ZeroDivisionError: float division by zero even after using python future module - python-2.7

I am facing an error while running a github code. I think the code is perfect, But i think am facing some dependency issues. Can anyone tell me what could possible be the reason behind this error. I am using python 2.7.
from __future__ import division, print_function
.
.
def time_step(self, xt):
xt = np.reshape(xt, newshape=self.dimensions)
ret_val = 0.
self.buffer.append(xt)
self.present.time_step(xt)
if self.t >= self.buffer_len:
pst_xt = self.buffer[0]
self.past.time_step(pst_xt)
if self.t >= self.present.theta + self.past.theta:
ret_val = self.comparison_function(self.present, self.past,
self.present.alpha)
self.ma_window.append(ret_val)
if self.t % self.ma_recalc_delay == 0:
self.anomaly_mean = bn.nanmean(self.ma_window)
self.anomaly_std = bn.nanstd(self.ma_window, ddof=self.ddof)
if self.anomaly_std is None or self.t < len(self.ma_window):
anomaly_density = 0
else:
normalized_score = (ret_val - self.anomaly_mean)/self.anomaly_std
if -4 <= normalized_score <= 4:
anomaly_density = CDF_TABLE[round(normalized_score, 3)]
elif normalized_score > 4:
anomaly_density = 1.
else:
anomaly_density = 0.
self.t += 1
return ret_val, anomaly_density
The code line which is giving error is the following,
normalized_score = (ret_val - self.anomaly_mean)/self.anomaly_std

Wrap it in try except, I used 0 as except value but you can change it per your needs:
try:
normalized_score = (ret_val - self.anomaly_mean)/self.anomaly_std
except ZeroDivisionError:
normalized_score = 0

Related

Reformulating the AMPL car example

I am trying migrating the ampl car problem that comes in the Ipopt source code tarball as example. I am having got problems with the end condition (reach a place with zero speed at final iteration) and with the cost function (minimize final time).
Can someone help me revise the following model?
# min tf
# dx/dt = 0
# dv/dt = a - R*v^2
# x(0) = 0; x(tf) = 100
# v(0) = 0; v(tf) = 0
# -3 <= a <= 1 (a is the control variable)
#!Python3.5
from pyomo.environ import *
from pyomo.dae import *
N = 20;
T = 10;
L = 100;
m = ConcreteModel()
# Parameters
m.R = Param(initialize=0.001)
# Variables
def x_init(m, i):
return i*L/N
m.t = ContinuousSet(bounds=(0,1000))
m.x = Var(m.t, bounds=(0,None), initialize=x_init)
m.v = Var(m.t, bounds=(0,None), initialize=L/T)
m.a = Var(m.t, bounds=(-3.0,1.0), initialize=0)
# Derivatives
m.dxdt = DerivativeVar(m.x, wrt=m.t)
m.dvdt = DerivativeVar(m.v, wrt=m.t)
# Objetives
m.obj = Objective(expr=m.t[N])
# DAE
def _ode1(m, i):
if i==0:
return Constraint.Skip
return m.dxdt[i] == m.v[i]
m.ode1 = Constraint(m.t, rule=_ode1)
def _ode2(m, i):
if i==0:
return Constraint.Skip
return m.dvdt[i] == m.a[i] - m.R*m.v[i]**2
m.ode2 = Constraint(m.t, rule=_ode2)
# Constraints
def _init(m):
yield m.x[0] == 0
yield m.v[0] == 0
yield ConstraintList.End
m.init = ConstraintList(rule=_init)
'''
def _end(m, i):
if i==N:
return m.x[i] == L amd m.v[i] == 0
return Constraint.Skip
m.end = ConstraintList(rule=_end)
'''
# Discretize
discretizer = TransformationFactory('dae.finite_difference')
discretizer.apply_to(m, nfe=N, wrt=m.t, scheme='BACKWARD')
# Solve
solver = SolverFactory('ipopt', executable='C:\\EXTERNOS\\COIN-OR\\win32-msvc12\\bin\\ipopt')
results = solver.solve(m, tee=True)
Currently, a ContinuousSet in Pyomo has to be bounded. This means that in order to solve a minimum time optimal control problem using this tool, the problem must be reformulated to remove the time scaling from the ContinuousSet. In addition, you have to introduce an extra variable to represent the final time. I've added an example to the Pyomo github repository showing how this can be done for your problem.

Pyomo: Extending the "car ampl example" with additional constraints

After having seen the nice implementation of the "ampl car example" in Pyomo repository, I would like to keep extending the problem with new features and constraints, but I have found the next problems during development. Is someone able of fix them?
1) Added new constraint "electric car": Now the acceleration is limited by adherence until a determined speed and then constant power model is used. I am not able of implement this constraint as i would think. It is commented in the, but Pyomo complains about that a constraint is related to a variable. (now Umax depends of the car speed).
2) Added new comfort acceleration and jerk constraints. It seems they are working right, but should be nice if a Pyomo guru supervise them and tell me if they are really implemented in the correct way.
3) About last one, in order of reducing verbosity. Is there any way of combine accelerationL and accelerationU in a unique constraint? Same for jerkL and jerkU.
4) The last feature is a speed limit constraint divided in two steps. Again, I am not able of getting it works, so it is commented in code. Does anybody dare to fix it?
# Ampl Car Example (Extended)
#
# Shows how to convert a minimize final time optimal control problem
# to a format pyomo.dae can handle by removing the time scaling from
# the ContinuousSet.
#
# min tf
# dx/dt = v
# dv/dt = u - R*v^2
# x(0)=0; x(tf)=L
# v(0)=0; v(tf)=0
# -3 <= u <= 1 (engine constraint)
#
# {v <= 7m/s ===> u < 1
# u <= { (electric car constraint)
# {v > 7m/s ===> u < 1*7/v
#
# -1.5 <= dv/dt <= 0.8 (comfort constraint -> smooth driving)
# -0.5 <= d2v/dt2 <= 0.5 (comfort constraint -> jerk)
# v <= Vmax (40 kmh[0-500m] + 25 kmh(500-1000m])
from pyomo.environ import *
from pyomo.dae import *
m = ConcreteModel()
m.R = Param(initialize=0.001) # Friction factor
m.L = Param(initialize=1000.0) # Final position
m.T = Param(initialize=50.0) # Estimated time
m.aU = Param(initialize=0.8) # Acceleration upper bound
m.aL = Param(initialize=-1.5) # Acceleration lower bound
m.jU = Param(initialize=0.5) # Jerk upper bound
m.jL = Param(initialize=-0.5) # Jerk lower bound
m.NFE = Param(initialize=100) # Number of finite elements
'''
def _initX(m, i):
return m.x[i] == i*m.L/m.NFE
def _initV(m):
return m.v[i] == m.L/50
'''
m.tf = Var()
m.tau = ContinuousSet(bounds=(0,1)) # Unscaled time
m.t = Var(m.tau) # Scaled time
m.x = Var(m.tau, bounds=(0,m.L))
m.v = Var(m.tau, bounds=(0,None))
m.u = Var(m.tau, bounds=(-3,1), initialize=0)
m.dt = DerivativeVar(m.t)
m.dx = DerivativeVar(m.x)
m.dv = DerivativeVar(m.v)
m.da = DerivativeVar(m.v, wrt=(m.tau, m.tau))
m.obj = Objective(expr=m.tf)
def _ode1(m, i):
if i==0:
return Constraint.Skip
return m.dt[i] == m.tf
m.ode1 = Constraint(m.tau, rule=_ode1)
def _ode2(m, i):
if i==0:
return Constraint.Skip
return m.dx[i] == m.tf * m.v[i]
m.ode2 = Constraint(m.tau, rule=_ode2)
def _ode3(m, i):
if i==0:
return Constraint.Skip
return m.dv[i] == m.tf*(m.u[i] - m.R*m.v[i]**2)
m.ode3 = Constraint(m.tau, rule=_ode3)
def _accelerationL(m, i):
if i==0:
return Constraint.Skip
return m.dv[i] >= m.aL*m.tf
m.accelerationL = Constraint(m.tau, rule=_accelerationL)
def _accelerationU(m, i):
if i==0:
return Constraint.Skip
return m.dv[i] <= m.aU*m.tf
m.accelerationU = Constraint(m.tau, rule=_accelerationU)
def _jerkL(m, i):
if i==0:
return Constraint.Skip
return m.da[i] >= m.jL*m.tf**2
m.jerkL = Constraint(m.tau, rule=_jerkL)
def _jerkU(m, i):
if i==0:
return Constraint.Skip
return m.da[i] <= m.jU*m.tf**2
m.jerkU = Constraint(m.tau, rule=_jerkU)
'''
def _electric(m, i):
if i==0:
return Constraint.Skip
elif value(m.v[i])<=7:
return m.a[i] <= 1
else:
return m.v[i] <= 1*7/m.v[i]
m.electric = Constraint(m.tau, rule=_electric)
'''
'''
def _speed(m, i):
if i==0:
return Constraint.Skip
elif value(m.x[i])<=500:
return m.v[i] <= 40/3.6
else:
return m.v[i] <= 25/3.6
m.speed = Constraint(m.tau, rule=_speed)
'''
def _initial(m):
yield m.x[0] == 0
yield m.x[1] == m.L
yield m.v[0] == 0
yield m.v[1] == 0
yield m.t[0] == 0
m.initial = ConstraintList(rule=_initial)
discretizer = TransformationFactory('dae.finite_difference')
discretizer.apply_to(m, nfe=value(m.NFE), wrt=m.tau, scheme='BACKWARD')
#discretizer = TransformationFactory('dae.collocation')
#discretizer.apply_to(m, nfe=value(m.NFE), ncp=4, wrt=m.tau, scheme='LAGRANGE-RADAU')
solver = SolverFactory('ipopt')
solver.solve(m,tee=True)
print("final time = %6.2f" %(value(m.tf)))
t = []
x = []
v = []
a = []
u = []
for i in m.tau:
t.append(value(m.t[i]))
x.append(value(m.x[i]))
v.append(3.6*value(m.v[i]))
a.append(10*value(m.u[i] - m.R*m.v[i]**2))
u.append(10*value(m.u[i]))
import matplotlib.pyplot as plt
plt.plot(x, v, label='v (km/h)')
plt.plot(x, a, label='a (dm/s2)')
plt.plot(x, u, label='u (dm/s2)')
plt.xlabel('distance')
plt.grid('on')
plt.legend()
plt.show()
Thanks a lot in advance,
Pablo
(1) You should not think of Pyomo constraint rules as callbacks that are used by the solver. You should think of them more as a function to generate a container of constraint objects that gets called once for each index when the model is constructed. Meaning it is invalid to use a variable in an if statement unless you are really only using its initial value to define the constraint expression. There are ways to express what I think you are trying to do, but they involve introducing binary variables into the problem, in which case you can no longer use Ipopt.
(2) Can't really provide any help. Syntax looks fine.
(3) Pyomo allows you to return double-sided inequality expressions (e.g., L <= f(x) <= U) from constraint rules, but they can not involve variable expressions in the L and U locations. It doesn't look like the constraints you are referring to can be combined into this form.
(4) See (1)

Syntax error for else and elif (Can't determine if structure issue)

I'm very new to python and I've been working on a basic calculator within python for the last few hours (rhetorical I know, given what python has built in, but it's part of my learning process), I've run into an error I can't seem to fix, generally I'm able to get my scripts on their feet and running with the assistance of a couple of Google searches but this one has me stumped. I'm getting a syntax error where I have an else, and while at first I was pretty sure it was a structure issue, rewriting the script didn't fix anything, vague I know, so here's the script (I've marked the spot with a comment) :
def Calculator():
tempnums = [] #stores nums only
tempfuncs = [] #stores funcs only
tmpfuncs = {} #stores funcs only
times = lambda multiply: tempnums[0]*tempnums[1]
div = lambda divide: tempnums[0]%tempnums[1]
plus = lambda add: tempnums[0]+tempnums[1]
minus = lambda subtract:tempnums[0]-tempnums[1]
done = 0
varnum = 0
xtimes = 0
divtimes = 0
plustimes = 0
mintimes = 0
while done == 0: #USER INPUT PROCESS
varnum = varnum + 1
tempint = input() #nums
exec("num%d = tempint" % (varnum))
function = raw_input() #functions
if function != "=":
if function == 'x':
if x not in tmpfuncs:
xtimes = xtimes + 1
tmpfuncs[x] = times
else:
xtimes = xtimes + 1
exec("tmpfuncs[x%d] = times" % (xtimes)
else: #ERROR COMES HERE
if function == '//':
if dv not in tmpfuncs:
divtimes = divtimes + 1
tmpfuncs[dv] = div
else:
divtimes = divtimes + 1
exec("tmpfuncs[dv%d] = div" % (divtimes)
if function == '+':
if pls not in tmpfuncs:
plustimes = plustimes + 1
tmpfuncs[pls] = plus
else:
plustimes = plustimes + 1
exec("tmpfuncs[pls%d] = plus" % (plustimes)
if function == '-':
if mn not in tmpfuncs:
mintimes = mintimes + 1
tmpfuncs[mn] = minus
else:
mintimes = mintimes + 1
exec("tmpfuncs[mn%d] = minus" % (mintimes)
else: #user has selected to calculate input
done = 1
for i in range(1, varnum + 1):
exec("tempnums.append(num%d)" % (i)) #adding nums to a list with dynamic var names
print tmpfuncs
#next we'll make it so that tempnums[0] is the changing result as we use tempnums 0 and 1 to calculate the answer, deleting one as we go until there is only zero
Calculator()
Calculator()
I'm hoping this is legible as I'm posting from mobile (as a matter of fact I'm writing this from mobile as well).
The line above the else is missing a closing parens:
exec("tmpfuncs[x%d] = times" % (xtimes)
should be
exec("tmpfuncs[x%d] = times" % (xtimes))
The same error occurs in many other of your exec lines. Also, I suggest you consider restructuring your code so you do not need to use exec at all.

Attribute error occurs when I run my GUI code in Python. Python gives me no information as to what the error is or what is causing it

This is my code and when i try to run it and use it by entering numbers into the entry fields, an attribute error occurs when i try to call on the entry variable. This is the message that appears:
Exception in Tkinter callback
Traceback (most recent call last):
File "C:\Python27\lib\lib-tk\Tkinter.py", line 1486, in call
return self.func(*args)
File "F:\HomeWork\Yr13\Extended Project\Notepad++\Python27\Programs\GUI{c} menu+check+gen+Nth.py", line 224, in OnGenButtonClick
n= str(Prime_Generation(Prime_Gen.entryVariable5.get(),Prime_Gen.entryVariable6.get()))
File "C:\Python27\lib\lib-tk\Tkinter.py", line 1845, in getattr
return getattr(self.tk, attr)
AttributeError: entryVariable5
any help would be greatly appreciated.
i have stuck on this problem for three days and have tried getting around the problem by using different functions and names and the error still occurs
import Tkinter
from Tkinter import *
import math
def SoS(limit):
numbers = range(3, limit+1, 2)
half = (limit)//2
initial = 4
for step in xrange(3, limit+1, 2):
for i in xrange(initial, half, step):
numbers[i-1] = 0
initial += 2*(step+1)
if initial > half:
plist = [2] + filter(None, numbers)
return plist
break
def S(m):
sieve = [True] * m
for i in xrange(3,(int(m**0.5)+1),2):
if sieve[i]:
sieve[i*i::2*i]=[False]*((m-i*i-1)/(2*i)+1)
plist = [2] + [i for i in xrange(3,m,2) if sieve[i]]
return plist
def OTS(n):
n, correction = n-n%6+6, 2-(n%6>1)
sieve = [True] * (n/3)
for i in xrange(1,(int(n**0.5)/3)+1):
if sieve[i]:
k=3*i+1|1
sieve[ k*k/3 ::2*k] = [False] * ((n/6-k*k/6-1)/k+1)
sieve[k*(k-2*(i&1)+4)/3::2*k] = [False] * ((n/6-k*(k-2*(i&1)+4)/6-1)/k+1)
plist = [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]
return plist
def is_prime(num):
if num <= 3:
if num <= 1:
return False
return True
if not num % 2 or not num % 3:
return False
for i in xrange(5, int(num ** 0.5) + 1, 6):
if not num % i or not num % (i + 2):
return False
return True
def is_prime_multiple(Lower,Upper):
NumberList = dict()
if Lower%2 == 1:
for i in xrange(Lower, Upper,2):
NumberList[i] = is_prime(i)
else:
for i in xrange(Lower-1,Upper,2):
NumberList[i] = is_prime(i)
NumberList[1] = False
return [i for i in NumberList if NumberList[i] == True]
def Prime_Generation(L,U):
Lower = int(L)
Upper = int(U)
if Lower == 1:
if Upper < 92:
print SoS(Upper)
if Upper >= 92 and Upper < 2250:
print S(Upper)
if Upper >= 2250 :
print OTS(Upper)
else:
print sorted(is_prime_multiple(Lower,Upper))
def factors(n):
f = 3
fs = []
while n % 2 == 0:
fs.append(2)
n /= 2
while f*f <= n:
while n % f == 0:
fs.append(f)
n /= f
f += 2
if n > 1:
fs.append(n)
return fs
def Prime_Checker(N):
NStr = str(N)
N = int(N)
Nfs = factors(N)
for i in Nfs:
if i != N:
NfsStr = str(Nfs).strip('[]')
resultb = [NStr,' is not a prime. The prime factors of ',NStr,' are ',NfsStr]
return resultb.join()
else:
return N,' is a prime. The prime factors of ',N ,' are ',N
def PrimeFinderLamda(n,limit):
nums = range(3,limit,2)
for i in range(2, int(limit**0.5)):
nums = filter(lambda x: x == i or x % i, nums)
return [2]+nums
def NthPrime(N):
N = int(N)
Lower = 1
limit = N*N
if N == 1:
return 2
else:
return PrimeFinderLamda(N,limit)[N-1]
class Prime_app_tk(Tkinter.Tk):
def __init__(self,parent):
Tk.__init__(self,parent)
self.parent = parent
self.initialize()
def Prime_Gen_Win(self):
Prime_Gen = Toplevel()
Prime_Gen.grid()
Prime_Gen.labelVariable3 = StringVar()
Title_label2 = Label(Prime_Gen,textvariable=Prime_Gen.labelVariable3,
relief = RAISED,fg="black",bg="white"
,font = "Arial")
Title_label2.grid(column=0,row=0,columnspan=4)
Prime_Gen.labelVariable3.set(u"Please enter the upper and lower limits of the prime number generation")
Prime_Gen.labelVariable4 = StringVar()
SubTitle_label1 = Label(Prime_Gen,textvariable=Prime_Gen.labelVariable4,fg="black",bg="white")
SubTitle_label1.grid(column=0,row=1,columnspan=4)
Prime_Gen.labelVariable4.set(u"(Please enter values no greater than 10 million)")
Prime_Gen.entryVariable5 = StringVar()
Prime_Gen.entry = Entry(Prime_Gen,textvariable=Prime_Gen.entryVariable5)
Prime_Gen.entry.grid(column=0,row=4)
Prime_Gen.entryVariable5.set(u"Lower.")
Prime_Gen.entryVariable6 = StringVar()
Prime_Gen.entry = Entry(Prime_Gen,textvariable=Prime_Gen.entryVariable6)
Prime_Gen.entry.grid(column=0,row=5)
Prime_Gen.entryVariable6.set(u"Upper.")
Genbutton = Button(Prime_Gen,text=u"Generate !",command=self.OnGenButtonClick #placing and aesthetics of button
,bg="yellow",relief=RAISED,padx=10,pady=10
,activebackground="red",activeforeground="white")
Genbutton.grid(column=0,row=6)
scrollbar = Scrollbar(Prime_Gen)
scrollbar.grid(column=1,row=8,sticky="ns")
Prime_Gen.Result_label = Text(Prime_Gen, yscrollcommand=scrollbar.set
,fg="blue",bg="white",wrap=WORD
,width=100,relief = SUNKEN)
Prime_Gen.Result_label.grid(column=0,row=8,columnspan=2)
scrollbar.config(command=Prime_Gen.Result_label.yview)
Prime_Gen.labelVariable = StringVar()
SubTitle_label = Label(Prime_Gen,textvariable=Prime_Gen.labelVariable,fg="black",bg="white")
SubTitle_label.grid(column=0,row=9,columnspan=4)
Prime_Gen.labelVariable.set(u"To see full list please click on the results\n and use the up and down arrows to scroll through the list")
Prime_Gen.grid_columnconfigure(0,weight=1)
Prime_Gen.resizable(True,True)
Prime_Gen.update()
Prime_Gen.geometry(Prime_Gen.geometry())
Prime_Gen.entry.focus_set()
Prime_Gen.entry.selection_range(0, Tkinter.END)
def OnGenButtonClick(Prime_Gen):
n= str(Prime_Generation(Prime_Gen.entryVariable5.get(),Prime_Gen.entryVariable6.get()))
Prime_Gen.Result_label.insert(END,"\nPrimes Found\n")
Prime_Gen.Result_label.insert(END,n)
Prime_Gen.entry.focus_set()
Prime_Gen.entry.selection_range(0, Tkinter.END)
def Prime_Check_Win(self):
Prime_Check = Toplevel()
Prime_Check.grid()
Prime_Check.labelVariable8 = StringVar()
Title_label3 = Label(Prime_Check,textvariable=Prime_Check.labelVariable8,
relief = RAISED,fg="black",bg="white"
,font = "Arial")
Title_label3.grid(column=0,row=0,columnspan=4)
Prime_Check.labelVariable8.set(u"Please enter a Number to be checked for primality")
Prime_Check.labelVariable9 = StringVar()
SubTitle_label3 = Label(Prime_Check,textvariable=Prime_Check.labelVariable9,fg="black",bg="white")
SubTitle_label3.grid(column=0,row=1,columnspan=4)
Prime_Check.labelVariable9.set(u"(Please enter values no greater than 10 million)")
Prime_Check.entryVariable = StringVar()
Prime_Check.entry = Entry(Prime_Check,textvariable=Prime_Check.entryVariable)
Prime_Check.entry.grid(column=0,row=2)
Prime_Check.entryVariable.set(u"Enter Number here.")
Checkbutton = Button(Prime_Check,text=u"Check !",command=self.OnCheckButtonClick
,bg="blue",fg="white",relief=RAISED,padx=10,pady=10
,activebackground="red",activeforeground="white")
Checkbutton.grid(column=0,row=4)
Prime_Check.labelVariable10 = StringVar()
Result_label2 = Message(Prime_Check,textvariable=Prime_Check.labelVariable10
,anchor="w",fg="blue",bg="white"
,width=500,relief = SUNKEN,padx=3,pady=3)
Result_label2.grid(column=0,row=5,columnspan=2,rowspan=100)
Prime_Check.labelVariable10.set(u"Hello")
Prime_Check.grid_columnconfigure(0,weight=1)
Prime_Check.resizable(True,False)
Prime_Check.update()
Prime_Check.geometry(Prime_Check.geometry())
Prime_Check.entry.focus_set()
Prime_Check.entry.selection_range(0, Tkinter.END)
def OnCheckButtonClick(Prime_Check):
Prime_Check.labelVariable10.set(Prime_Checker(Prime_Check.entryVariable.get())) #Had to call on prime gen and display results
Prime_Check.entry.focus_set()
Prime_Check.entry.selection_range(0, Tkinter.END)
def Nth_Prime_Win(self):
Nth_Prime = Toplevel()
Nth_Prime.grid()
Nth_Prime.labelVariable12 = StringVar()
Title_label = Label(Nth_Prime,textvariable=Nth_Prime.labelVariable12,
relief = RAISED,fg="black",bg="white"
,font = "Arial")
Title_label.grid(column=0,row=0,columnspan=4)
Nth_Prime.labelVariable12.set(u"Please enter the Nth prime you would like to find")
Nth_Prime.labelVariable13 = StringVar()
SubTitle_label = Label(Nth_Prime,textvariable=Nth_Prime.labelVariable13,fg="black",bg="white")
SubTitle_label.grid(column=0,row=1,columnspan=4)
Nth_Prime.labelVariable13.set(u"(Please enter values no greater than 664579")
Nth_Prime.entryVariable = StringVar()
Nth_Prime.entry = Entry(Nth_Prime,textvariable=Nth_Prime.entryVariable)
Nth_Prime.entry.grid(column=0,row=4)
Nth_Prime.entryVariable.set(u"Enter Number here.")
Genbutton = Button(Nth_Prime,text=u"Generate !",command=self.OnButtonNthClick
,bg="green",relief=RAISED,padx=10,pady=10
,activebackground="red",activeforeground="white")
Genbutton.grid(column=0,row=5)
Nth_Prime.labelVariable14 = StringVar()
Result_label = Message(Nth_Prime,textvariable=Nth_Prime.labelVariable14
,anchor="w",fg="blue",bg="white"
,width=1000,relief = SUNKEN,justify=LEFT,padx=3,pady=3)
Result_label.grid(column=0,row=6,columnspan=2,rowspan=100)
Nth_Prime.labelVariable14.set(u"Hello")
Nth_Prime.grid_columnconfigure(0,weight=1)
Nth_Prime.resizable(False,False)
Nth_Prime.update()
Nth_Prime.geometry(Nth_Prime.geometry())
Nth_Prime.entry.focus_set()
Nth_Prime.entry.selection_range(0, Tkinter.END)
def OnButtonNthClick(Nth_Prime):
Nth_Prime.labelVariable14.set(NthPrime(Nth_Prime.entryVariable.get()))
Nth_Prime.entry.focus_set()
Nth_Prime.entry.selection_range(0, Tkinter.END)
def initialize(self):
self.grid()
self.labelVariable1 = StringVar()
Title_label1 = Label(self,textvariable=self.labelVariable1,
relief = RAISED,fg="black",bg="white"
,font = "Arial")
Title_label1.grid(column=0,row=0,columnspan=4)
self.labelVariable1.set(u"Welcome to the Prime Program")
self.labelVariable2 = StringVar()
SubTitle_label = Label(self,textvariable=self.labelVariable2,fg="black",bg="white")
SubTitle_label.grid(column=0,row=1,columnspan=4)
self.labelVariable2.set(u"(Please select the function you would like to use)")
PrimeGenbutton = Button(self,text=u"Find Primes between 2 limits !",command=self.Prime_Gen_Win
,bg="yellow",relief=RAISED,padx=10,pady=10
,activebackground="red",activeforeground="white")
PrimeGenbutton.grid(column=0,row=3)
PrimeCheckbutton = Button(self,text=u"Check if a number is prime !",command=self.Prime_Check_Win
,bg="blue",fg="white",relief=RAISED,padx=14,pady=10
,activebackground="red",activeforeground="white")
PrimeCheckbutton.grid(column=0,row=4)
NthPrimebutton = Button(self,text=u"Find the Nth prime !",command=self.Nth_Prime_Win
,bg="green",relief=RAISED,padx=35,pady=10
,activebackground="red",activeforeground="white")
NthPrimebutton.grid(column=0,row=5)
self.grid_columnconfigure(0,weight=1)
self.resizable(False,False)
self.update()
self.geometry(self.geometry())
if __name__ == "__main__":
app = Prime_app_tk(None)
app.title('Prime Program')
app.mainloop()
There's no quick fix for your code. It attempts to be object-oriented, but is doing so incorrectly. You need to properly define your methods, and should also adhere to PEP8 naming conventions -- specifically, methods and functions should start with a lowercase, and classes should start with an uppercase. Because you don't follow PEP8, and because of the odd way you use Prime_Gen to mean different things at different times, your code is incredibly hard to understand.
The crux of the problem is that inside OnGenButtonClick, Prime_Gen is not what you think it is. It is an instance of Prime_app_tk rather than the value that you set the local variable Prime_Gen to in Prime_Gen_Win. Thus, any attributes you assigned to the original Prime_Gen don't exist in this other Prime_Gen.
The reason is that the button is defined like this:
Genbutton = Button(..., command=self.OnGenButtonClick, ...)
In this context, self is the instance of Prime_app_tk, so that becomes the parameter passed to OnGenButtonClick. Inside that function you call the parameter Prime_Gen, in spite of the universal convention to name it self. This causes confusion in your code, because you also have a local variable named Prime_Gen in the code that creates the toplevel window.

Numerology with Python And Django

i have a function that give me the result that im expecting in console mode, but if i try to use the function with Django, the page never load and just have a loop calculating and never end.
Any idea ?
*sorry with my english
Console function (WORK GREAT):
def sum_digitos(n):
sum = 0;
while n != 0:
sum += n % 10
n /= 10
if sum > 9:
x = str(sum)
y =list(x)
sum = int(y[0]) + int(y[1])
return sum
print sum_digitos(2461978)
Django views:
def Calcular(request):
if request.method == 'POST':
form = NumerologiaForm(request.POST)
if form.is_valid():
sum = 0;
ano = str(request.POST['fecha_year'])
mes = str(request.POST['fecha_month'])
dia = str(request.POST['fecha_day'])
data = dia + mes + ano
fecha = int(data)
while fecha != 0:
f = fecha
sum += f % 10
f /= 10
if sum > 9:
x = str(sum)
y =list(x)
sum = int(y[0]) + int(y[1])
resultado = get_object_or_404(Numero,numero = sum)
return HttpResponseRedirect(resultado.get_absolute_url())
else:
form = NumerologiaForm()
return render_to_response('numerologiaForm.html',{'form':form})
Try:
f = fecha
while f!= 0:
sum += f % 10
f /= 10
if sum > 9:
x = str(sum)
y =list(x)
sum = int(y[0]) + int(y[1])
It seems you were changing f, but checking fecha for the looping.
Sanjay's answer is the correct one, and I recommend it. I just wanted to ask why you didn't just do:
from numerology import sum_digitos
def Calcular(request):
# In your code, you return HttpResponseRedirect using a nonexistent
# "resultado" variable if the form is not valid. This will raise an
# exception. I think you meant to indent "return Http..." one step more.
if request.method == 'POST':
form = NumerologiaForm(request.POST)
else:
form = NumerologiaForm()
# "or..." part of next line not needed if form.is_valid() returns
# False for a blank form.
if not form.is_valid() or form == NumerologiaForm():
return render_to_response('numerologiaForm.html', {'form': form})
ano = str(request.POST['fecha_year'])
mes = str(request.POST['fecha_month'])
dia = str(request.POST['fecha_day'])
resultado = get_object_or_404(Numero,
numero=sum_digitos(int(dia + mes + ano)))
return HttpResponseRedirect(resultado.get_absolute_url())
You had a working function in Python already... why not just import it and use it?
There's no need to go to all that work to sum the digits in that number, because the sum of the digits is num % 9. If num % 9 is zero, then the actual sum of digits is 9.
By changing your method to
def sum_digitos(n):
sum_ = n % 9
return sum_ if sum_ != 0 else 9
You will completely avoid whatever issue was happening inside your original method.
You don't say what the rest of your environment is like, but you should be using f //= 10 to ensure that you're performing integer division.