I am trying to unit test an HTTP API written in C++:
void getLogNames(Request & req, Response & res)
{
vector<string> files = getFilesInDirectory(LOG_LOCATION, ".log", false);
json response(files);
res.send(response);
}
The problem is that LOG_LOCATION is included from common.h and is const, and can't be changed by my testing code:
const std::string LOG_LOCATION = "/var/log"
I've tried doing this at the top of the file:
#ifdef UNIT_TEST
#include <common_mock.h>
#else
#include <common.h>
#endif
However, common.h is included in some shared libraries that are being linked in, and I would have to add UNIT_TEST hooks to all those files and rebuild the shared libraries as well, which I would rather avoid...
Is there an easier way I could be doing this, some #define tricks or something?
Well, you can try to const_cast a pointer to your LOG_LOCATION but it's dirty and unreliable solution and may cause seg fault. For example:
original_file.h
#include <iostream>
const std::string LOG_LOCATION = "/var/log";
int func() {
std::cout << LOG_LOCATION << std::endl;
}
unit_test.cpp
#include "test.h"
void someUnitTest() {
const std::string* cs = &LOG_LOCATION;
std::string* s = const_cast<std::string*>(cs);
*s = "NEW_VALUE";
std::cout << *s;
}
int main() {
someUnitTest();
}
This code may work in some cases (i.e. this successfully compiled and worked in GCC but only for class object type - it crashes with buildin type like int) but is may change with different compilers, platforms, or optimization levels.
The recommended way is to redesign your application and use dependency injections, for example wrap your function calls in a class and put this location as a settable member.
Why don’t you change your class to receive the log location in its constructor? By hardcoding it (macros are eqivalent to hardcoding from the testing point of view) you’re purposely making your class less testable.
Related
I have been trying to figure out why this is happening and maybe it is just due to inexperience at this point but could really use some help.
When I run my code, which is compiled into a DLL using C++20, I get that a debug assertion has failed with the expression being __acrt_first_block == header.
I narrowed down where the code is failing, but the weird part is that it runs just fine when I change the Init(std::string filePath function signature to not contain the parameter. The code is below and hope someone can help.
Logger.h
#pragma once
#include "../Core.h"
#include <memory>
#include <string>
#include "spdlog/spdlog.h"
namespace Ruby
{
class RUBY_API Logger
{
public:
static void Init(std::string filePath);
inline static std::shared_ptr<spdlog::logger>& GetCoreLogger() { return coreLogger; }
inline static std::shared_ptr<spdlog::logger>& GetClientLogger() { return clientLogger; }
private:
static std::shared_ptr<spdlog::logger> coreLogger;
static std::shared_ptr<spdlog::logger> clientLogger;
};
}
Logger.cpp
namespace Ruby
{
std::shared_ptr<spdlog::logger> Logger::coreLogger;
std::shared_ptr<spdlog::logger> Logger::clientLogger;
void Logger::Init(std::string filePath)
{
std::string pattern{ "%^[%r][%n][%l]: %v%$" };
auto fileSink = std::make_shared<spdlog::sinks::basic_file_sink_mt>(filePath, true);
// Setup the console and file sinks
std::vector<spdlog::sink_ptr> coreSinks;
coreSinks.push_back(std::make_shared<spdlog::sinks::stdout_color_sink_mt>());
coreSinks.push_back(fileSink);
// Bind the sinks to the core logger.
coreLogger = std::make_shared<spdlog::logger>("RUBY", begin(coreSinks), end(coreSinks));
// Set the Patterns for the sinks
coreLogger->sinks()[0]->set_pattern(pattern);
coreLogger->sinks()[1]->set_pattern(pattern);
// Tell spdlog to flush the file loggers on trace or worse message (can be changed if necessary).
coreLogger->flush_on(spdlog::level::trace);
// Set the default level of the logger
coreLogger->set_level(spdlog::level::trace);
// Do the same for the client logger
std::vector<spdlog::sink_ptr> clientSinks;
clientSinks.push_back(std::make_shared<spdlog::sinks::stdout_color_sink_mt>());
clientSinks.push_back(fileSink);
clientLogger = std::make_shared<spdlog::logger>("APP", begin(clientSinks), end(clientSinks));
clientLogger->sinks()[0]->set_pattern(pattern);
clientLogger->sinks()[1]->set_pattern(pattern);
clientLogger->flush_on(spdlog::level::trace);
clientLogger->set_level(spdlog::level::trace);
}
}
Entrypoint.h
#pragma once
#ifdef RB_PLATFORM_WINDOWS
extern Ruby::Application* Ruby::CreateApplication();
int main(int argc, char** argv)
{
Ruby::Logger::Init("../Logs/Recent_Run.txt");
RB_CORE_INFO("Initialized the logger.");
auto app = Ruby::CreateApplication();
app->Run();
delete app;
return 0;
}
#else
#error Ruby only supports windows
#endif // RB_PLATFORM_WINDOWS
For anyone else who runs into a similar problem, here is how I fixed it.
Essentially the function signature for the Init() function was the problem. The std::string parameter was causing the debug assertion to fire, my best guess as of right now was because of move semantics but that part I am still not sure on. So there are a couple of ways that I found to fix this.
Method 1:
Make the parameter a const char*. I don't quite like this approach as it then relies on C style strings and if you are trying to write a program in modern C++, this is a huge step backwards.
Method 2:
Make the parameter a const std::string&. Making it a const reference to a string prevents the move semantics (again as far as I know) and the assertion no longer fires. I prefer this fix as it keeps the program in modern C++.
I hope this helps anyone who has similar issues, and be careful with statics and move semantics.
Overview
I am trying to develop a C++ application which allows for user-created plugins.
I found a nice library called Pluma (http://pluma-framework.sourceforge.net/) which functionally seems to be exactly what I want.
After going through their tutorial, I was able to (with a bit of difficulty) convince the plugin to compile. However, it refuses to play nice and connect with the main program; returning various errors depending on how I try to implement them.
Problem
If I comment out the line labeled 'Main problem line' (in the last file, main.cpp), the plugin compiles successfully, and the main app can recognize it, but it says that "Nothing registered by plugin 'libRNCypher'", and none of the functions can be called.
If I compile that line, the main application instead says "Failed to load library 'Plugins/libRNCypher.so'. OS returned error: 'Plugins/libRNCypher.so: undefined symbol: _ZTIN5pluma8ProviderE".
My guess is that it has something to do with the way the plugin was compiled, as compiling it initially did not work and Code::Blocks told me to compile with "-fPIC" as a flag (doing so made it compile).
Code
Code below:
Main.cpp
#include "Pluma/Pluma.hpp"
#include "CryptoBase.h"
int main()
{
pluma::Pluma manager;
manager.acceptProviderType< CryptoBaseProvider >();
manager.loadFromFolder("Plugins", true);
std::vector<CryptoBaseProvider*> providers;
manager.getProviders(providers);
return 0;
}
CryptoBase.h
#ifndef CRYPTOBASE_H_INCLUDED
#define CRYPTOBASE_H_INCLUDED
#include "Pluma/Pluma.hpp"
#include <string>
#include <vector>
#include <bitset>
//Base class from which all crypto plug-ins will derive
class CryptoBase
{
public:
CryptoBase();
~CryptoBase();
virtual std::string GetCypherName() const = 0;
virtual std::vector<std::string> GetCryptoRecApps() const = 0;
virtual void HandleData(std::vector< std::bitset<8> > _data) const = 0;
};
PLUMA_PROVIDER_HEADER(CryptoBase)
#endif // CRYPTOBASE_H_INCLUDED
RNCypher.h (This is part of the plugin)
#ifndef RNCYPHER_H_INCLUDED
#define RNCYPHER_H_INCLUDED
#include <string>
#include <vector>
#include <bitset>
#include "../Encoder/Pluma/Pluma.hpp"
#include "../Encoder/CryptoBase.h"
class RNCypher : public CryptoBase
{
public:
std::string GetCypherName() const
{
return "RNCypher";
}
std::vector<std::string> GetCryptoRecApps() const
{
std::vector<std::string> vec;
vec.push_back("Storage");
return vec;
}
void HandleData(std::vector< std::bitset<8> > _data) const
{
char letter = 'v';
_data.clear();
_data.push_back(std::bitset<8>(letter));
return;
}
};
PLUMA_INHERIT_PROVIDER(RNCypher, CryptoBase);
#endif // RNCYPHER_H_INCLUDED
main.cpp (This is part of the plugin)
#include "../Encoder/Pluma/Connector.hpp"
#include "RNCypher.h"
PLUMA_CONNECTOR
bool connect(pluma::Host& host)
{
host.add( new RNCypherProvider() ); //<- Main problem line
return true;
}
Additional Details
I'm compiling on Ubuntu 16.04, using Code::Blocks 16.01.
The second error message seems to not come from Pluma itself, but a file I also had to link, #include <dlfcn.h> (which might be a Linux file?).
I would prefer to use an existing library rather than write my own code as I would like this to be cross-platform. I am, however, open to any suggestions.
Sorry for all of the code, but I believe this is enough to reproduce the error that I am having.
Thank You
Thank you for taking the time to read this, and thank you in advance for your help!
All the best, and happy holidays!
I was not able to reproduce your problem, however looking at
http://pluma-framework.sourceforge.net/documentation/index.htm,
I've noticed that:
in your RNCypher.h file you miss something like
PLUMA_INHERIT_PROVIDER(RNCypher, CryptoBase)
it seems also that there's no file CryptoBase.cpp containing something like
#include "CryptoBase.h"
PLUMA_PROVIDER_SOURCE(CryptoBase, 1, 1);
finally, in CryptoBase.h I would declare a virtual destructor (see Why should I declare a virtual destructor for an abstract class in C++?) and provide a definition to it, while you should not declare a default constructor without providing a definition to it (see for instance Is it correct to use declaration only for empty private constructors in C++?); of course the last consideration is valid unless there's another file in which you have provided such definitions.
I'm currently trying to make a game in C++. In my code I'm trying to nest my variables so that my main doesn't have a lot of includes. My problem right now though is that the value of my variables in my class aren't changing. Stepping through the code it shows it setting the value, but it doesn't work. Anyone know what's going on? Thank you in advance.
This is what I have so far:
Location.h
#ifndef LOCATION_H
#define LOCATION_H
#include <string>
class Location
{
public:
Location(void);
Location(std::string name);
~Location(void);
std::string GetName();
void SetName(std::string value);
private:
std::string m_Name
};
#endif
Location.cpp
#include "Location.h"
Location::Location(void): m_Name("") {}
Location::Location(std::string name): m_Name(name) {}
Location::~Location(void)
{
}
std::string Location::GetName()
{return m_Name;}
void Location::SetName(std::string value){m_Name = value;}
PlayerStats.h
#ifndef PLAYERSTATS_H
#define PLAYERSTATS_H
#include "Location.h"
class PlayerStats
{
public:
PlayerStats(void);
~PlayerStats(void);
Location GetLocation();
void SetLocation(Location location);
private:
Location m_Location;
};
#endif
PlayerStats.cpp
#include "PlayerStats.h"
PlayerStats::PlayerStats(void): m_Location(Location()) {}
PlayerStats::~PlayerStats(void)
{
}
Location PlayerStats::GetLocation(){return m_Location;}
void PlayerStats::SetLocation(Location location){m_Location = location;}
main.cpp
#include <iostream>
#include "PlayerStats.h"
using namespace std;
PlayerStats playerStats = PlayerStats();
int main()
{
playerStats.GetLocation().SetName("Test");
cout<< playerStats.GetLocation().GetName()<<endl;
return 0;
}
Your immediate issue is that
Location GetLocation();
returns a copy of the location, so when you call SetName here:
playerStats.GetLocation().SetName("Test");
You're changing the name of the temporary copy, and the change is lost as soon as the semicolon is hit.
More broadly, this kind of design (nesting classes and nesting includes so that main doesn't have a lot of includes, and using a.b.c() style code to access nested members) isn't great C++ style:
Having a bunch of source files that (transitively) include a bunch of header files means that changing a single header file will trigger recompilations of a bunch of source files. Compile times can be a significant issue in larger C++ projects, so reducing compile times by controlling #include's is important. Read up on "forward declarations" for more information.
Writing code like a.b.c() is considered bad object-oriented design, because it reduces encapsulation: not only does the caller have to know about a's details, it has to know about b's also. Sometimes this is the most expedient way to write code, but it's not something to be blindly done just to reduce #include's. Read up on "Law of Demeter" for more information.
If you want to set the result of playerStats.GetLocation(), you could make GetLocation() pass-by-reference (use ampersand, &, on the return argument). Otherwise you are just setting values in a temporary copy of PlayerStats::m_Location.
Alternatively, you could use the SetLocation() function.
I'm racking my brain trying to find out how to write cross platform classes while avoiding the cost of virtual functions and any kind of ugliness in the platform specific versions of classes. Here is what I have tried.
PlatformIndependantClass.hpp
class PlatformIndependantClass {
public:
PlatformIndependantClass();
std::string GetPlatformName();
private:
PlatformIndependantClass* mImplementation;
};
LinuxClass.hpp
#include "PlatformIndependantClass.hpp"
class LinuxClass : public PlatformIndependantClass{
public:
std::string GetPlatformName();
};
WindowsClass.hpp
#include "PlatformIndependantClass.hpp"
class WindowsClass : public PlatformIndependantClass {
public:
std::string GetPlatformName();
};
PlatformIndependantClass.cpp
#include "PlatformIndependantClass.hpp"
#include "LinuxClass.hpp"
#include "WindowsClass.hpp"
PlatformIndependantClass::PlatformIndependantClass() {
#ifdef TARGET_LINUX
mImplementation = new LinuxClass();
#endif
#ifdef TARGET_WINDOWS
mImplementation = new WindowsClass();
#endif
}
std::string PlatformIndependantClass::GetPlatformName() {
return mImplementation->GetPlatformName();
}
LinuxClass.cpp
#include "LinuxClass.hpp"
std::string LinuxClass::GetPlatformName() {
return std::string("This was compiled on linux!");
}
WindowsClass.cpp
#include "WindowsClass.hpp"
std::string WindowsClass::GetPlatformName() {
return std::string("This was compiled on windows!");
}
main.cpp
#include <iostream>
#include "PlatformIndependantClass.hpp"
using namespace std;
int main()
{
PlatformIndependantClass* cl = new PlatformIndependantClass();
cout << "Hello world!" << endl;
cout << "Operating system name is: " << cl->GetPlatformName() << endl;
cout << "Bye!" << endl;
return 0;
}
Now, this compiles fine but I get a segmentation fault. I believe this is because the platform specific classes inherit from PlatformIndependantClass, which on construction, creates an instance of the platform specific class, so I get infinite recursion. Every time I try, I just get extremely confused!
How can I achieve a design like this properly? Or is this just a horrible idea. I have been trying to find out how to write cross platform classes but I just get a load of results about cross platform libraries, any help will be gratefully accepted :)
I think what you are trying to accomplish can be accomplished much easier...
Object.h:
#include <normal includes>
#if WINDOWS
#include <windows includes>
#endif
#if LINUX
#include <linux includes>
#endif
class Object
{
private:
#if WINDOWS
//Windows Specific Fields...
#endif
#if LINUX
//Linux Specific Fields...
#endif
public:
//Function that performs platform specific functionality
void DoPlatformSpecificStuff();
//Nothing platform specific here
void DoStuff();
};
Object.cpp
#include "Object.h"
void Object::DoStuff() { ... }
ObjectWin32.cpp
#if WINDOWS
#include "Object.h"
void Object::DoPlatformSpecificStuff()
{
//Windows specific stuff...
}
#endif
ObjectLinux.cpp
#if LINUX
#include "Object.h"
void Object::DoPlatformSpecificStuff()
{
//Linux specific stuff...
}
#endif
And so on. I think this could accomplish what you are trying in a bit easier fashion. Also, no virtual functions needed.
Starting from the end, yes, truly a horrible idea, as are most ideas that start with "I want to avoid the cost of virtual functions".
As to why you're getting the segmentation fault (stack overflow specifically), it's because you aren't using virtual functions, but static linking. The compiler doesn't know that mImplementation is anything but a PlatformIndependantClass, so when you try to call return mImplementation->GetPlatformName() you're calling the same function over and over.
What you achieved is called shadowing, you're using compile-time function resolution. The compiler will call the GetPlatformName function of the actual type of the variable you're calling it from, since there's no virtual table to overwrite the pointers to the actual functions. Since mImplementation is PlatformIndependantClass, mImplementation->GetPlatformName will always be PlatformIndependantClass::GetPlatformName.
Edit: Of course the question of why you need to create both a Windows and a Linux copy of your engine at the same time comes to mind. You'll never use both of them at the same time, right?
So why not just have two different libraries, one for each system, and link the right one from your makefile. You get the best of all worlds!
Instead of using the constructor to build the platform-specific instance, I would create a static factory method to create the instances:
PlatformIndependantClass* PlatformIndependantClass::getPlatformIndependantClass() {
#ifdef TARGET_LINUX
return new LinuxClass();
#endif
#ifdef TARGET_WINDOWS
return new WindowsClass();
#endif
}
This way you avoid the recursion, and you also don't need your mImplementation pointer.
I would also try to avoid platform-specific classes, but that's another story :)
When you want to have polymorphic behavior without any run-time overhead, you can try the curiously recurring template pattern (CRTP). The base class is a template, and the derived class uses itself as the template parameter for the base. This requires your classes to be defined as templates, which further restricts them to be implemented completely in the header (.hpp) files.
I'm not sure how to apply the pattern in your particular case.
I don't think the constructor is causing the infinite recursion. It's the GetPlatformName() function. Because it's not set as virtual, it can only call itself.
Two solutions: Make that function virtual, or do away with the inheritance completely.
Either way, the cost of a function only calling another function will be more expensive than using virtual functions in the first place. So I would say keep the inheritance, and virtualize the functions specific to the platform, and call them directly, without going through a base class function.
You are correct about the infinte loop. The fix is actually easier than you'd think.
PlatformIndependantClass.hpp
#include //portable headers
struct PlatformDependantClass; //defined in Cpp file
class PlatformIndependantClass {
public:
PlatformIndependantClass();
~PlatformIndependantClass();
std::string GetPlatformName();
private:
std::unique_ptr<PlatformDependantClass> mImplementation; //note, different type
};
LinuxClass.cpp
#ifdef __GNUC__
#include //linux headers
#include "PlatformIndependantClass.hpp"
struct PlatformDependantClass { //linux only stuff
//stuff
};
PlatformIndependantClass() {
mImplementation.reset(new PlatformDependantClass );
}
~PlatformIndependantClass() {
}
std::string PlatformIndependantClass::GetPlatformName() {
return std::string("This was compiled on linux!");
}
#endif //__GNUC__
WindowsClass.cpp
#ifdef _MSC_VER
#include //windows headers
#include "PlatformIndependantClass.hpp"
struct PlatformDependantClass { //windows only stuff
//stuff
};
PlatformIndependantClass() {
mImplementation.reset(new PlatformDependantClass );
}
~PlatformIndependantClass() {
}
std::string PlatformIndependantClass::GetPlatformName() {
return std::string("This was compiled on Windows!");
}
#endif //_MSC_VER
There's only ONE class defined here. In windows, it only compiles and contains windows stuff, and in Linux, it only compiles and contains linux stuff. Note that the void* thing is called an "Opaque pointer" or "pimpl idiom" http://en.wikipedia.org/wiki/Opaque_pointer
I've spent days reading and re-reading every tutorials I've found on the subject, and spent hours (and even days) browsing related questions here at SO, but I still can't get the following to work. Accept my apologies if this is a duplicate: chances are that I've seen and re-read many times the duplicate questions but couldn't understand the relevance of the answers to my problem. With that out of the way...
I'm trying to implement a plugin architecture for my Application. Plugins are compiled and installed as libraries. At run time, the Application then uses dlopen() / dlsym() to load and link to the plugin's functions.
The idea is that plugins (libraries) will implement a set of functions to return data to the main Application, or manipulate data passed from the Application.
In order to test this idea, I tried to implement a function (inside the plugin) that would return the (human readable) name of the plugin itself (as a std::string). I thought that would be something simple to start with.... :-/
Here is what I got so far:
// Plugin.cpp
extern "C" void plugin_name(std::string *name) {
name = new std::string("Example plugin name");
}
// Application.cpp
void* handle = dlopen("libplugin.so", RTLD_LAZY);
typedef void (*plugin_t)(std::string*);
dlerror(); // Reset errors.
plugin_t call_plugin_name = (plugin_t) dlsym(handle, "plugin_name");
// ... Some error handling code.
std::string my_plugin_name;
call_plugin_name(&my_plugin_name);
dlclose(handle);
// More code that displays my_plugin_name.
I've tried many different combinations, including one that seemed more straigtforward (but didn't work any better) where the plugin name is returned:
// Plugin.cpp
extern "C" std::string plugin_name(void) {
return std::string("Example plugin name");
}
I know I'm close: the code compiles and the Application stopped crashing ;)
However, I've got an empty space where I'd expect seeing the actual plugin name.
All the tutorials I've read so far go very quickly over the mechanism by which data is passed both ways: plugin <=> Application. What I'm trying to do with a "simple" std::string, I wish to do later with much more complex objects (i.e. a plugin function would take an object by reference and change some of its properties). The tutorials more or less all stop at the point of creating a pointer with dlsym() and do not give much examples on how to use this pointer.
So, how to do all that?
Another pertinent question: do I use a common header that I'd use both with the Application and with the plugin and where I'd define the function calls signature? How would I do this and how would that help?
The signature of a function is generated from its name and argument types (return value type doesn't matter). When you declare function with extern "C", C symbol naming scheme is used which apparently can't handle C++ types like std::string. That's why passing std::string as an arguments doesn't work.
I can't explain why returning std::string doesn't work. Maybe different calling conventions are used.
Anyway the correct way of importing C++ code from a shared library is to return pointers to C++ types from entry points. And this entry points have to have arguments with types available in C. (Entry point is a documented function exported from a shared library)
Here is a good article on basic aspects of loading C++ classes from shared libraries. This article will answer your question throughly.
Please note that there are pitfalls when using exceptions thrown from a shared library to the main applications. And with dynamic_cast of objects created inside a library. I've mentioned this topics so that you could be somewhat prepared when you face this problems.
[edit]
To make my answer more clear I'll add a couple of examples.
To get the plugin name you can use:
extern "C" const char * plugin_name() {
return "Example plugin name";
}
// main.cc:
void* handle = dlopen("libplugin.so", RTLD_LAZY);
// ...
typedef const char * (*plugin_t)();
plugin_t call_plugin_name = (plugin_t) dlsym(handle, "plugin_name");
// ...
std::string my_plugin_name(call_plugin_name());
// use it
To really use the plugin functionality you should declare a base class in a header:
// plugin.h
class Plugin {
public:
virtual void doStuff() = 0;
virtual ~Plugin() = 0;
};
// plugin.cc
Plugin::~Plugin() {
}
// myplugin.cc
class MyPlugin : public Plugin {
virtual void doStuff() {
std::cout << "Hello from plugin" << std::endl;
}
};
extern "C" Plugin *createMyPluginInstance() {
return new MyPlugin;
}
Try:
extern "C" void plugin_name(std::string **name) {
*name = new std::string("Example plugin name");
}
...
std::string *my_plugin_name;
call_plugin_name(&my_plugin_name);
As you are assigning a copy of the pointer you passed as the argument, not the one you intended to assign.
EDIT Here you go:
File main.cpp
#include <iostream>
#include <dlfcn.h>
#include <string>
// Application.cpp
int main() {
void* handle = dlopen("libplugin.so", RTLD_LAZY);
typedef void (*plugin_t)(std::string**);
dlerror(); // Reset errors.
plugin_t call_plugin_name = (plugin_t) dlsym(handle, "plugin_name");
// ... Some error handling code.
std::string *my_plugin_name;
call_plugin_name(&my_plugin_name);
dlclose(handle);
// More code that displays my_plugin_name.
std::cout << "Plugin name is " << *my_plugin_name << std::endl;
delete my_plugin_name;
return 0;
}
File plugin.cpp
#include <string>
extern "C" void plugin_name(std::string **name) {
*name = new std::string("example plugin name");
}
Just a word of warning. Although this compiles and runs, passing C++ types across the dll boundry is risky and the above code is just your code fixed enough to compile and run, it is not safe and has very explicit memory handling. You may want to attack the problem in a different way.
Please have a read of this question and its answers. There are many opportunities for incompatibilities across the shared lib boundaries in C++.