Get class pointer from a vector via function argument - c++

I have a class
class MyClass {
public:
string name;
};
I have a class manager, with a vector of said classes.
class MyManager {
public:
vector<MyClass> classes;
};
I want to pull out a class from the vector by looping and matching with the name
int MyManager::FindMyClass(string name, MyClass *clazz){
vector<MyClass>::iterator it;
for(it = classes.begin(); it != classes.end(); ++it){
if(it->name == name){
// if i cout here, i see the cout, so i did find it..
*clazz = *it;
return 1;
}
}
return 0;
}
int main() {
MyClass *myClass;
int result = myManager.FindMyClass("bob", *myClass);
}
I know for a fact that the object is matched properly (see the comment). I've tried every combination of pointers, double pointers, references, and get every error from unknown conversions to invalid pointers. I am just not sure what I have to do to get a reference to the class stored in the vector.

Change the argument type to MyClass*& so you can return a pointer to the object found in the vector.
int MyManager::FindMyClass(string name, MyClass* &foundPointer)
MyClass *myClass;
int result = myManager.FindMyClass("bob", myClass);
Once you find the match, you can get a pointer to the object using
foundPointer = &(*it);
I would also recommend changing the return type to bool.
Here's an updated version of the function:
bool MyManager::FindMyClass(string name, MyClass* &foundPointer)
{
vector<MyClass>::iterator it = classes.begin();
for(; it != classes.end(); ++it)
{
if(it->name == name)
{
foundPointer = &(*it);
return true;
}
}
return false;
}
Suggested second improvement:
Change the return type to MyClass*. Return a pointer to the found object or nullptr if none is found.
MyClass* MyManager::FindMyClass(string name)
{
...
}
Suggested third improvement:
Use the standard library function std::find_if and a lambda expression to simplify your function.
auto it = std::find_if(classes.begin(),
classes.end(),
[&](const MyClass &c) { return (c.name == name); });
The updated function:
MyClass* MyManager::FindMyClass(string name)
{
auto it = std::find_if(classes.begin(),
classes.end(),
[&](const MyClass &c) { return (c.name == name); });
if ( it != classes.end() )
{
return &(*it);
}
return nullptr;
}

Related

Convert list iterator to pointer doesn't work?

I want to implement a function which iterates over a list and returns a pointer in case of a match. I wrote:
std::list<JobEntry> jobs;
JobsList::JobEntry *JobsList::getJobById(int jobId) {
for (auto const& job : jobs) {
if (job.pid==jobId) {
return std::addressof(*job);
}
}
return nullptr;
}
But this doesn't work, how can I do it?
getJobById() is declared to return a pointer to a non-const JobEntry object, but job is a reference to a const JobEntry object. You can't assign a pointer-to-const to a pointer-to-non-const. So drop the const.
Also, a range-based for loop handles iterators internally, so job is the actual object you want to return a pointer to, not an iterator to the object, so don't try to dereference it.
JobsList::JobEntry* JobsList::getJobById(int jobId) {
for (auto &job : jobs) {
if (job.pid == jobId) {
return std::addressof(job);
}
}
return nullptr;
}
That being said, consider using the standard std::find_if() algorithm instead of a manual loop:
#include <algorithm>
JobsList::JobEntry* JobsList::getJobById(int jobId) {
auto iter = std::find_if(jobs.begin(), jobs.end(),
[=](const JobEntry &job) { return job.pid == jobId; }
);
if (iter != jobs.end())
return std::addressof(*iter);
return nullptr;
}

Why std::iterator is not able to access the function

When I try to access a function through iterator the compile tells that class ha no member with such name.
class Director
{
private:
std::string stdstrName;
public:
Director(std::string name): stdstrName(name){ }
void setName(std::string name) { stdstrName = name; }
std::string getName() { return stdstrName; }
};
int main(){
std::vector<std::shared_ptr<Director>> stdVecDir;
std::shared_ptr<Director> pointer1 = std::make_shared<Director>("Director1");
std::shared_ptr<Director> pointer2 = std::make_shared<Director>("Director2");
std::shared_ptr<Director> pointer3 = std::make_shared<Director>("Director3");
stdVecDir.push_back(pointer1);
stdVecDir.push_back(pointer2);
stdVecDir.push_back(pointer3);
auto it = std::find(stdVecDir.begin(), stdVecDir.end(), [](std::shared_ptr<Director> dir) { return dir->getName() == "Director2"; });
if (it != std::end(stdVecDir))
std::cout << *it->getName(); // compiler complains that getName() is not a member of class Director
}
Why does the compile complains that getName() is not a member of class Director.
You are using std::find(), but it's used with values, not with callables, hence you need to use std::find_if.
And you are using your iterator to access to a member function of an object pointed to by a pointer which is pointed to by an iterator, hence you have two dereferences, not one.
The following is a correction
auto it = std::find_if(stdVecDir.begin(), stdVecDir.end(),
[](std::shared_ptr <Director> dir) { return dir->getName() == "Director2"; });
if (it != std::end(stdVecDir))
std::cout << it->get()->getName(); //or (*it)->getName();
If im not mistaken you need to change it to (*it)-> to access Director from iterator and shared_ptr. With *it-> you are accessing shared_ptr from the iterator.

std::find return a class that I can't acesses functions

I come from C/C# language and now I'm trying to learn about C++ and his standards functions.
Now, I'm creating a class called IMonsterDead. I will have a std::vector<IMonsterDead*> with N monsters.
Example:
class IMonsterDead {
public:
IMonsterDead(int Id)
{
this->_Id = Id;
}
virtual void OnDead() = 0;
int Id() const {
return _Id;
}
private:
int _Id;
};
One class which implements that class:
class MonsterTest : public IMonsterDead {
public:
MonsterTest(int generId)
: IMonsterDead(generId)
{
}
virtual void OnDead()
{
std::cout << "MonsterTesd died" << std::endl;
}
};
Ok, if I access directly everything works fine. But I'm trying to use std::find.
Full program test:
int main()
{
std::vector<IMonsterDead*> monsters;
for (int i = 0; i < 1000; i++)
{
monsters.emplace_back(new MonsterTest(1000 + i));
}
int id = 1033;
std::vector<IMonsterDead*>::iterator result = std::find(monsters.begin(), monsters.end(), [id]( IMonsterDead const* l) {
return l->Id() == id;
});
if (result == monsters.end())
std::cout << "Not found" << std::endl;
else
{
// Here I want to access OnDead function from result
}
return 0;
}
So I need to access OnDead function from result but I can't. Intellisense doesn't show anything for me. The result exists.
How can I access that function? Have another better way to do that?
You need to use std::find_if() instead of std::find(). std::find() is for finding an element with a specific value, so you have to pass it the actual value to find, not a user_defined predicate. std::find_if() is for finding an element based on a predicate.
Either way, if a match is found, dereferencing the returned iterator will give you a IMonsterDead* pointer (more accurately, it will give you a IMonsterDead*& reference-to-pointer). You need to then dereference that pointer in order to access any members, like OnDead().
You are also leaking memory. You are not delete'ing the objects you new. And when dealing with polymorphic types that get deleted via a pointer to a base class, the base class needs a virtual destructor to ensure all derived destructors get called properly.
With that said, you are clearly using C++11 or later (by the fact that you are using vector::emplace_back()), so you should use C++11 features to help you manage your code better:
You should use std::unique_ptr to wrap your monster objects so you don't need to delete them manually.
You should always use the override keyword when overriding a virtual method, to ensure you override it properly. The compiler can catch more syntax errors when using override than without it.
You should use auto whenever you declare a variable that the compiler can deduce its type for you. Especially useful when dealing with templated code.
Try something more like this:
#include <iostream>
#include <vector>
#include <memory>
#include <algorithm>
class IMonsterDead {
public:
IMonsterDead(int Id)
: m_Id(Id)
{
}
virtual ~IMonsterDead() {}
virtual void OnDead() = 0;
int Id() const {
return m_Id;
}
private:
int m_Id;
};
class MonsterTest : public IMonsterDead {
public:
MonsterTest(int generId)
: IMonsterDead(generId)
{
}
void OnDead() override
{
std::cout << "MonsterTest died" << std::endl;
}
};
int main()
{
std::vector<std::unique_ptr<IMonsterDead>> monsters;
for (int i = 0; i < 1000; i++)
{
// using emplace_back() with a raw pointer risks leaking memory
// if the emplacement fails, so push a fully-constructed
// std::unique_ptr instead, to maintain ownership at all times...
monsters.push_back(std::unique_ptr<IMonsterDead>(new MonsterTest(1000 + i)));
// or:
// std::unique_ptr<IMonsterDead> monster(new MonsterTest(1000 + i));
// monsters.push_back(std::move(monster));
// or, if you are using C++14 or later:
// monsters.push_back(std::make_unique<MonsterTest>(1000 + i));
}
int id = 1033;
auto result = std::find_if(monsters.begin(), monsters.end(),
[id](decltype(monsters)::value_type &l) // or: (decltype(*monsters.begin()) l)
{
return (l->Id() == id);
}
// or, if you are using C++14 or later:
// [id](auto &l) { return (l->Id() == id); }
);
if (result == monsters.end())
std::cout << "Not found" << std::endl;
else
{
auto &monster = *result; // monster is 'std::unique_ptr<IMonsterDead>&'
monster->OnDead();
}
return 0;
}
Iterators are an interesting abstraction, in this case to be reduced to pointers.
Either you receive the pointer to the element or you get an invalid end.
You can use it as a pointer: (*result)->func();
You can also use it to create a new variable:
IMonsterDead &m = **result;
m.func();
This should give the same assembly, both possible.

Preventing assignment by subscript operator by not returning references causes runtime crash

I'm doing this:
template<typename T> class var_accessor {
public:
std::set<std::shared_ptr<T>> varset;
std::map<std::string,std::shared_ptr<T>> vars_by_name;
std::map<uint32,std::shared_ptr<T>> vars_by_id;
std::shared_ptr<T> operator[](const uint32& index) { return vars_by_id[index]; }
std::shared_ptr<T> operator[](const std::string& index) { return vars_by_name[index]; }
bool is_in_set(std::shared_ptr<T> what) { auto it = varset.find(what); if (it == varset.end()) return false; return true; }
bool is_in_set(uint32 what) { auto it = vars_by_id.find(what); if (it == vars_by_id.end()) return false; return true; }
bool is_in_set(std::string& what) { auto it = vars_by_name.find(what); if (it == vars_by_name.end()) return false; return true; }
bool place(std::shared_ptr<T> what, const uint32 whatid, const std::string& whatstring) {
if (is_in_set(what)) return false;
varset.emplace(what);
vars_by_name.emplace(whatstring,what);
vars_by_id.emplace(whatid,what);
return true;
}
};
Then...
class whatever {
std::string name;
std::function<int32()> exec;
};
And:
class foo {
public:
var_accessor<whatever> stuff;
};
This works:
std::shared_ptr<whatever> thing(new whatever);
thing->name = "Anne";
thing->exec = []() { return 1; }
foo person;
person.stuff.emplace(thing, 1, thing->name);
Getting the name crashes it:
std::cout << person.stuff[1]->name;
But if I change the operator[]'s to return references, it works fine.
I don't want to be able to accidentally add new elements without adding to all 3 structures, so that's why I made
std::shared_ptr<T> operator[]
instead of
std::shared_ptr<T>& operator[]
Is there any way to prevent assignment by subscript but keep the subscript operator working?
To be clear I want to be able to keep doing
std::cout << person.stuff[4];
But NOT be able to do
std::shared_ptr<whatever> bob(new whatever);
bob->name = "bob";
person.stuff[2] = bob;
The error is a EXC_BAD_ACCESS inside the std::string class madness
Everything I read says simply "don't return references if you want to prevent assignment" but it also prevents using it for me.
Yes I know some things should be made private but I just want to get it working first.
Using Clang/LLVM in XCode 5.1
Thanks!
You should return a const reference. See this question
A const reference means the caller is not allowed to change the value, only look at it. So assignment will be a compile-time error. But using it will work (and be efficient).

How to return a class object by reference in C++?

I have a class called Object which stores some data.
I would like to return it by reference using a function like this:
Object& return_Object();
Then, in my code, I would call it like this:
Object myObject = return_Object();
I have written code like this and it compiles. However, when I run the code, I consistently get a seg fault. What is the proper way to return a class object by reference?
You're probably returning an object that's on the stack. That is, return_Object() probably looks like this:
Object& return_Object()
{
Object object_to_return;
// ... do stuff ...
return object_to_return;
}
If this is what you're doing, you're out of luck - object_to_return has gone out of scope and been destructed at the end of return_Object, so myObject refers to a non-existent object. You either need to return by value, or return an Object declared in a wider scope or newed onto the heap.
You can only use
Object& return_Object();
if the object returned has a greater scope than the function. For example, you can use it if you have a class where it is encapsulated. If you create an object in your function, use pointers. If you want to modify an existing object, pass it as an argument.
class MyClass{
private:
Object myObj;
public:
Object& return_Object() {
return myObj;
}
Object* return_created_Object() {
return new Object();
}
bool modify_Object( Object& obj) {
// obj = myObj; return true; both possible
return obj.modifySomething() == true;
}
};
You can only return non-local objects by reference. The destructor may have invalidated some internal pointer, or whatever.
Don't be afraid of returning values -- it's fast!
I will show you some examples:
First example, do not return local scope object, for example:
const string &dontDoThis(const string &s)
{
string local = s;
return local;
}
You can't return local by reference, because local is destroyed at the end of the body of dontDoThis.
Second example, you can return by reference:
const string &shorterString(const string &s1, const string &s2)
{
return (s1.size() < s2.size()) ? s1 : s2;
}
Here, you can return by reference both s1 and s2 because they were defined before shorterString was called.
Third example:
char &get_val(string &str, string::size_type ix)
{
return str[ix];
}
usage code as below:
string s("123456");
cout << s << endl;
char &ch = get_val(s, 0);
ch = 'A';
cout << s << endl; // A23456
get_val can return elements of s by reference because s still exists after the call.
Fourth example
class Student
{
public:
string m_name;
int age;
string &getName();
};
string &Student::getName()
{
// you can return by reference
return m_name;
}
string& Test(Student &student)
{
// we can return `m_name` by reference here because `student` still exists after the call
return stu.m_name;
}
usage example:
Student student;
student.m_name = 'jack';
string name = student.getName();
// or
string name2 = Test(student);
Fifth example:
class String
{
private:
char *str_;
public:
String &operator=(const String &str);
};
String &String::operator=(const String &str)
{
if (this == &str)
{
return *this;
}
delete [] str_;
int length = strlen(str.str_);
str_ = new char[length + 1];
strcpy(str_, str.str_);
return *this;
}
You could then use the operator= above like this:
String a;
String b;
String c = b = a;
Well, it is maybe not a really beautiful solution in the code, but it is really beautiful in the interface of your function. And it is also very efficient. It is ideal if the second is more important for you (for example, you are developing a library).
The trick is this:
A line A a = b.make(); is internally converted to a constructor of A, i.e. as if you had written A a(b.make());.
Now b.make() should result a new class, with a callback function.
This whole thing can be fine handled only by classes, without any template.
Here is my minimal example. Check only the main(), as you can see it is simple. The internals aren't.
From the viewpoint of the speed: the size of a Factory::Mediator class is only 2 pointers, which is more that 1 but not more. And this is the only object in the whole thing which is transferred by value.
#include <stdio.h>
class Factory {
public:
class Mediator;
class Result {
public:
Result() {
printf ("Factory::Result::Result()\n");
};
Result(Mediator fm) {
printf ("Factory::Result::Result(Mediator)\n");
fm.call(this);
};
};
typedef void (*MakeMethod)(Factory* factory, Result* result);
class Mediator {
private:
Factory* factory;
MakeMethod makeMethod;
public:
Mediator(Factory* factory, MakeMethod makeMethod) {
printf ("Factory::Mediator::Mediator(Factory*, MakeMethod)\n");
this->factory = factory;
this->makeMethod = makeMethod;
};
void call(Result* result) {
printf ("Factory::Mediator::call(Result*)\n");
(*makeMethod)(factory, result);
};
};
};
class A;
class B : private Factory {
private:
int v;
public:
B(int v) {
printf ("B::B()\n");
this->v = v;
};
int getV() const {
printf ("B::getV()\n");
return v;
};
static void makeCb(Factory* f, Factory::Result* a);
Factory::Mediator make() {
printf ("Factory::Mediator B::make()\n");
return Factory::Mediator(static_cast<Factory*>(this), &B::makeCb);
};
};
class A : private Factory::Result {
friend class B;
private:
int v;
public:
A() {
printf ("A::A()\n");
v = 0;
};
A(Factory::Mediator fm) : Factory::Result(fm) {
printf ("A::A(Factory::Mediator)\n");
};
int getV() const {
printf ("A::getV()\n");
return v;
};
void setV(int v) {
printf ("A::setV(%i)\n", v);
this->v = v;
};
};
void B::makeCb(Factory* f, Factory::Result* r) {
printf ("B::makeCb(Factory*, Factory::Result*)\n");
B* b = static_cast<B*>(f);
A* a = static_cast<A*>(r);
a->setV(b->getV()+1);
};
int main(int argc, char **argv) {
B b(42);
A a = b.make();
printf ("a.v = %i\n", a.getV());
return 0;
}
It isn't really good practice to return an initiated object as it does go out of scope. There are rare instances that this is the desired option. It actually can be done if the class is a referencing counting smart pointer or some other smart pointer.
How does a reference-counting smart pointer's reference counting work?