Type dependent template name - c++

#include <iostream>
template<typename T>
void f(T x)
{
g(x); // g is a dependent name
};
void g(int a)
{
std::cout << a;
}
int main()
{
int a = 12;
f(a);
}
//this should be point of declaration for f<int>
Above code gives compilation error "‘g’ was not declared in this scope, and no declarations were found by argument-dependent lookup at the point of instantiation".
Since g is a dependent name, its name should be visible at the time of instantiation. Please tell what am I missing?

The lookup in the instantiation context only considers candidates found by argument-dependent lookup. Since int has no associated namespaces or classes, that lookup finds nothing.

The GNU C++ compilers as of version 4.7 and beyond, no longer perform some extra unqualified lookups it had performed in the past, namely dependent base class scope lookups and unqualified template function lookups. (Read more)
This can be temporarily worked around by using -fpermissive.

Related

Question about resolution of free function names in C++ templates

This program works as expected:
#include <iostream>
template <typename T>
void output(T t) {
prt(t);
}
struct It {
It(int* p) : p(p) {}
int* p;
};
void prt(It it) {
std::cout << *(it.p) << std::endl;
}
int main() {
int val = 12;
It it(&val);
output(it);
return 0;
}
When you compile and execute this, it prints "12" as it should. Even though the function prt, required by the output template function, is defined after output, prt is visible at the point of instantiation, and therefore everything works.
The program below is very similar to the program above, but it fails to compile:
#include <iostream>
template <typename T>
void output(T t) {
prt(t);
}
void prt(int* p) {
std::cout << (*p) << std::endl;
}
int main() {
int val = 12;
output(&val);
return 0;
}
This code is trying to do the same thing as the previous example, but this fails in gcc 8.2 with the error message:
'prt' was not declared in this scope, and no declarations were found by
argument-dependent lookup at the point of instantiation [-fpermissive]
The only thing that changed is that the argument passed to output is a built-in type, rather than a user-defined type. But I didn't think that should matter for name resolution. So my question is: 1) why does the second example fail?; and 2) why does one example fail and the other succeeds?
The Standard rule that applies here is found in [temp.dep.candidate]:
For a function call where the postfix-expression is a dependent name, the candidate functions are found using the usual lookup rules ([basic.lookup.unqual], [basic.lookup.argdep]) except that:
For the part of the lookup using unqualified name lookup, only function declarations from the template definition context are found.
For the part of the lookup using associated namespaces ([basic.lookup.argdep]), only function declarations found in either the template definition context or the template instantiation context are found.
In both examples, unqualified name lookup finds no declarations of prt, since there were no such declarations before the point where the template was defined. So we move on to argument-dependent lookup, which looks only in the associated namespaces of the argument types.
Class It is a member of the global namespace, so the global namespace is the one associated namespace, and the one declaration is visible within that namespace in the template instantiation context.
A pointer type U* has the same associated namespaces as type U, and a fundamental type has no associated namespaces at all. So since the only argument type int* is a pointer to fundamental type, there are no associated namespaces, and argument-dependent lookup can't possibly find any declarations in the second program.
I can't exactly say why the rules were designed this way, but I would guess the intent is that a template should either use the specific declared functions it meant to use, or else use a function as an extensible customization point, but those user customizations need to be closely related to a user-defined type they will work with. Otherwise, it becomes possible to change the behavior of a template that really meant to use one specific function or function template declaration by providing a better overload for some particular case. Admittedly, this is more from the viewpoint of when there is at least one declaration in the template definition context, not when that lookup finds nothing at all, but then we get into cases where SFINAE was counting on not finding something, etc.

Can't understand name lookup differences between an int and a user defined type - perhaps ADL related

Why does the following code compile:
template<typename T>
void foo(T in) { bar(in); }
struct type{};
void bar(type) {}
int main() { foo(type()); }
When the following does not:
template<typename T>
void foo(T in) { bar(in); }
void bar(int) {}
int main() { foo(42); }
Compiling with GnuC++ 7:
a.cpp: In instantiation of 'void foo(T) [with T = int]':
a.cpp:9:20: required from here
a.cpp:2:21: error: 'bar' was not declared in this scope, and no declarations were found by argument-dependent lookup at the point of instantiation [-fpermissive]
void foo(T in) { bar(in); }
~~~^~~~
a.cpp:8:6: note: 'void bar(int)' declared here, later in the translation unit void bar(int) {}
I would assume that MSVC would compile both (as it does) but that GCC would reject both since GCC/Clang have proper two phase name lookup...
The strange part is not that the int example fails to compile, it is that the type example does since bar is defined after foo. This is due to [temp.dep.candidate] (see third paragraph).
Two-pass compilation of templates
When the compiler parses and compiles a template class or function, it looks up identifiers in two pass:
Template argument independent name lookup: everything that does not depend on the template arguments can be checked. Here, since bar() depends on a template argument, nothing is done. This lookup is done at the point of definition.
Template argument dependent name lookup: everything that could not be looked up in pass #1 is now possible. This lookup is done at the point of instantiation.
You get an error during pass #2.
ADL lookup
When a function name is looked up, it is done within the current context and those of the parameters type. For instance, the following code is valid though f is defined in namespace n:
namespace n { struct type {}; void f(type) {}; }
int main() { n::type t; f(t); } // f is found in ::n because type of t is in ::n
More about ADL (cppreference.com):
Argument-dependent lookup, also known as ADL, or Koenig lookup, is the set of rules for looking up the unqualified function names in function-call expressions, including implicit function calls to overloaded operators. These function names are looked up in the namespaces of their arguments in addition to the scopes and namespaces considered by the usual unqualified name lookup.
Two-pass compilation, ADL lookup and unqualified-id lookup
In your case, those three mechanisms collide. See [temp.dep.candidate]:
For a function call that depends on a template parameter, if the function name is an unqualified-id but not a template-id, the
candidate functions are found using the usual lookup rules (3.4.1,
3.4.2) except that:
— For the part of the lookup using unqualified name lookup (3.4.1), only function declarations with external linkage from the
template definition context are found.
— For the part of the lookup using associated namespaces (3.4.2), only function declarations with external linkage found in either the
template definition context or the template instantiation context are
found.
So, with foo(type()) unqualified-id lookup kicks in and the lookup is done "in either the template definition context or the template instantiation".
With foo(42), 42 being a fundamental type, ADL is not considered and only the "definition context" is considered.
The 1st sample is valid, because ADL takes effect for the name lookup of dependent name in template definition; which makes it possible to find the function bar. (bar(in) depends on the template parameter T.)
(emphasis mine)
For a dependent name used in a template definition, the lookup is postponed until the template arguments are known, at which time ADL examines function declarations that are visible from the template definition context as well as in the template instantiation context, while non-ADL lookup only examines function declarations that are visible from the template definition context (in other words, adding a new function declaration after template definition does not make it visible except via ADL).
And ADL doesn't work with fundamental types, that's why the 2nd sample fails.

Default function parameter value visible in template but it shouldn't (gcc)

Consider the code below:
#include <utility>
void f(int, int);
void g(int, int);
struct functor
{
template<typename... T>
void operator()(T&&... params)
{
return f(std::forward<T>(params)...);
}
};
int main()
{
functor()(1); // can use the default value here, why?!
// g(1); // error here as expected, too few arguments
}
void f(int a, int b = 42) {}
void g(int a, int b = 24) {}
This is a thin wrapper around a function call. However, inside functor::operator(), f doesn't have its default value for the second parameter known (it is visible only after main, in the definition), so the code should not compile. g++5.2 compiles it successfully though, but clang++ spits out the expected message that one expects for compilers that perform the two-phase name lookup correctly:
error: call to function 'f' that is neither visible in the
template definition nor found by argument-dependent lookup
return f(std::forward(params)...);
Is this a gcc bug or I am missing something here? I.e., is the point of instantiation after the definition of f below main()? But even in this case, it shouldn't work, as at the second phase the function can only be found via ADL, which is not the case here.
[temp.dep.candidate]:
For a function call where the postfix-expression is a dependent name, the candidate functions are found using the usual lookup rules ([basic.lookup.unqual], [basic.lookup.argdep]) except that:
For the part of the lookup using unqualified name lookup ([basic.lookup.unqual]), only function declarations from the template definition context are found.
For the part of the lookup using associated namespaces ([basic.lookup.argdep]), only function declarations found in either the template definition context or the template instantiation context are found.
If the call would be ill-formed or would find a better match had the lookup within the associated namespaces
considered all the function declarations with external linkage introduced in those namespaces in all translation units, not just considering those declarations found in the template definition and template instantiation
contexts, then the program has undefined behavior.
Note that ADL is not even working here, as the involved types are fundamental (their set of associated namespaces is empty).

Interesting behavior of compiler with namespaces

Assume the following code:
#include <iostream>
using namespace std;
namespace X
{
class A{};
void f(A a){}
void g(int a){}
}
int main()
{
X::A a;
f(a);
g(5);
}
When I compile the code, the following compile error occurs:
main.cpp: In function 'int main()':
main.cpp: error: 'g' was not declared in this scope
So the function f is compiled perfectly, but g isn't. How? Both of them belong to the same namespace. Does the compiler deduce that function f belongs to the X namespace from the argument of type X::A? How does compiler behave in such cases?
X::A a;
f(a);
works because of Argument-Dependent Lookup (Also known as Koenig Lookup). a is an object of class A inside namespace X, when compiler searches a match-able function f, it will look into namespace X in this case. See Argument Dependent Lookup for more information.
This works for the function call expression:
f(a);
because the namespace that X::A belongs to is included in the lookup for the function f due to argument dependent lookup(ADL), cppreference explains ADL as follows:
Argument-dependent lookup, also known as ADL, or Koenig lookup, is the
set of rules for looking up the unqualified function names in
function-call expressions, including implicit function calls to
overloaded operators. These function names are looked up in the
namespaces of their arguments in addition to the scopes and namespaces
considered by the usual unqualified name lookup.
Argument-dependent lookup makes it possible to use operators defined
in a different namespace
This is covered in the draft C++ standard section 3.4.2 Argument-dependent name lookup:
When the postfix-expression in a function call (5.2.2) is an unqualified-id, other namespaces not considered
during the usual unqualified lookup (3.4.1) may be searched, and in those namespaces, namespace-scope
friend function or function template declarations (11.3) not otherwise visible may be found
and goes on to say:
For each argument type T in the function call, there is a set of zero or more associated namespaces and a
set of zero or more associated classes to be considered. The sets of namespaces and classes is determined
entirely by the types of the function arguments (and the namespace of any template template argument).
and includes the following bullet:
If T is a class type (including unions), its associated classes are: the class itself; the class of which it is a
member, if any; and its direct and indirect base classes. Its associated namespaces are the namespaces
of which its associated classes are members.[...]
and further down provides a similar example to your problem:
namespace NS {
class T { };
void f(T);
void g(T, int);
}
NS::T parm;
void g(NS::T, float);
int main() {
f(parm); // OK: calls NS::f
extern void g(NS::T, float);
g(parm, 1); // OK: calls g(NS::T, float)
}
The function call expression:
g(5);
does not work because ADL does not add any namespaces for arguments that are fundamental types.
Herb Sutter covers ADL in Gotw #30 and in What's In a Class? - The Interface Principle.
When the code f(a), the compiler finds the function void f(A a){} in the namespace X because of the ADL (argument dependent lookup, also known as Koenig lookup).
A is declared in the namespace X, hence when the compiler needs to look up the definition of f, it includes possibilities from that namespace because the object a of type A is in that namespace (as declared X::A a;).
On the other hand, int is not declared in the namespace X, so the namespace X is not included in the lookup. Since no corresponding function for f is found, it fails to compile.

ADL, Ordinary lookup and Dependent function call not working oO

Here is simple code presented which should have worked according to c++ standard I believe :
template<typename T>
void foo(T x)
{
bar(x);
void bar(int);
}
void bar(int) { }
int main()
{
foo(0);
}
Error comes as from GCC 4.7 as:
‘bar’ was not declared in this scope, and no declarations were found
by argument-dependent lookup at the point of instantiation
But in the C++ standard it's written. § 14.6.4.2 :
For a function call that depends on a template parameter, the
candidate functions are found using the usual lookup rules (3.4.1,
3.4.2, 3.4.3) except that:
— For the part of the lookup using unqualified name lookup (3.4.1) or qualified name lookup (3.4.3), only function declarations from the template definition context are found.
I may be have got the wrong impression of what's written, can anyone please correct me here?
You should just move the declaration of 'bar' to the top. Because at the point where the template is defined (not instantiated), before 'bar' is invoked, it hasn't be declared.