
public:
int key;
int val;
}
class C{
public:
int n1;
int n2;
}
class D{
public:
int n1;
int n2;
}
class E{
public:
int n1;
int n2;
}
template<typename T>
void func1(T data) {
if (T == type(A)) { // Just pseudo template-check code
std::cout<<data.a<<data.b; //<------1
} else if (T == type (B)) { // Just pseudo template-check code
std::cout<<data.key<<data.val; //<------2
} else {
std::cout<<data.n1<<data.n2; //<------3
}
int main() {
A a;
B b;
C c;
D d;
E e;
func1(a);
func1(b);
func1(c);
func1(d);
func1(e);
return 0;
}
Currently, I get a compile-time error at,
1: B,D,E,F has no member a & b
&
2: A,D,E,F has no member key & val
&
3. A, B has no member n1 & n2
I tried using is_same() & also this, but I get same compile time error every time.
I cannot make use of C++14/C++17
How could I make use of specialized template functions?
Edited the code to highlight the need of a template.
You can use a function overload and avoid the function template altogether.
void func1(A a)
{
// Type dependent code.
}
void func1(B a)
{
// Type dependent code.
}
A function template makes sense only if there is common code for all the types for which the function call is made. If you have some code that is common to all types and some code that are type dependent, then you can use:
void func1(A a)
{
// Type dependent code.
}
void func1(B a)
{
// Type dependent code.
}
template <typename T>
void func2(T t)
{
// Type independent code.
}
template <typename T>
void func(T obj)
{
func1(obj); // Call function that uses type dependent code.
func2(obj); // Call function that uses type independent code.
}
You must write specializations of the function for the two types your want to use it with.
#include<iostream>
class A{
public:
int a;
int b;
};
class B{
public:
int key;
int val;
};
template<typename T>
void func1(T);
template<>
void func1<A>(A arg) {
std::cout<<"A"<<std::endl;
std::cout<<arg.a<<arg.b;
}
template<>
void func1<B>(B arg) {
std::cout<<"B"<<std::endl;
std::cout<<arg.key<<arg.val;
}
int main(){
A a;
func1(a);
B b;
func1(b);
}
Simple overload does the job.
template <typename T>
void func1(T data)
{
std::cout << data.n1 << data.n2;
}
void func1(A data)
{
std::cout << data.a << data.b;
}
void func1(B data)
{
std::cout << data.key << data.val;
}
https://godbolt.org/z/r7Ee6E
Tweaked a bit: https://godbolt.org/z/xxPWaE
With a normal class. For example:
class A {
public:
int a;
std::string b;
A() {}
~A() {}
}
We can do:
A x;
x.a = 1;
x.b = "hello";
But now I don't want to do like above. I want to access n_index-th attribute of object. For example pseudo like x.get<2>() (or x.set<2>(...)) like x.b.
How can do that? Have any template for that.
Beside if I want code like that
int number = 2;
x.get<number>()
Any problem with constexpr?
I think the closest you can get is using boost::fusion.
An example would be
#include <boost/fusion/adapted.hpp>
#include <boost/fusion/sequence.hpp>
#include <boost/mpl/int.hpp>
#include <iostream>
class A {
public:
int a;
std::string b;
A() {}
~A() {}
};
BOOST_FUSION_ADAPT_STRUCT(A,
(int, a)
(std::string, b)
)
using namespace boost::fusion;
int main()
{
A x;
x.a = 1;
x.b = "hello";
std::cout << at<boost::mpl::int_<0>>(x) << '\n';
std::cout << at<boost::mpl::int_<1>>(x) << '\n';
at<boost::mpl::int_<0>>(x) = 5;
at<boost::mpl::int_<1>>(x) = std::string("World");
std::cout << at<boost::mpl::int_<0>>(x) << '\n';
std::cout << at<boost::mpl::int_<1>>(x) << '\n';
}
If you want to set several values at the same time when you create the object, you could use a multi-parameter constructor. For example, let's imagine you have this:
class A {
public:
int a;
std::string b;
A() {}
~A() {}
};
You could add a constructor that sets a and b:
class A {
public:
int a;
std::string b;
A() {}
A(int a, std::string b) {
this->a = a;
this->b = b;
}
~A() {}
};
That way, you can create your object and set a and b with :
A a = A(1, "hello");
There is no ready-made way of setting the n-th attribute of your object. You could make one, but I would very, very highly recommend that you don't. Like I said above, if you reorder your attributes, then you will have to rework everything.
If you really, really want to make your life very, very, very much harder, a very ugly and error-prone way of doing this would be like :
template<class T>
void A::setNth(int nth, const T& value) {
switch (nth) {
case 1: a = value; break;
case 2: b = value; break;
// You should #include <stdexcept> to use runtime_error, or you could handle the exception in some other way.
default: throw std::runtime_error("A::setNthAttribute : Value of nth is out of bounds.");
}
}
For the getter:
template<class T>
void A::getNth(int nth, T& valueOut) {
switch (nth) {
case 1: valueOut = a; break;
case 2: valueOut = b; break;
default: throw std::runtime_error("A::getNthAttribute : Value of nth is out of bounds.");
}
}
You would use these methods like this:
A a;
a.setNth(1, 2); // put 2 into a
int i;
a.getNth(1, i); // put a into i
Just writing this code send shivers down my spine. Please, never write what I just wrote. Chuck Norris will kill yoU agfh
86sd asdsa dDASD8!4.
What you are considering is in fact possible, but a bit of a headache. I would approach it by creating a template getter and setter for every member that one can set or get, and then having a template method that takes an int and sets or gets the appropriate property. The getters/setters would have to be specialized for the correct type, and throw an error for other types. This method would have to use a switch to return the right member:
class bar {
private:
int a;
std::string b;
template<T>
T getA() {
// error
}
template<T>
T getB() {
// error
}
template<T>
void setA(const T& A) {
// error
}
template<T>
void setB(const T& B) {
// error
}
template <> std::string getB(); // specialization
template <> int getA();
template <> void setB(const std::string&);
template <> void setA(int);
public:
template<T>
T get(int what) {
switch(what) {
case 1:
return getA();
case 2:
return getB();
default:
// handle error here
break;
}
}
template<T>
void set(int what, const T& t) {
switch(what) {
case 1:
return setA<T>(t);
case 2:
return setB<T>(t);
default:
// handle error here
break;
}
}
};
bar b;
b.set<std::string>(2, "foo");
auto str = b.get<std::string>(2);
Here's an elaborate way to accomplish what you want.
#include <iostream>
#include <string>
// A namespace explicitly defined for class A.
namespace A_NS
{
// A template for members of A.
template <int> struct Member;
// Specialization for the first member.
template <> struct Member<1>
{
using type = int;
type var;
};
// Specialization for the second member.
template <> struct Member<2>
{
using type = std::string;
type var;
};
}
class A {
public:
A() {}
~A() {}
template <int N> typename A_NS::Member<N>::type get() const
{
return static_cast<A_NS::Member<N> const&>(members).var;
}
template <int N> void set(typename A_NS::Member<N>::type const& in)
{
static_cast<A_NS::Member<N>&>(members).var = in;
}
private:
// Define a type for the member variables.
struct Members : A_NS::Member<1>, A_NS::Member<2> {};
// The member variables.
Members members;
};
int main()
{
A a;
a.set<1>(10);
a.set<2>("test");
std::cout << a.get<1>() << ", " << a.get<2>() << std::endl;
}
Output:
10, test
I'm trying to store and manipulate a list of template class objects with different parameter types; the template class has two parametrised methods, one returning the parameter type and a void one accepting it as input.
More specifically, I have a template class defined as follows:
template<typename T>
class Test
{
public:
virtual T a() = 0;
virtual void b(T t) = 0;
};
And different specifications of it, such as:
class TestInt : public Test<int>
{
public:
int a() {
return 1;
}
void b(int t) {
std::cout << t << std::endl;
}
};
class TestString : public Test<std::string>
{
public:
std::string a() {
return "test";
}
void b(std::string t) {
std::cout << t << std::endl;
}
};
I'd like to be able to store in one single list different objects of both TestInt and TestString type and loop through it calling one method as input for the other, as in:
for (auto it = list.begin(); it != list.end(); ++it)
(*it)->b((*it)->a());
I've looked into boost::any but I'm unable to cast the iterator to the specific class, because I don't know the specific parameter type of each stored object. Maybe this cannot be done in a statically typed language as C++, but I was wondering whether there could be a way around it.
Just for the sake of completeness, I'll add that my overall aim is to develop a "parametrised observer", namely being able to define an observer (as with the Observer Pattern) with different parameters: the Test class is the observer class, while the list of different types of observers that I'm trying to properly define is stored within the subject class, which notifies them all through the two methods a() and b().
The virtuals have actually no meaning here, since for each T the signatures are distinct.
So it seems you have Yet Another version of the eternal "how can we emulate virtual functions templates" or "how to create an interface without virtual functions":
Generating an interface without virtual functions?
How to achieve "virtual template function" in C++
The first one basically contains an idea that you could employ here.
Here's an idea of what I'd do:
Live On Coliru
#include <algorithm>
#include <iostream>
namespace mytypes {
template <typename T>
struct Test {
T a() const;
void b(T t) { std::cout << t << std::endl; }
};
template <> int Test<int>::a() const { return 1; }
template <> std::string Test<std::string>::a() const { return "test"; }
using TestInt = Test<int>;
using TestString = Test<std::string>;
}
#include <boost/variant.hpp>
namespace mytypes {
using Value = boost::variant<int, std::string>;
namespace detail {
struct a_f : boost::static_visitor<Value> {
template <typename T>
Value operator()(Test<T> const& o) const { return o.a(); }
};
struct b_f : boost::static_visitor<> {
template <typename T>
void operator()(Test<T>& o, T const& v) const { o.b(v); }
template <typename T, typename V>
void operator()(Test<T>&, V const&) const {
throw std::runtime_error(std::string("type mismatch: ") + __PRETTY_FUNCTION__);
}
};
}
template <typename O>
Value a(O const& obj) {
return boost::apply_visitor(detail::a_f{}, obj);
}
template <typename O, typename V>
void b(O& obj, V const& v) {
boost::apply_visitor(detail::b_f{}, obj, v);
}
}
#include <vector>
int main()
{
using namespace mytypes;
using AnyTest = boost::variant<TestInt, TestString>;
std::vector<AnyTest> list{TestInt(), TestString(), TestInt(), TestString()};
for (auto it = list.begin(); it != list.end(); ++it)
b(*it, a(*it));
}
This prints
1
test
1
test
Bonus Points
If you insist, you can wrap the AnyTest variant into a proper class and have a() and b(...) member functions on that:
Live On Coliru
int main()
{
using namespace mytypes;
std::vector<AnyTest> list{AnyTest(TestInt()), AnyTest(TestString()), AnyTest(TestInt()), AnyTest(TestString())};
for (auto it = list.begin(); it != list.end(); ++it)
it->b(it->a());
}
Expanding on my comment above, the simplest what I can currently think of to achieve what you are trying to do - at least as I understood it from your example code - is the following:
/* Interface for your container, better not forget the destructor! */
struct Test {
virtual void operate(void) = 0;
virtual ~Test() {}
};
/* Implementation hiding actual type */
template<typename T>
struct TestImpl : public T, public Test {
void operate(void) {
T::b(T::a());
}
};
/* Actual code as template policies */
struct IntTest {
int a(void) {
return 42;
}
void b(int value) {
std::cout << value << std::endl;
}
};
struct StringTest {
std::string a(void) {
return "Life? Don't talk to me about life.";
}
void b(std::string value) {
std::cout << value << std::endl;
}
};
You would then need to create a container for objects of class Test and fill it with objects of the respective TestImpl<IntTest>, TestImpl<StringTest>, and so on. To avoid object slicing you need reference or pointer semantics, that is std::vector<std::unique_ptr<Test> > for example.
for (auto it = list.begin(); it != list.end(); ++it) {
(*it)->operate();
}
I have the following classes intended to be used as value types (since they only store an integer):
class _foo_t
{
friend _foo_t _make_foo();
private:
int foo;
_foo_t(int foo) : foo(foo) {}
protected:
void *getptr() const; // defined in .cpp
};
template <typename T>
class foo_t : public _foo_t
{
public:
T *getptr() const { return (T*)_foo_t::getptr(); }
T &getref() const { return *(T*)_foo_t::getptr(); }
};
_foo_t _make_foo(); // defined in .cpp
template <typename T>
foo_t<T> make_foo()
{
return _make_foo(); // What kind of cast do I need here?
}
The class foo_t<T> is just a wrapper around _foo_t that provides type safety for the getptr and getref member functions. Likewise, the function make_foo() is just a wrapper around _make_foo<T>(). Since foo_t<T> is a subclass of _foo_t and does not add any fields and there are no virtual members, a foo_t<T> object should look exactly the same as a _foo_t object in memory, and I do not not want the overhead of a constructor call here. How can I cast the return value of _make_foo() from _foo_t to foo_t<T> safely, compliantly, and without creating any overhead?
EDIT:
Per request, here is some sample usage of the above:
class SomeObject { /* ... */ };
foo_t<SomeObject> obj = make_foo<SomeObject>();
new (obj.getptr()) SomeObject();
obj.getref().doSomething();
In reality, make_foo would have to take a size parameter or something.
How can I cast the return value of _make_foo() from _foo_t to foo_t safely, compliantly, and without creating any overhead?
You definitely can't cast safely since you don't know that the downcast is valid. However, in this particular case, since our derived type is the same size as the base type, you can get away with:
template <typename T>
foo_t<T> make_foo()
{
return static_cast<foo_t<T>&>(_make_foo());
}
That said, while this is something that makes sense to do in a CRTP world, I'm not sure it makes sense here.
You can generalize your class template foo_t to be able to hold any data type without depending on _foo_t. You can just use:
template <typename T> class foo_t
{
public:
char data[sizeof(T)];
T *getptr() const { return (T*)data; }
T &getref() const { return *(T*)data; }
};
template <typename T>
foo_t<T> make_foo()
{
return foo_t<T>();
}
Here's an example program that demonstrates its usage:
#include <iostream>
#include <new>
template <typename T> class foo_t
{
public:
char data[sizeof(T)];
T *getptr() const { return (T*)data; }
T &getref() const { return *(T*)data; }
};
template <typename T>
foo_t<T> make_foo()
{
return foo_t<T>();
}
struct Object1
{
int a;
int b;
};
struct Object2
{
int a;
double b;
};
struct Object3
{
double a;
double b;
};
int main()
{
foo_t<Object1> obj1 = make_foo<Object1>();
new (obj1.getptr()) Object1();
obj1.getref().a = 10;
obj1.getref().b = 20;
std::cout << "Object1 - a:" << obj1.getref().a << ", b: " << obj1.getref().b << std::endl;
foo_t<Object2> obj2 = make_foo<Object2>();
new (obj2.getptr()) Object2();
obj2.getref().a = 10;
obj2.getref().b = 20.35;
std::cout << "Object2 - a:" << obj2.getref().a << ", b: " << obj2.getref().b << std::endl;
foo_t<Object3> obj3 = make_foo<Object3>();
new (obj3.getptr()) Object3();
obj3.getref().a = 10.92;
obj3.getref().b = 20.35;
std::cout << "Object3 - a:" << obj3.getref().a << ", b: " << obj3.getref().b << std::endl;
return 0;
}
Output of the program:
Object1 - a:10, b: 20
Object2 - a:10, b: 20.35
Object3 - a:10.92, b: 20.35
Update
Given your comments, I think all you need is:
template <typename T>
class foo_t : public _foo_t
{
public:
// Make sure you can use all of the base class
// constructors in this class.
using _foo_t::_foo_t;
T *getptr() const { return (T*)_foo_t::getptr(); }
T &getref() const { return *(T*)_foo_t::getptr(); }
};
template <typename T>
foo_t<T> make_foo()
{
// Construct a foo_t<T> using a _foo_t and return it.
return foo_t<T>(_make_foo());
}