Drawing a polygon with n corners - drawing

Probably really easy, but i´m a newbie in coding.
So I want to write a code which asks the user to define the variable n.
After that the program should draw a polygon with n corners.
Any examples?

Here’s some pseudocode that might help you (I don’t know what language you are specifying):
1) Ask the user for the number of sides, and store it to variable s.
2) For each side, increment the variable n, and run the next line of code.
3) Draw a line between (cos(n*360/s), sin(n*360/s)) and (cos((n-1)*360/s), sin((n-1)*360/s)
You will have drawn a regular polygon with “s” sides and angles!

Related

What is the best way for rendering a huge voxel object?

I am trying to display 3d model of a human in opengl. The human object is represented by a 3D array[n][n][n] (height, width and depth), where n = 300. Each element of array has value either 1 or 0. If element is 0 then it should be ignored else drawn.
Problem: due to the fact that I have to iterate through 3D array using 3 nested for loops and then create vertices for each individual voxel it takes a lot of time.
My idea of how to solve the problem: write another program that would iterate through array, create vertices and write them to the file. And then whenever I need to render I would read vertices from the file.
Question: What is the best way to render such an object? Would be great if you could suggest any algorithm or technic.
Many years ago I made a school project where I did something similar.
I had a 3D volume representation with 0s and 1s which represents a room. 0 means the cube is empty, 1 means the cube is full. It's the same problem you are facing but flipping the normal of the quads.
So I made an algorithm that turns the cube of bits into the minimum number of quads.
I've been digging in my old code repository and found the function that does that. I feel a bit ashamed of the code I wrote back then, but hopefully you can grab some inspiration from it.
I'm going to try to give a brief explanation of what the algorithm does.
We slice the volume with planes in each direction X, Y and Z.
For each plane we check all the cells it touches on each side.
If both sides have the same number (both 0, or both 1), we do nothing.
Otherwise (we have a different number on each side), we generate a quad in that position, and the normal of that quad will depend on the order of the numbers (01 or 10).
Ignore the colorCount variable, I think it's just a color ID I used for debugging.
My program called this algorithm when it first loads, and whenever you make a change in the scene (it was a live-editor). I didn't notice any slowdowns when editing the scene and the computer I was using back then was not very fast.

How can one calculate (x,y) co-ordinates if margin between two lines(outer and inner) are given in terms of pixels?

I need to draw double frame on a display device to display a frame.
I have the (x,y) co-ordinates of outer frame and I have the margin between the outer and inner frames in terms of pixels.
Please suggest a formula to calculate (x,y) coordinates of the inner frame?
Take pen & paper.
Draw the outer frame.
Mark the points defined by your xy pairs.
Draw the inner frame.
What are the differences (expressed in x and y) between the spots marked on the outer frame and the corresponding spots on the inner frame?
If you can express that in some kind of formula, you are already close to the code. You just need to turn your formulas into assignment statements.
Without an MCVE to define the environment of your question, giving a solution in code is not possible. However, in case of a homework assignment (skyjacks impression seems plausible), I anyway follow the policy not to provide final solutions and instead give hints to help on the right track.
Which I just did. ;-)
(If this is no homework, then you have of course already a program as context and will not have a problem making an MCVE. In that case I will be happy to help with this programming detail.)

Fragment shader - drawing a line?

I was interested in how to draw a line with a specific width (or multiple lines) using a fragment shader. I stumbled on the this post which seems to explain it.
The challenge I have is understanding the logic behind it.
A couple of questions:
Our coordinate space in this example is (0.0-1.0,0.0-1.0), correct?
If so, what is the purpose of the "uv" variable. Since thickness is 500, the "uv" variable will be very small. Therefore the distances from it to pont 1 and 2 (stored in the a and b variables)?
Finally, what is the logic behind the h variable?
i will try to answer all of your questions one by one:
1) Yes, this is in fact correct.
2) It is common in 3d computer graphics to express coordinates(within certain boundaries) with floating-point values between 0 and 1(or between -1 and 1). First of all, this makes it quite easy to decide whether a given value crosses said boundary or not, and abstracts away from a concept of "pixel" being a discrete image unit; furthermore this common practise can be found pretty much everywhere else(think of device coordinates or texture coordinates)
Don't be afraid that values that you are working with are less than one; in fact, in computer graphics you usually deal with floating-point arithmetics, and FLOAT types are quite good at expressing Real values line around the "1" point.
3) The formula give for h consists of 2 parts: the square-root part, and the 2/c coefficient. The square root part should be well known from scholl math classes - this is Heron formula for the area of a triangle(between a,b,c). 2/c extracts the height of the said triangle, which is stored in h and is also the distance between point uv and the "ground line" of the triangle. This distance is then used to decide, where is uv in relation to the line p1-p2.

Opencv cv::findchessboardCorners

say we got a 8x9 chessboard, and the function cv::findChessboardCorners recognize it without problem, My question is why does the function not recognize in the same image a a chessboard with smaller size, I tried in a for-loop and decremented the size the function may recognize a chessboard of let say 5x4 and 4x5 but not 6x7 for example ?
any idea why is that happening ?
I already tried debugging the program and I didn't understand what really happens in calibinit.hpp
thanks in advance !
I think the main problem is that you would have ambiguities since it is easily possible to find different smaller chessboards in a larger one.
If you do corner detection on an image consisting of a chessboard, you will find a regular grid of corners.
Then findChessboardCorners needs to find a structur which is very similar to the given chessboard of size (x,y). It will rate the different possibilities to map the chessboard to the regular grid found by the corner detection and these ratings are very similar.
So it is difficult to decide which is THE CHESSBOARD, you are looking for.
It because the recognized board must have light border.

Finding largest rectangle in 2D array

I need an algorithm which can parse a 2D array and return the largest continuous rectangle. For reference, look at the image I made demonstrating my question.
Generally you solve these sorts of problems using what are called scan line algorithms. They examine the data one row (or scan line) at a time building up the answer you are looking for, in your case candidate rectangles.
Here's a rough outline of how it would work.
Number all the rows in your image from 0..6, I'll work from the bottom up.
Examining row 0 you have the beginnings of two rectangles (I am assuming you are only interested in the black square). I'll refer to rectangles using (x, y, width, height). The two active rectangles are (1,0,2,1) and (4,0,6,1). You add these to a list of active rectangles. This list is sorted by increasing x coordinate.
You are now done with scan line 0, so you increment your scan line.
Examining row 1 you work along the row seeing if you have any of the following:
new active rectangles
space for existing rectangles to grow
obstacles which split existing rectangles
obstacles which require you to remove a rectangle from the active list
As you work along the row you will see that you have a new active rect (0,1,8,1), we can grow one of existing active ones to (1,0,2,2) and we need to remove the active (4,0,6,1) replacing it with two narrower ones. We need to remember this one. It is the largest we have seen to far. It is replaced with two new active ones: (4,0,4,2) and (9,0,1,2)
So at the send of scan line 1 we have:
Active List: (0,1,8,1), (1,0,2,2), (4,0,4,2), (9, 0, 1, 2)
Biggest so far: (4,0,6,1)
You continue in this manner until you run out of scan lines.
The tricky part is coding up the routine that runs along the scan line updating the active list. If you do it correctly you will consider each pixel only once.
Hope this helps. It is a little tricky to describe.
I like a region growing approach for this.
For each open point in ARRAY
grow EAST as far as possible
grow WEST as far as possible
grow NORTH as far as possible by adding rows
grow SOUTH as far as possible by adding rows
save the resulting area for the seed pixel used
After looping through each point in ARRAY, pick the seed pixel with the largest area result
...would be a thorough, but maybe not-the-most-efficient way to go about it.
I suppose you need to answer the philosophical question "Is a line of points a skinny rectangle?" If a line == a thin rectangle, you could optimize further by:
Create a second array of integers called LINES that has the same dimensions as ARRAY
Loop through each point in ARRAY
Determine the longest valid line to the EAST that begins at each point and save its length in the corresponding cell of LINES.
After doing this for each point in ARRAY, loop through LINES
For each point in LINES, determine how many neighbors SOUTH have the same length value or less.
Accept a SOUTHERN neighbor with a smaller length if doing so will increase the area of the rectangle.
The largest rectangle using that seed point is (Number_of_acceptable_southern_neighbors*the_length_of_longest_accepted_line)
As the largest rectangular area for each seed is calculated, check to see if you have a new max value and save the result if you do.
And... you could do this without allocating an array LINES, but I thought using it in my explanation made the description simpler.
And... I think you need to do this same sort of thing with VERTICAL_LINES and EASTERN_NEIGHBORS, or some cases might miss big rectangles that are tall and skinny. So maybe this second algorithm isn't so optimized after all.
Use the first method to check your work. I think Knuth said "...premature optimization is the root of all evil."
HTH,
Perry
ADDENDUM:Several edits later, I think this answer deserves a group upvote.
A straight forward approach would be to do a loop through all the potential rectangles in the grid, figure out their area, and if it is greater than the current highest area, select it as the highest:
var biggestFound
for each potential rectangle:
if area(this potential rectangle) > area(biggestFound)
biggestFound = this potential rectangle
Then you simply need to find the potential rectangles.
for each square in grid:
recursive loop 1:
if not occupied:
grow right until occupied, and return a rectangle
grow down one and recurse (call loop 1)
This will duplicate a lot of work (for example you will re-evaluate a lot of sub-rectangles), but it should give you an answer.
Edit
An alternate approach might be to start with a single square the size of the grid, and "subtract" occupied squares to end up with a final set of potential rectangles. There might be optimization opportunities here using quadtrees, and in ensuring that you keep split rectangles "in order", top to bottom, left to right, in case you need to re-combine rectangles farther down in the algorithm.
If you are actually starting out with rectangular data (for your "populated grid" set), instead of a loose pixel grid, then you could easily get better perf out of a rectangle/region subtracting algorithm.
I'm not going to post pseudo-code for this because the idea is completely experimental, and I have no idea if the perf will be any better for a loose pixel grid ;)
Windows system "regions" and "dirty rectangles", as well as general "temporal caching" might be good inspiration here for more efficiency. There are also a lot of z-buffer tricks if this is for a graphics algorithm...
Use dynamic programming approach. Consider a function S(x,y) such that S(x,y) holds the area of the largest rectangle where (x,y) are the lowest-right-most corner cell of the rectangle; x is the row co-ordinate and y is the column co-ordinate of the rectangle.
For example, in your figure, S(1,1) = 1, S(1,2)=2, S(2,1)=2, and S(2,2) = 4. But, S(3,1)=0, because this cell is filled. S(8,5)=40, which says that the largest rectangle for which the lowest-right cell is (8,5) has the area 40, which happens to be the optimum solution in this example.
You can easily write a dynamic programming equation of S(x,y) from the value of S(x-1,y), S(x,y-1) and S(x-1,y-1). Using that you can obtain the values of all S(x,y) in O(mn) time, where m and n are the row and column dimension of the given table. Once, S(x,y) are know for all 1<=x <= m, and for all 1 <= y <= n, we simply need to find the x, and y for which S(x,y) is the largest; this step also takes O(mn) time. By keeping addition data, you can also find the side-length of the largest rectangle.
The overall complexity is O(mn). To understand more on this, Read Chapter 15 or Cormen's algorithm book, specifically Section 15.4.