How to use Thread to run a class Constructor - c++

Is there a way to construct a class with specific parameters in a separate thread?
In the examples I have seen I can only see thread running functions and member functions. To be more specific, I would need it to run this constructor in a separate thread:
Thermistor(ukd_Adc * pAdc,
const lookup_table_t * pLUT,
uint8_t numOfLutElements);
I want to construct the class in a different thread to assert functionality and check for edge cases.
If there is an edge case like the pointer to ukd_Adc being NULL, the assert will make it hang in an infinite loop. This thread will allow me to set a time limit on how long the constructor may run so it does not go into an infinite loop.
This is for testing purposes since google test does not have a timeout feature to my knowledge.

If you simply want to construct an object on a separate thread and check if it has successfully finished within a specific time constrain, use:
int main() {
std::promise<std::shared_ptr<Thermistor>> promise;
std::future<std::shared_ptr<Thermistor>> future = promise.get_future();
std::thread([&promise](ukd_Adc * pAdc,
const lookup_table_t * pLUT,
uint8_t numOfLutElements) {
promise.set_value_at_thread_exit(std::make_shared<Thermistor>(pAdc, pLUT, numOfLutElements));
}, <pAdc-value>, <pLUT-value>, <numOfLutElements-value>).detach();
auto status = future.wait_for(std::chrono::seconds(3));
if (status == std::future_status::ready)
{
// succeeded
}
else
{
// failed
}
}

You can use the alarm() function to raise a signal (SIGALRM) after a specified amount of time:
static bool alarmed = false;
extern "C" void handler(int signo)
{
alarmed = true;
}
signal(SIGALRM, handler);
alarm(5); // seconds to SIGALRM
// do stuff
// if (alarmed) ...

You could use pthreads start the process and when you don't like your thread anymore you can kill it off with pthread_cancel
pseudo code
start thread
wait
cancel thread if not finished

Related

How to let a thread wait itself out without using Sleep()?

I want the while loop in the thread to run , wait a second, then run again, so on and so on., but this don't seem to work, how would I fix it?
main(){
bool flag = true;
pthread = CreateThread(NULL, 0, ThreadFun, this, 0, &ThreadIP);
}
ThreadFun(){
while(flag == true)
WaitForSingleObject(pthread,1000);
}
This is one way to do it, I prefer using condition variables over sleeps since they are more responsive and std::async over std::thread (mainly because std::async returns a future which can send information back the the starting thread. Even if that feature is not used in this example).
#include <iostream>
#include <chrono>
#include <future>
#include <condition_variable>
// A very useful primitive to communicate between threads is the condition_variable
// despite its name it isn't a variable perse. It is more of an interthread signal
// saying, hey wake up thread something may have changed that's interesting to you.
// They come with some conditions of their own
// - always use with a lock
// - never wait without a predicate
// (https://www.modernescpp.com/index.php/c-core-guidelines-be-aware-of-the-traps-of-condition-variables)
// - have some state to observe (in this case just a bool)
//
// Since these three things go together I usually pack them in a class
// in this case signal_t which will be used to let thread signal each other
class signal_t
{
public:
// wait for boolean to become true, or until a certain time period has passed
// then return the value of the boolean.
bool wait_for(const std::chrono::steady_clock::duration& duration)
{
std::unique_lock<std::mutex> lock{ m_mtx };
m_cv.wait_for(lock, duration, [&] { return m_signal; });
return m_signal;
}
// wiat until the boolean becomes true, wait infinitely long if needed
void wait()
{
std::unique_lock<std::mutex> lock{ m_mtx };
m_cv.wait(lock, [&] {return m_signal; });
}
// set the signal
void set()
{
std::unique_lock<std::mutex> lock{ m_mtx };
m_signal = true;
m_cv.notify_all();
}
private:
bool m_signal { false };
std::mutex m_mtx;
std::condition_variable m_cv;
};
int main()
{
// create two signals to let mainthread and loopthread communicate
signal_t started; // indicates that loop has really started
signal_t stop; // lets mainthread communicate a stop signal to the loop thread.
// in this example I use a lambda to implement the loop
auto future = std::async(std::launch::async, [&]
{
// signal this thread has been scheduled and has started.
started.set();
do
{
std::cout << ".";
// the stop_wait_for will either wait 500 ms and return false
// or stop immediately when stop signal is set and then return true
// the wait with condition variables is much more responsive
// then implementing a loop with sleep (which will only
// check stop condition every 500ms)
} while (!stop.wait_for(std::chrono::milliseconds(500)));
});
// wait for loop to have started
started.wait();
// give the thread some time to run
std::this_thread::sleep_for(std::chrono::seconds(3));
// then signal the loop to stop
stop.set();
// synchronize with thread stop
future.get();
return 0;
}
While the other answer is a possible way to do it, my answer will mostly answer from a different angle trying to see what could be wrong with your code...
Well, if you don't care to wait up to one second when flag is set to false and you want a delay of at least 1000 ms, then a loop with Sleep could work but you need
an atomic variable (for ex. std::atomic)
or function (for ex. InterlockedCompareExchange)
or a MemoryBarrier
or some other mean of synchronisation to check the flag.
Without proper synchronisation, there is no guarantee that the compiler would read the value from memory and not the cache or a register.
Also using Sleep or similar function from a UI thread would also be suspicious.
For a console application, you could wait some time in the main thread if the purpose of you application is really to works for a given duration. But usually, you probably want to wait until processing is completed. In most cases, you should usually wait that threads you have started have completed.
Another problem with Sleep function is that the thread always has to wake up every few seconds even if there is nothing to do. This can be bad if you want to optimize battery usage. However, on the other hand having a relatively long timeout on function that wait on some signal (handle) might make your code a bit more robust against missed wakeup if your code has some bugs in it.
You also need a delay in some cases where you don't really have anything to wait on but you need to pull some data at regular interval.
A large timeout could also be useful as a kind of watch dog timer. For example, if you expect to have something to do and receive nothing for an extended period, you could somehow report a warning so that user could check if something is not working properly.
I highly recommand you to read a book on multithreading like Concurrency in Action before writing multithread code code.
Without proper understanding of multithreading, it is almost 100% certain that anyone code is bugged. You need to properly understand the C++ memory model (https://en.cppreference.com/w/cpp/language/memory_model) to write correct code.
A thread waiting on itself make no sense. When you wait a thread, you are waiting that it has terminated and obviously if it has terminated, then it cannot be executing your code. You main thread should wait for the background thread to terminate.
I also usually recommand to use C++ threading function over the API as they:
Make your code portable to other system.
Are usually higher level construct (std::async, std::future, std::condition_variable...) than corresponding Win32 API code.

Simple threaded timer, sanity check please

I've made a very simple threaded timer class and given the pitfalls around MT code, I would like a sanity check please. The idea here is to start a thread then continuously loop waiting on a variable. If the wait times out, the interval was exceeded and we call the callback. If the variable was signalled, the thread should quit and we don't call the callback.
One of the things I'm not sure about is what happens in the destructor with my code, given the thread may be joinable there (just). Can I join a thread in a destructor to make sure it's finished?
Here's the class:
class TimerThreaded
{
public:
TimerThreaded() {}
~TimerThreaded()
{
if (MyThread.joinable())
Stop();
}
void Start(std::chrono::milliseconds const & interval, std::function<void(void)> const & callback)
{
if (MyThread.joinable())
Stop();
MyThread = std::thread([=]()
{
for (;;)
{
auto locked = std::unique_lock<std::mutex>(MyMutex);
auto result = MyTerminate.wait_for(locked, interval);
if (result == std::cv_status::timeout)
callback();
else
return;
}
});
}
void Stop()
{
MyTerminate.notify_all();
}
private:
std::thread MyThread;
std::mutex MyMutex;
std::condition_variable MyTerminate;
};
I suppose a better question might be to ask someone to point me towards a very simple threaded timer, if there's one already available somewhere.
Can I join a thread in a destructor to make sure it's finished?
Not only you can, but it's quite typical to do so. If the thread instance is joinable (i.e. still running) when it's destroyed, terminate would be called.
For some reason result is always timeout. It never seems to get signalled and so never stops. Is it correct? notify_all should unblock the wait_for?
It can only unblock if the thread happens to be on the cv at the time. What you're probably doing is call Start and then immediately Stop before the thread has started running and begun waiting (or possibly while callback is running). In that case, the thread would never be notified.
There is another problem with your code. Blocked threads may be spuriously woken up on some implementations even when you don't explicitly call notify_X. That would cause your timer to stop randomly for no apparent reason.
I propose that you add a flag variable that indicates whether Stop has been called. This will fix both of the above problems. This is the typical way to use condition variables. I've even written the code for you:
class TimerThreaded
{
...
MyThread = std::thread([=]()
{
for (;;)
{
auto locked = std::unique_lock<std::mutex>(MyMutex);
auto result = MyTerminate.wait_for(locked, interval);
if (stop_please)
return;
if (result == std::cv_status::timeout)
callback();
}
});
....
void Stop()
{
{
std::lock_guard<std::mutex> lock(MyMutex);
stop_please = true;
}
MyTerminate.notify_all();
MyThread.join();
}
...
private:
bool stop_please = false;
...
With these changes yout timer should work, but do realize that "[std::condition_variable::wait_for] may block for longer than timeout_duration due to scheduling or resource contention delays", in the words of cppreference.com.
point me towards a very simple threaded timer, if there's one already available somewhere.
I don't know of a standard c++ solution, but modern operating systems typically provide this kind of functionality or at least pieces that can be used to build it. See timerfd_create on linux for an example.

notify thread about changes in variable (signals?)

I have main() and thread in the same program.
there is a variable named "status", that can get several values
I need that when the variable changes, to notify the thread (the thread cnat wait for the status variable, it is already doing fluent task) .
is there an easy way to do so? similar to interrupts? how about signals?
the function inside the main:
int main()
{
char *status;
...
...
while (1)
{
switch (status)
{
case: status1 ...notify the thread
case: status2 ...notify the thread
case: status3 ...notify the thread
}
}
}
if someone could give me an example it will be great!
thanks!
Since you're already using the pthread library you can use conditional variables to tell the thread that there is data ready for processing. Take a look at this StackOverflow question for more information.
I understand that you do not want to wait indefinitely for this notification, however C++ only implements cooperative scheduling. You cannot just pause a thread, fiddle with its memory, and resume it.
Therefore, the first thing you have to understand is that the thread which has to process the signal/action you want to send must be willing to do so; which in other words means must explicitly check for the signal at some point.
There are multiple ways for a thread to check for a signal:
condition variable: they require waiting for the signal (which might be undesirable) but that wait can be bounded by a duration
action queue (aka channel): you create a queue of signals/actions and every so often the target thread checks for something to do; if there is nothing it just goes on doing whatever it has to do, if there is something you have to decide whether it should do everything or only process the N firsts. Beware of overflowing the queue.
just check the status variable directly every so often, it does not tell you how many times it changed (unless it keeps an history: but then we are back to the queue), but it allows you to amend your ways.
Given your requirements, I would think that the queue is probably the best idea among those three.
Might be this example helpful for you.
DWORD sampleThread( LPVOID argument );
int main()
{
bool defValue = false;
bool* status = &defValue;
CreateThread(NULL, 0, sampleThread, status, 0,NULL);
while(1)
{
//.............
defValue = true; //trigger thread
// ...
}
return 0;
}
DWORD sampleThread( LPVOID argument )
{
bool* syncPtr = reinterpret_cast<bool*>(argument);
while (1)
{
if (false == *syncPtr)
{
// do something
}
else (true = *syncPtr)
{
//do somthing else
}
}
}

c++ winapi threads

These days I'm trying to learn more things about threads in windows. I thought about making this practical application:
Let's say there are several threads started when a button "Start" is pressed. Assume these threads are intensive (they keep running / have always something to work on).
This app would also have a "Stop" button. When this button is pressed all the threads should close in a nice way: free resources and abandon work and return the state they were before the "Start" button was pressed.
Another request of the app is that the functions runned by the threads shouldn't contain any instruction checking if the "Stop" button was pressed. The function running in the thread shouldn't care about the stop button.
Language: C++
OS: Windows
Problems:
WrapperFunc(function, param)
{
// what to write here ?
// if i write this:
function(param);
// i cannot stop the function from executing
}
How should I construct the wrapper function so that I can stop the thread properly?
( without using TerminateThread or some other functions )
What if the programmer allocates some memory dynamically? How can I free it before closing
the thread?( note that when I press "Stop button" the thread is still processing data)
I though about overloading the new operator or just imposing the usage of a predefined
function to be used when allocating memory dynamically. This, however, means
that the programmer who uses this api is constrained and it's not what I want.
Thank you
Edit: Skeleton to describe the functionality I'd like to achieve.
struct wrapper_data
{
void* (*function)(LPVOID);
LPVOID *params;
};
/*
this function should make sure that the threads stop properly
( free memory allocated dynamically etc )
*/
void* WrapperFunc(LPVOID *arg)
{
wrapper_data *data = (wrapper_data*) arg;
// what to write here ?
// if i write this:
data->function(data->params);
// i cannot stop the function from executing
delete data;
}
// will have exactly the same arguments as CreateThread
MyCreateThread(..., function, params, ...)
{
// this should create a thread that runs the wrapper function
wrapper_data *data = new wrapper_data;
data->function = function;
data->params = params;
CreateThread(..., WrapperFunc, (LPVOID) wrapper_data, ...);
}
thread_function(LPVOID *data)
{
while(1)
{
//do stuff
}
}
// as you can see I want it to be completely invisible
// to the programmer who uses this
MyCreateThread(..., thread_function, (LPVOID) params,...);
One solution is to have some kind of signal that tells the threads to stop working. Often this can be a global boolean variable that is normally false but when set to true it tells the threads to stop. As for the cleaning up, do it when the threads main loop is done before returning from the thread.
I.e. something like this:
volatile bool gStopThreads = false; // Defaults to false, threads should not stop
void thread_function()
{
while (!gStopThreads)
{
// Do some stuff
}
// All processing done, clean up after my self here
}
As for the cleaning up bit, if you keep the data inside a struct or a class, you can forcibly kill them from outside the threads and just either delete the instances if you allocated them dynamically or let the system handle it if created e.g. on the stack or as global objects. Of course, all data your thread allocates (including files, sockets etc.) must be placed in this structure or class.
A way of keeping the stopping functionality in the wrapper, is to have the actual main loop in the wrapper, together with the check for the stop-signal. Then in the main loop just call a doStuff-like function that does the actual processing. However, if it contains operations that might take time, you end up with the first problem again.
See my answer to this similar question:
How do I guarantee fast shutdown of my win32 app?
Basically, you can use QueueUserAPC to queue a proc which throws an exception. The exception should bubble all the way up to a 'catch' in your thread proc.
As long as any libraries you're using are reasonably exception-aware and use RAII, this works remarkably well. I haven't successfully got this working with boost::threads however, as it's doesn't put suspended threads into an alertable wait state, so QueueUserAPC can't wake them.
If you don't want the "programmer" of the function that the thread will execute deal with the "stop" event, make the thread execute a function of "you" that deals with the "stop" event and when that event isn't signaled executes the "programmer" function...
In other words the "while(!event)" will be in a function that calls the "job" function.
Code Sample.
typedef void (*JobFunction)(LPVOID params); // The prototype of the function to execute inside the thread
struct structFunctionParams
{
int iCounter;
structFunctionParams()
{
iCounter = 0;
}
};
struct structJobParams
{
bool bStop;
JobFunction pFunction;
LPVOID pFunctionParams;
structJobParams()
{
bStop = false;
pFunction = NULL;
pFunctionParams = NULL;
}
};
DWORD WINAPI ThreadProcessJob(IN LPVOID pParams)
{
structJobParams* pJobParams = (structJobParams*)pParams;
while(!pJobParams->bStop)
{
// Execute the "programmer" function
pJobParams->pFunction(pJobParams->pFunctionParams);
}
return 0;
}
void ThreadFunction(LPVOID pParams)
{
// Do Something....
((structFunctionParams*)pParams)->iCounter ++;
}
int _tmain(int argc, _TCHAR* argv[])
{
structFunctionParams stFunctionParams;
structJobParams stJobParams;
stJobParams.pFunction = &ThreadFunction;
stJobParams.pFunctionParams = &stFunctionParams;
DWORD dwIdThread = 0;
HANDLE hThread = CreateThread(
NULL,
0,
ThreadProcessJob,
(LPVOID) &stJobParams, 0, &dwIdThread);
if(hThread)
{
// Give it 5 seconds to work
Sleep(5000);
stJobParams.bStop = true; // Signal to Stop
WaitForSingleObject(hThread, INFINITE); // Wait to finish
CloseHandle(hThread);
}
}

How to pause a pthread ANY TIME I want?

recently I set out to port ucos-ii to Ubuntu PC.
As we know, it's not possible to simulate the "process" in the ucos-ii by simply adding a flag in "while" loop in the pthread's call-back function to perform pause and resume(like the solution below). Because the "process" in ucos-ii can be paused or resumed at any time!
How to sleep or pause a PThread in c on Linux
I have found one solution on the web-site below, but it can't be built because it's out of date. It uses the process in Linux to simulate the task(acts like the process in our Linux) in ucos-ii.
http://www2.hs-esslingen.de/~zimmerma/software/index_uk.html
If pthread can act like the process which can be paused and resumed at any time, please tell me some related functions, I can figure it out myself. If it can't, I think I should focus on the older solution. Thanks a lot.
The Modula-3 garbage collector needs to suspend pthreads at an arbitrary time, not just when they are waiting on a condition variable or mutex. It does it by registering a (Unix) signal handler that suspends the thread and then using pthread_kill to send a signal to the target thread. I think it works (it has been reliable for others but I'm debugging an issue with it right now...) It's a bit kludgy, though....
Google for ThreadPThread.m3 and look at the routines "StopWorld" and "StartWorld". Handler itself is in ThreadPThreadC.c.
If stopping at specific points with a condition variable is insufficient, then you can't do this with pthreads. The pthread interface does not include suspend/resume functionality.
See, for example, answer E.4 here:
The POSIX standard provides no mechanism by which a thread A can suspend the execution of another thread B, without cooperation from B. The only way to implement a suspend/restart mechanism is to have B check periodically some global variable for a suspend request and then suspend itself on a condition variable, which another thread can signal later to restart B.
That FAQ answer goes on to describe a couple of non-standard ways of doing it, one in Solaris and one in LinuxThreads (which is now obsolete; do not confuse it with current threading on Linux); neither of those apply to your situation.
On Linux you can probably setup custom signal handler (eg. using signal()) that will contain wait for another signal (eg. using sigsuspend()). You then send the signals using pthread_kill() or tgkill(). It is important to use so-called "realtime signals" for this, because normal signals like SIGUSR1 and SIGUSR2 don't get queued, which means that they can get lost under high load conditions. You send a signal several times, but it gets received only once, because before while signal handler is running, new signals of the same kind are ignored. So if you have concurent threads doing PAUSE/RESUME , you can loose RESUME event and cause deadlock. On the other hand, the pending realtime signals (like SIGRTMIN+1 and SIGRTMIN+2) are not deduplicated, so there can be several same rt signals in queue at the same time.
DISCLAIMER: I had not tried this yet. But in theory it should work.
Also see man 7 signal-safety. There is a list of calls that you can safely call in signal handlers. Fortunately sigsuspend() seems to be one of them.
UPDATE: I have working code right here:
//Filename: pthread_pause.c
//Author: Tomas 'Harvie' Mudrunka 2021
//Build: CFLAGS=-lpthread make pthread_pause; ./pthread_pause
//Test: valgrind --tool=helgrind ./pthread_pause
//I've wrote this code as excercise to solve following stack overflow question:
// https://stackoverflow.com/questions/9397068/how-to-pause-a-pthread-any-time-i-want/68119116#68119116
#define _GNU_SOURCE //pthread_yield() needs this
#include <signal.h>
#include <pthread.h>
//#include <pthread_extra.h>
#include <semaphore.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <unistd.h>
#include <errno.h>
#include <sys/resource.h>
#include <time.h>
#define PTHREAD_XSIG_STOP (SIGRTMIN+0)
#define PTHREAD_XSIG_CONT (SIGRTMIN+1)
#define PTHREAD_XSIGRTMIN (SIGRTMIN+2) //First unused RT signal
pthread_t main_thread;
sem_t pthread_pause_sem;
pthread_once_t pthread_pause_once_ctrl = PTHREAD_ONCE_INIT;
void pthread_pause_once(void) {
sem_init(&pthread_pause_sem, 0, 1);
}
#define pthread_pause_init() (pthread_once(&pthread_pause_once_ctrl, &pthread_pause_once))
#define NSEC_PER_SEC (1000*1000*1000)
// timespec_normalise() from https://github.com/solemnwarning/timespec/
struct timespec timespec_normalise(struct timespec ts)
{
while(ts.tv_nsec >= NSEC_PER_SEC) {
++(ts.tv_sec); ts.tv_nsec -= NSEC_PER_SEC;
}
while(ts.tv_nsec <= -NSEC_PER_SEC) {
--(ts.tv_sec); ts.tv_nsec += NSEC_PER_SEC;
}
if(ts.tv_nsec < 0) { // Negative nanoseconds isn't valid according to POSIX.
--(ts.tv_sec); ts.tv_nsec = (NSEC_PER_SEC + ts.tv_nsec);
}
return ts;
}
void pthread_nanosleep(struct timespec t) {
//Sleep calls on Linux get interrupted by signals, causing premature wake
//Pthread (un)pause is built using signals
//Therefore we need self-restarting sleep implementation
//IO timeouts are restarted by SA_RESTART, but sleeps do need explicit restart
//We also need to sleep using absolute time, because relative time is paused
//You should use this in any thread that gets (un)paused
struct timespec wake;
clock_gettime(CLOCK_MONOTONIC, &wake);
t = timespec_normalise(t);
wake.tv_sec += t.tv_sec;
wake.tv_nsec += t.tv_nsec;
wake = timespec_normalise(wake);
while(clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &wake, NULL)) if(errno!=EINTR) break;
return;
}
void pthread_nsleep(time_t s, long ns) {
struct timespec t;
t.tv_sec = s;
t.tv_nsec = ns;
pthread_nanosleep(t);
}
void pthread_sleep(time_t s) {
pthread_nsleep(s, 0);
}
void pthread_pause_yield() {
//Call this to give other threads chance to run
//Wait until last (un)pause action gets finished
sem_wait(&pthread_pause_sem);
sem_post(&pthread_pause_sem);
//usleep(0);
//nanosleep(&((const struct timespec){.tv_sec=0,.tv_nsec=1}), NULL);
//pthread_nsleep(0,1); //pthread_yield() is not enough, so we use sleep
pthread_yield();
}
void pthread_pause_handler(int signal) {
//Do nothing when there are more signals pending (to cleanup the queue)
//This is no longer needed, since we use semaphore to limit pending signals
/*
sigset_t pending;
sigpending(&pending);
if(sigismember(&pending, PTHREAD_XSIG_STOP)) return;
if(sigismember(&pending, PTHREAD_XSIG_CONT)) return;
*/
//Post semaphore to confirm that signal is handled
sem_post(&pthread_pause_sem);
//Suspend if needed
if(signal == PTHREAD_XSIG_STOP) {
sigset_t sigset;
sigfillset(&sigset);
sigdelset(&sigset, PTHREAD_XSIG_STOP);
sigdelset(&sigset, PTHREAD_XSIG_CONT);
sigsuspend(&sigset); //Wait for next signal
} else return;
}
void pthread_pause_enable() {
//Having signal queue too deep might not be necessary
//It can be limited using RLIMIT_SIGPENDING
//You can get runtime SigQ stats using following command:
//grep -i sig /proc/$(pgrep binary)/status
//This is no longer needed, since we use semaphores
//struct rlimit sigq = {.rlim_cur = 32, .rlim_max=32};
//setrlimit(RLIMIT_SIGPENDING, &sigq);
pthread_pause_init();
//Prepare sigset
sigset_t sigset;
sigemptyset(&sigset);
sigaddset(&sigset, PTHREAD_XSIG_STOP);
sigaddset(&sigset, PTHREAD_XSIG_CONT);
//Register signal handlers
//signal(PTHREAD_XSIG_STOP, pthread_pause_handler);
//signal(PTHREAD_XSIG_CONT, pthread_pause_handler);
//We now use sigaction() instead of signal(), because it supports SA_RESTART
const struct sigaction pause_sa = {
.sa_handler = pthread_pause_handler,
.sa_mask = sigset,
.sa_flags = SA_RESTART,
.sa_restorer = NULL
};
sigaction(PTHREAD_XSIG_STOP, &pause_sa, NULL);
sigaction(PTHREAD_XSIG_CONT, &pause_sa, NULL);
//UnBlock signals
pthread_sigmask(SIG_UNBLOCK, &sigset, NULL);
}
void pthread_pause_disable() {
//This is important for when you want to do some signal unsafe stuff
//Eg.: locking mutex, calling printf() which has internal mutex, etc...
//After unlocking mutex, you can enable pause again.
pthread_pause_init();
//Make sure all signals are dispatched before we block them
sem_wait(&pthread_pause_sem);
//Block signals
sigset_t sigset;
sigemptyset(&sigset);
sigaddset(&sigset, PTHREAD_XSIG_STOP);
sigaddset(&sigset, PTHREAD_XSIG_CONT);
pthread_sigmask(SIG_BLOCK, &sigset, NULL);
sem_post(&pthread_pause_sem);
}
int pthread_pause(pthread_t thread) {
sem_wait(&pthread_pause_sem);
//If signal queue is full, we keep retrying
while(pthread_kill(thread, PTHREAD_XSIG_STOP) == EAGAIN) usleep(1000);
pthread_pause_yield();
return 0;
}
int pthread_unpause(pthread_t thread) {
sem_wait(&pthread_pause_sem);
//If signal queue is full, we keep retrying
while(pthread_kill(thread, PTHREAD_XSIG_CONT) == EAGAIN) usleep(1000);
pthread_pause_yield();
return 0;
}
void *thread_test() {
//Whole process dies if you kill thread immediately before it is pausable
//pthread_pause_enable();
while(1) {
//Printf() is not async signal safe (because it holds internal mutex),
//you should call it only with pause disabled!
//Will throw helgrind warnings anyway, not sure why...
//See: man 7 signal-safety
pthread_pause_disable();
printf("Running!\n");
pthread_pause_enable();
//Pausing main thread should not cause deadlock
//We pause main thread here just to test it is OK
pthread_pause(main_thread);
//pthread_nsleep(0, 1000*1000);
pthread_unpause(main_thread);
//Wait for a while
//pthread_nsleep(0, 1000*1000*100);
pthread_unpause(main_thread);
}
}
int main() {
pthread_t t;
main_thread = pthread_self();
pthread_pause_enable(); //Will get inherited by all threads from now on
//you need to call pthread_pause_enable (or disable) before creating threads,
//otherwise first (un)pause signal will kill whole process
pthread_create(&t, NULL, thread_test, NULL);
while(1) {
pthread_pause(t);
printf("PAUSED\n");
pthread_sleep(3);
printf("UNPAUSED\n");
pthread_unpause(t);
pthread_sleep(1);
/*
pthread_pause_disable();
printf("RUNNING!\n");
pthread_pause_enable();
*/
pthread_pause(t);
pthread_unpause(t);
}
pthread_join(t, NULL);
printf("DIEDED!\n");
}
I am also working on library called "pthread_extra", which will have stuff like this and much more. Will publish soon.
UPDATE2: This is still causing deadlocks when calling pause/unpause rapidly (removed sleep() calls). Printf() implementation in glibc has mutex, so if you suspend thread which is in middle of printf() and then want to printf() from your thread which plans to unpause that thread later, it will never happen, because printf() is locked. Unfortunately i've removed the printf() and only run empty while loop in the thread, but i still get deadlocks under high pause/unpause rates. and i don't know why. Maybe (even realtime) Linux signals are not 100% safe. There is realtime signal queue, maybe it just overflows or something...
UPDATE3: i think i've managed to fix the deadlock, but had to completely rewrite most of the code. Now i have one (sig_atomic_t) variable per each thread which holds state whether that thread should be running or not. Works kinda like condition variable. pthread_(un)pause() transparently remembers this for each thread. I don't have two signals. now i only have one signal. handler of that signal looks at that variable and only blocks on sigsuspend() when that variable says the thread should NOT run. otherwise it returns from signal handler. in order to suspend/resume the thread i now set the sig_atomic_t variable to desired state and call that signal (which is common for both suspend and resume). It is important to use realtime signals to be sure handler will actualy run after you've modified the state variable. Code is bit complex because of the thread status database. I will share the code in separate solution as soon as i manage to simplify it enough. But i want to preserve the two signal version in here, because it kinda works, i like the simplicity and maybe people will give us more insight on how to optimize it.
UPDATE4: I've fixed the deadlock in original code (no need for helper variable holding the status) by using single handler for two signals and optimizing signal queue a bit. There is still some problem with printf() shown by helgrind, but it is not caused by my signals, it happens even when i do not call pause/unpause at all. Overall this was only tested on LINUX, not sure how portable the code is, because there seem to be some undocumented behaviour of signal handlers which was originaly causing the deadlock.
Please note that pause/unpause cannot be nested. if you pause 3 times, and unpause 1 time, the thread WILL RUN. If you need such behaviour, you should create some kind of wrapper which will count the nesting levels and signal the thread accordingly.
UPDATE5: I've improved robustness of the code by following changes: I ensure proper serialization of pause/unpause calls by use of semaphores. This hopefuly fixes last remaining deadlocks. Now you can be sure that when pause call returns, the target thread is actualy already paused. This also solves issues with signal queue overflowing. Also i've added SA_RESTART flag, which prevents internal signals from causing interuption of IO waits. Sleeps/delays still have to be restarted manualy, but i provide convenient wrapper called pthread_nanosleep() which does just that.
UPDATE6: i realized that simply restarting nanosleep() is not enough, because that way timeout does not run when thread is paused. Therefore i've modified pthread_nanosleep() to convert timeout interval to absolute time point in the future and sleep until that. Also i've hidden semaphore initialization, so user does not need to do that.
Here is example of thread function within a class with pause/resume functionality...
class SomeClass
{
public:
// ... construction/destruction
void Resume();
void Pause();
void Stop();
private:
static void* ThreadFunc(void* pParam);
pthread_t thread;
pthread_mutex_t mutex;
pthread_cond_t cond_var;
int command;
};
SomeClass::SomeClass()
{
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond_var, NULL);
// create thread in suspended state..
command = 0;
pthread_create(&thread, NULL, ThreadFunc, this);
}
SomeClass::~SomeClass()
{
// we should stop the thread and exit ThreadFunc before calling of blocking pthread_join function
// also it prevents the mutex staying locked..
Stop();
pthread_join(thread, NULL);
pthread_cond_destroy(&cond_var);
pthread_mutex_destroy(&mutex);
}
void* SomeClass::ThreadFunc(void* pParam)
{
SomeClass* pThis = (SomeClass*)pParam;
timespec time_ns = {0, 50*1000*1000}; // 50 milliseconds
while(1)
{
pthread_mutex_lock(&pThis->mutex);
if (pThis->command == 2) // command to stop thread..
{
// be sure to unlock mutex before exit..
pthread_mutex_unlock(&pThis->mutex);
return NULL;
}
else if (pThis->command == 0) // command to pause thread..
{
pthread_cond_wait(&pThis->cond_var, &pThis->mutex);
// dont forget to unlock the mutex..
pthread_mutex_unlock(&pThis->mutex);
continue;
}
if (pThis->command == 1) // command to run..
{
// normal runing process..
fprintf(stderr, "*");
}
pthread_mutex_unlock(&pThis->mutex);
// it's important to give main thread few time after unlock 'this'
pthread_yield();
// ... or...
//nanosleep(&time_ns, NULL);
}
pthread_exit(NULL);
}
void SomeClass::Stop()
{
pthread_mutex_lock(&mutex);
command = 2;
pthread_cond_signal(&cond_var);
pthread_mutex_unlock(&mutex);
}
void SomeClass::Pause()
{
pthread_mutex_lock(&mutex);
command = 0;
// in pause command we dont need to signal cond_var because we not in wait state now..
pthread_mutex_unlock(&mutex);
}
void SomeClass::Resume()
{
pthread_mutex_lock(&mutex);
command = 1;
pthread_cond_signal(&cond_var);
pthread_mutex_unlock(&mutex);
}