Getting compile-time constant offsetof of base class in multiple-inheritance - c++

Look at this example:
struct s77 {
char d[77];
};
struct s1 {
char d;
};
struct Foo: s77, s1 {
};
struct Off {
static const int v = std::size_t(static_cast<s1*>(static_cast<Foo*>(nullptr)+1)) - std::size_t(static_cast<Foo*>(nullptr)+1);
};
This code tries to put the offset of s1 in Foo into Off::v. This code compiles with GCC/clang (without any warnings), but fails to compile with VS2015/VS2017 (error C2131: expression did not evaluate to a constant)
Which compiler is correct?
Can I achieve this functionality in a standard conformant way? If it is not possible, is it possible to create a working solution which works with VS2015/VS2017? I'm willing to accept any working solution, even which has undefined behavior according to the standard (but happens to work with VS2015 and VS2017). Off::v must be a compile time constant.
My original problem is this: I have an own implementation of tuple, which is implemented with multiple inheritance (like clang's tuple). I'd like to create a compile-time constant "descriptor" for the tuple, which contains all of its members' offset in the tuple. This descriptor contains a function pointer for each tuple member too. If I'd create this descriptor by hand, it would look like this (for example):
struct Entry {
int offset;
void (*function)(void *member);
};
Entry descriptor[] = {
{ 0, &SomeType1::static_function },
{ 12, &SomeType2::static_function },
{ 20, &SomeType3::static_function }
};
The intention of this is that I could have a general function (which is not a template), which can use this descriptor to call a type-specific function on each tuple member:
void call(void *tuple, const Entry *entries, int n) {
for (int i=0; i<n; i++) {
entries[i].function(static_cast<char *>(tuple)+entries[i].offset);
}
}
(The reason of this solution instead of a templated call function is that call is actually a huge function in my real code, and entry[i].function calls cannot be factored out from it. I'd like to avoid massive code duplication.)

How about something like:
struct Entry {
void* (*data_member_getter)(void*);
void (*function)(void *member);
};
namespace details
{
template <std::size_t I, typename Tuple>
constexpr void* voidPGetter(void* tuple)
{
return &std::get<I>(*reinterpret_cast<Tuple*>(tuple));
}
template <typename Tuple, std::size_t I>
constexpr MakeEntry()
{
using type = std::tuple_element_t<I, Tuple>;
return { &voidPGetter<I, Tuple>, &type::static_function };
}
template <typename Tuple, std::size_t ... Is>
constexpr std::array<Entry, sizeof...(Is)>
ComputeEntryHelper(std::index_sequence<Is...>)
{
return {{MakeEntry<Is, Tuple>()...}};
}
}
template <typename Tuple>
constexpt auto ComputeEntry()
{
constexpr auto size = std::tuple_size<Tuple>::value;
return details::ComputeEntryHelper(std::make_index_sequence<size>());
}
And then
void call(void* tuple, const Entry* entries, int n) {
for (int i = 0; i != n; ++i) {
entries[i].function(entries[i].data_member_getter(tuple));
}
}
So instead of offset, having a function to get the data.

Related

Access std::vector<std::variant> value by index

I would like to access a member of std::vector<std::variant> by index. Considering the following snippet:
struct Data {
using data_types = std::variant<std::basic_string<char>, double, int>;
public:
template <class T>
void push_back(const T& t) {
m_data.push_back(t);
}
private:
std::vector<data_types> m_data;
};
int main()
{
Data d;
d.push_back(0);
d.push_back("string");
d.push_back(3.55);
}
I would like to access the values like d[0] (should return int) or d[1] (should return std::string).
What I have tried so far but what isn't working is to add the following public method to the existing struct:
template <class T>
T& operator[](const size_t &index) {
return std::visit([](const T& value) {
return static_cast<T>(value);
}, m_data[index]);
}
Any ideas how to achieve the desired result?
The type of an expression in C++ cannot depend on runtime parameters; basically it can only depend on types of the arguments, plus non-type template arguments.
So d[0] and d[1] must have the same type, as the type of the pieces of the expression are identical, and there are no non-type template arguments.
std::get<int>(d[0]) vs std::get<double>(d[1]) can differ in type.
std::get<1>(d[0]) vs std::get<2>(d[1]) can differ in type.
std::visit is a mechanism used to get around this; here, we create every a function object call, one for each possible type, and then pick one at runtime to actually call. However, the type returned from the visit still follows the above rule: it doesn't depend on what type is stored in the variant, and every possible type in the variant must have a valid instantiation of the function.
C++ type system is not a runtime type system. It is compile-time. Stuff like variant and dynamic_cast and any give some runtime exposure to it, but it is intentionally minimal.
If you are wanting to print the contents of a variant, you can do this:
std::visit([](auto& x){
std::cout << x;
}, d[0]);
the trick here is that each of the various types of variant have a lambda function body written for them (so they all must be valid). Then, at run time, the one actually in the variant is run.
You can also test the variant and ask if it has a specific type, either via std::get or manually.
bool has_int = std::visit([](auto& x){
return std::is_same_v<int, std::decay_t<decltype(x)>>::value;
}, d[0]);
this gives you a bool saying if d[0] has an int in it or not.
The next bit is getting insane. Please don't read this unless you fully understand how to use variants and want to know more:
You can even extract out the type index of the variant and pass that around as a run time value:
template<auto I>
using konstant_t = std::integral_constant<decltype(I),I>;
template<auto I>
constexpr konstant_t<I> konstant_v{};
template<auto...Is>
using venum_t = std::variant< konstant_t<Is>... >;
template<class Is>
struct make_venum_helper;
template<class Is>
using make_venum_helper_t = typename make_venum_helper<Is>::type;
template<std::size_t...Is>
struct make_venum_helper<std::index_sequence<Is...>>{
using type=venum_t<Is...>;
};
template<std::size_t N>
using make_venum_t = typename make_venum_helper<std::make_index_sequence<N>>::type;
template<std::size_t...Is>
constexpr auto venum_v( std::index_sequence<Is...>, std::size_t I ) {
using venum = make_venum_t<sizeof...(Is)>;
constexpr venum arr[]={
venum( konstant_v<Is> )...
};
return arr[I];
}
template<std::size_t N>
constexpr auto venum_v( std::size_t I ) {
return venum_v( std::make_index_sequence<N>{}, I );
}
template<class...Ts>
constexpr auto venum_v( std::variant<Ts...> const& v ) {
return venum_v< sizeof...(Ts) >( v.index() );
}
now you can do this:
using venum = make_venum_t<3>;
venum idx = venum_v(d[0]);
and idx holds the index of the engaged type in d[0]. This is only somewhat useful, as you still need std::visit to use it usefully:
std::visit([&](auto I) {
std::cout << std::get<I>( d[0] );
}, idx );
(within the lambda, I is a std::integral_constant, which can be constexpr converted to an integer.)
but lets you do some interesting things with it.
To extract a value from variant, use std::get:
struct Data
{
...
template <class T>
T& operator[](size_t index)
{
return std::get<T>(m_data[index]);
}
};
However, because this overloaded operator is a template, you can't use simple operator syntax to call it. Use the verbose syntax:
int main()
{
Data d;
d.push_back(0);
d.push_back("string");
d.push_back(3.55);
std::cout << d.operator[]<double>(2);
}
Or rename it to use a plain name instead of the fancy operator[].
Visitor pattern:
#include <iostream>
#include <string>
#include <variant>
#include <vector>
template <class ...Ts>
struct MultiVector : std::vector<std::variant<Ts...>> {
template <class Visitor>
void visit(std::size_t i, Visitor&& v) {
std::visit(v, (*this)[i]);
}
};
int main() {
MultiVector<std::string, int, double> vec;
vec.push_back(0);
vec.push_back("string");
vec.push_back(3.55);
vec.visit(2, [](auto& e) { std::cout << e << '\n'; });
}

Compiletime for each with custom functions

Abstract:
Imagine a problem of the following form: One has to invoke multiple specific member functions with the same parameters on a list of functors. That makes a good problem to solve with an interface (runtime_interface, in other words a requirement of functions that those functors have to implement). The Problem I would like to discuss is the case where the list of functors is known at compile time, but might be subject to change during the further development process. Because in this case if implemented like that one is paying the runtime overhead even though all the functions to be called are known at compile time.
General Question:
What are ways of solving Problems like the given one that come with no or just a small runtime overhead. without giving up the modularized structure.
I think what is really intresting about this is that its just
My approach:
template <class data_t, class... type_list_t>
struct compile_time_for_each_ref_impl;
template <class data_t, class first_t, class... type_list_t>
struct compile_time_for_each_ref_impl<data_t, first_t, type_list_t...> {
static void eval(const data_t& data, first_t& object, type_list_t... object_list)
{
std::apply(object, data);
compile_time_for_each_ref_impl<data_t, type_list_t...>::eval(data, object_list...);
}
};
template <class data_t>
struct compile_time_for_each_ref_impl<data_t> {
static void eval(const data_t& data) {}
};
template <class data_t, class... type_list_t>
void compile_time_for_each(const data_t& data, type_list_t&... objects)
{
compile_time_for_each_ref_impl<data_t, type_list_t...>::eval(data, objects...);
}
template <class data_t, class... type_list_t>
void compile_time_for_each(const data_t& data, std::tuple<type_list_t...>& objects)
{
std::apply(
[&data] (type_list_t... params) {
compile_time_for_each_ref_impl<data_t, type_list_t...>::eval(data, params...);
},
objects);
}
What I am able to:
int data = 42
auto functor_1 = [] (int data) {std::cout << data;};
auto functor_2 = [] (int data) {data++; std::cout << data;};
compile_time_for_each(std::make_tuple(data), functor1, functor2);
What the code i would like to write looks like::
struct functor1{
void method1(int);
int method2(double);
};
struct functor1{
void method1(int);
int method2(double);
};
template <class... functors_t>
struct main_mod{
std::tuple<functors_t...> functors;
void method1(int some_data){
compile_time_for_each<method1, functors_t...>(some_data,functors);
}
void method2(int some_data){
compile_time_for_each<method2, functors_t...>(some_data,functors);
}
};
The problem with my approach:
I dont see a way to pass the name of the function that is supposed to be called on the functor to the compile_time_for_each call. What i could do is to change the hardcoded function name (the example implementation takes the operator() because it makes the code simpler the code but one could hardcode any funtion name) so i would end up with one compile_time_for_each function for every function name that i would like to use.
One Solution(that I dont like to much):
A valid solution would be to make that whole thing a macro and set the actual name of the function in the macro.
At the end for me it is not really about the overhead but not beeing able to express theese things properly.
My actual implementation draft:
It incorporates #Aconcagua's idea of the resolver and the usage of fold expressions that #max66 suggested aswell. In this state I have not done any optimizations but I like the Interface and that was my main goal. Even though I think it should be doable without any overhead. If you are seeing this and have any ideas or suggestions hit me up.
https://godbolt.org/z/LfmSSb
Using a lambda I managed to get pretty close to what you intend, even though I failed to provide an exact match:
template<typename Executor, typename Data, typename ... Functors>
void for_each(Executor executor, Data const& data, Functors ... functors)
{
// C++17 fold expression:
(executor(functors, data), ...);
}
class C0
{
public:
void test0(int) const { std::cout << "00" << std::endl; }
void test1(int) const { std::cout << "01" << std::endl; }
};
class C1
{
public:
void test0(int) const { std::cout << "10" << std::endl; }
void test1(int) const { std::cout << "11" << std::endl; }
};
int main()
{
for_each([](auto const& c, int data) { c.test0(data); }, 7, C0(), C1());
for_each([](auto const& c, int data) { c.test1(data); }, 7, C0(), C1());
return 0;
}
Some observations.
1) if you want a compile time execution, you have to use constexpr.
So your compile_time_for_each() must be defined constexpr if you want that can be executed compile time
template <typename data_t, typename... type_list_t>
constexpr void compile_time_for_each (data_t const & data, type_list_t &... objects)
{ /* some potentially compile time code */ }
2) a constexpr function can be executed both compile time and run time; if you want impose that is executed compile-time... maybe there are other ways but the simplest mode come in my mind is return a value from the function
template <typename data_t, typename... type_list_t>
constexpr int compile_time_for_each (data_t const & data, type_list_t &... objects)
{
/* some potentially compile time code */
return 1;
}
and use the returned value to initialize a constexpr variable
constexpr auto x = compile_time_for_each(data, functor_1, functor_2);
3) for a compile time execution, you needs compile-time values, so define data as constexpr
constexpr int data = 42;
or its use prevents the compile time execution.
4) there is no needs of recursion: you tagged C++17 so you can use template folding; by example
template <typename D, typename ... Fs>
constexpr int compile_time_for_each (D const & data, Fs const & ... funcs)
{
(std::apply(funcs, data), ...);
return 0;
}
5) iostream input/output code isn't compatible with compile-time execution; so the following lambdas
auto functor_1 = [] (int data) {std::cout << data;};
auto functor_2 = [] (int data) {data++; std::cout << data;};
can't be executed compile-time.
The following is a C++17 example
#include <tuple>
template <typename D, typename ... Fs>
constexpr int ct_for_each (D const & data, Fs const & ... funcs)
{
(std::apply(funcs, data), ...);
return 0;
}
int main ()
{
constexpr int data = 42;
auto constexpr functor_1 = [] (int data) { /* some_code_1 */ };
auto constexpr functor_2 = [] (int data) { /* some_code_2 */ };
// compile time error if you define functor_1 as follows
// auto constexpr functor_1 = [] (int data) { std::cout << data << std::endl; };
constexpr auto x = ct_for_each(std::make_tuple(data), functor_1, functor_2);
(void)x; // to avoid "unused variable 'x'" warning
}

How to specialize a template function by static array of structures

I am a bit in stuck and need a help from C++ template guru. There is a template struct:
template<typename T, typename ID>
struct TypeMapping
{
T Type;
char* Name;
ID Id;
};
and a few template functions like this:
template<typename T, typename ID>
bool TryGetTypeByNameImp(const TypeMapping<T, ID> map[], size_t mapSize,
const char* name, T& type)
{
for (size_t i = 0; i < mapSize; i++)
{
if (strcmp(map[i].Name, name) == 0)
{
type = map[i].Type;
return true;
}
}
return false;
}
Map (the first parameter) is defined as (there are a few similar maps)
namespace audio
{
const TypeMapping<Type, AMF_CODEC_ID> Map[] =
{
{AAC, "aac", AMF_CODEC_AAC},
{MP3, "mp3", AMF_CODEC_MP3},
{PCM, "pcm", AMF_CODEC_PCM_MULAW}
};
const size_t MapSize = sizeof(Map)/sizeof(Map[0]);
}
Map is passed to a function as an argument and I am looking for how to pass it as template parameter so I can use functions like in this sample:
audio::Type type;
bool r = TryGetTypeByNameImp<audio::Map>("aac", type);
The only solution I found it is to define a struct which holds static Map and MapSize and use the struct as template parameter but I do not like this solution and I am looking for another one. Does anybody know how to do this?
bool r = TryGetTypeByNameImp<audio::Map>("aac", type);
This is trying to use audio::Map as a type – but it isn’t, it’s a variable. Just pass it to the function as a normal argument:
bool r = TryGetTypeByNameImp(audio::Map, "aac", type);
That said, I have three remarks about your code:
Be aware that declaring a function argument as an array (x[]) does in reality declare it as a pointer. Your code uses this correctly, but using the array syntax is misleading. Use a pointer instead.
This code is slightly too C-heavy for my taste. While I agree that using raw C-strings is appropriate here, your usage of char* is illegal in C++11, and deprecated in C++03 (since you are pointing to string literals). Use char const*. Furthermore, I’d suggest using a std::string argument in the function, and using the comparison operator == instead of strcmp.
You are using an out-parameter, type. I abhor this technique. If you want to return a value, use the return type. Since you also return a success value, use a pair as the return type, unless there’s a very compelling reason not to:
template<typename T, typename ID>
std::pair<bool, T> TryGetTypeByNameImp(
const TypeMapping<T, ID> map[], size_t mapSize,
const char* name)
{
for (size_t i = 0; i < mapSize; i++)
if (strcmp(map[i].Name, name) == 0)
return std::make_pair(true, map[i].Type);
return std::make_pair(false, T());
}
Ah, and I’d also consider using a std::vector or std::array here instead of a C array. Then you don’t need to manually shlep the array size around through all the functions which use the array.
You can certainly use the array itself (well, a pointer to it) as a template parameter:
#include <iostream>
template<typename T> struct S { T t; };
S<int> s[] = { { 21 }, { 22 } };
template<typename T, size_t n, S<T> (*m)[n]> void f() { std::cout << (*m)[n - 1].t; }
int main() {
f<int, 2, &s>();
}
The problem here is that you can't use template argument deduction on the length of the array nor on its type, so both must be supplied as template parameters in addition to the array itself. I really think that passing in a struct or, say a vector would be the better solution, as you've no doubt already explored:
#include <vector>
#include <iostream>
template<typename T> struct S { T t; };
std::vector<S<int>> s{ { 21 }, { 22 } };
template<typename T, std::vector<S<T>> *v> void f() { std::cout << v->back().t; }
int main() {
f<int, &s>();
}

How can I iterate over a packed variadic template argument list?

I'm trying to find a method to iterate over an a pack variadic template argument list.
Now as with all iterations, you need some sort of method of knowing how many arguments are in the packed list, and more importantly how to individually get data from a packed argument list.
The general idea is to iterate over the list, store all data of type int into a vector, store all data of type char* into a vector, and store all data of type float, into a vector. During this process there also needs to be a seperate vector that stores individual chars of what order the arguments went in. As an example, when you push_back(a_float), you're also doing a push_back('f') which is simply storing an individual char to know the order of the data. I could also use a std::string here and simply use +=. The vector was just used as an example.
Now the way the thing is designed is the function itself is constructed using a macro, despite the evil intentions, it's required, as this is an experiment. So it's literally impossible to use a recursive call, since the actual implementation that will house all this will be expanded at compile time; and you cannot recruse a macro.
Despite all possible attempts, I'm still stuck at figuring out how to actually do this. So instead I'm using a more convoluted method that involves constructing a type, and passing that type into the varadic template, expanding it inside a vector and then simply iterating that. However I do not want to have to call the function like:
foo(arg(1), arg(2.0f), arg("three");
So the real question is how can I do without such? To give you guys a better understanding of what the code is actually doing, I've pasted the optimistic approach that I'm currently using.
struct any {
void do_i(int e) { INT = e; }
void do_f(float e) { FLOAT = e; }
void do_s(char* e) { STRING = e; }
int INT;
float FLOAT;
char *STRING;
};
template<typename T> struct get { T operator()(const any& t) { return T(); } };
template<> struct get<int> { int operator()(const any& t) { return t.INT; } };
template<> struct get<float> { float operator()(const any& t) { return t.FLOAT; } };
template<> struct get<char*> { char* operator()(const any& t) { return t.STRING; } };
#define def(name) \
template<typename... T> \
auto name (T... argv) -> any { \
std::initializer_list<any> argin = { argv... }; \
std::vector<any> args = argin;
#define get(name,T) get<T>()(args[name])
#define end }
any arg(int a) { any arg; arg.INT = a; return arg; }
any arg(float f) { any arg; arg.FLOAT = f; return arg; }
any arg(char* s) { any arg; arg.STRING = s; return arg; }
I know this is nasty, however it's a pure experiment, and will not be used in production code. It's purely an idea. It could probably be done a better way. But an example of how you would use this system:
def(foo)
int data = get(0, int);
std::cout << data << std::endl;
end
looks a lot like python. it works too, but the only problem is how you call this function.
Heres a quick example:
foo(arg(1000));
I'm required to construct a new any type, which is highly aesthetic, but thats not to say those macros are not either. Aside the point, I just want to the option of doing:
foo(1000);
I know it can be done, I just need some sort of iteration method, or more importantly some std::get method for packed variadic template argument lists. Which I'm sure can be done.
Also to note, I'm well aware that this is not exactly type friendly, as I'm only supporting int,float,char* and thats okay with me. I'm not requiring anything else, and I'll add checks to use type_traits to validate that the arguments passed are indeed the correct ones to produce a compile time error if data is incorrect. This is purely not an issue. I also don't need support for anything other then these POD types.
It would be highly apprecaited if I could get some constructive help, opposed to arguments about my purely illogical and stupid use of macros and POD only types. I'm well aware of how fragile and broken the code is. This is merley an experiment, and I can later rectify issues with non-POD data, and make it more type-safe and useable.
Thanks for your undertstanding, and I'm looking forward to help.
If your inputs are all of the same type, see OMGtechy's great answer.
For mixed-types we can use fold expressions (introduced in c++17) with a callable (in this case, a lambda):
#include <iostream>
template <class ... Ts>
void Foo (Ts && ... inputs)
{
int i = 0;
([&]
{
// Do things in your "loop" lambda
++i;
std::cout << "input " << i << " = " << inputs << std::endl;
} (), ...);
}
int main ()
{
Foo(2, 3, 4u, (int64_t) 9, 'a', 2.3);
}
Live demo
(Thanks to glades for pointing out in the comments that I didn't need to explicitly pass inputs to the lambda. This made it a lot neater.)
If you need return/breaks in your loop, here are some workarounds:
Demo using try/throw. Note that throws can cause tremendous slow down of this function; so only use this option if speed isn't important, or the break/returns are genuinely exceptional.
Demo using variable/if switches.
These latter answers are honestly a code smell, but shows it's general-purpose.
If you want to wrap arguments to any, you can use the following setup. I also made the any class a bit more usable, although it isn't technically an any class.
#include <vector>
#include <iostream>
struct any {
enum type {Int, Float, String};
any(int e) { m_data.INT = e; m_type = Int;}
any(float e) { m_data.FLOAT = e; m_type = Float;}
any(char* e) { m_data.STRING = e; m_type = String;}
type get_type() const { return m_type; }
int get_int() const { return m_data.INT; }
float get_float() const { return m_data.FLOAT; }
char* get_string() const { return m_data.STRING; }
private:
type m_type;
union {
int INT;
float FLOAT;
char *STRING;
} m_data;
};
template <class ...Args>
void foo_imp(const Args&... args)
{
std::vector<any> vec = {args...};
for (unsigned i = 0; i < vec.size(); ++i) {
switch (vec[i].get_type()) {
case any::Int: std::cout << vec[i].get_int() << '\n'; break;
case any::Float: std::cout << vec[i].get_float() << '\n'; break;
case any::String: std::cout << vec[i].get_string() << '\n'; break;
}
}
}
template <class ...Args>
void foo(Args... args)
{
foo_imp(any(args)...); //pass each arg to any constructor, and call foo_imp with resulting any objects
}
int main()
{
char s[] = "Hello";
foo(1, 3.4f, s);
}
It is however possible to write functions to access the nth argument in a variadic template function and to apply a function to each argument, which might be a better way of doing whatever you want to achieve.
Range based for loops are wonderful:
#include <iostream>
#include <any>
template <typename... Things>
void printVariadic(Things... things) {
for(const auto p : {things...}) {
std::cout << p.type().name() << std::endl;
}
}
int main() {
printVariadic(std::any(42), std::any('?'), std::any("C++"));
}
For me, this produces the output:
i
c
PKc
Here's an example without std::any, which might be easier to understand for those not familiar with std::type_info:
#include <iostream>
template <typename... Things>
void printVariadic(Things... things) {
for(const auto p : {things...}) {
std::cout << p << std::endl;
}
}
int main() {
printVariadic(1, 2, 3);
}
As you might expect, this produces:
1
2
3
You can create a container of it by initializing it with your parameter pack between {}. As long as the type of params... is homogeneous or at least convertable to the element type of your container, it will work. (tested with g++ 4.6.1)
#include <array>
template <class... Params>
void f(Params... params) {
std::array<int, sizeof...(params)> list = {params...};
}
This is not how one would typically use Variadic templates, not at all.
Iterations over a variadic pack is not possible, as per the language rules, so you need to turn toward recursion.
class Stock
{
public:
bool isInt(size_t i) { return _indexes.at(i).first == Int; }
int getInt(size_t i) { assert(isInt(i)); return _ints.at(_indexes.at(i).second); }
// push (a)
template <typename... Args>
void push(int i, Args... args) {
_indexes.push_back(std::make_pair(Int, _ints.size()));
_ints.push_back(i);
this->push(args...);
}
// push (b)
template <typename... Args>
void push(float f, Args... args) {
_indexes.push_back(std::make_pair(Float, _floats.size()));
_floats.push_back(f);
this->push(args...);
}
private:
// push (c)
void push() {}
enum Type { Int, Float; };
typedef size_t Index;
std::vector<std::pair<Type,Index>> _indexes;
std::vector<int> _ints;
std::vector<float> _floats;
};
Example (in action), suppose we have Stock stock;:
stock.push(1, 3.2f, 4, 5, 4.2f); is resolved to (a) as the first argument is an int
this->push(args...) is expanded to this->push(3.2f, 4, 5, 4.2f);, which is resolved to (b) as the first argument is a float
this->push(args...) is expanded to this->push(4, 5, 4.2f);, which is resolved to (a) as the first argument is an int
this->push(args...) is expanded to this->push(5, 4.2f);, which is resolved to (a) as the first argument is an int
this->push(args...) is expanded to this->push(4.2f);, which is resolved to (b) as the first argument is a float
this->push(args...) is expanded to this->push();, which is resolved to (c) as there is no argument, thus ending the recursion
Thus:
Adding another type to handle is as simple as adding another overload, changing the first type (for example, std::string const&)
If a completely different type is passed (say Foo), then no overload can be selected, resulting in a compile-time error.
One caveat: Automatic conversion means a double would select overload (b) and a short would select overload (a). If this is not desired, then SFINAE need be introduced which makes the method slightly more complicated (well, their signatures at least), example:
template <typename T, typename... Args>
typename std::enable_if<is_int<T>::value>::type push(T i, Args... args);
Where is_int would be something like:
template <typename T> struct is_int { static bool constexpr value = false; };
template <> struct is_int<int> { static bool constexpr value = true; };
Another alternative, though, would be to consider a variant type. For example:
typedef boost::variant<int, float, std::string> Variant;
It exists already, with all utilities, it can be stored in a vector, copied, etc... and seems really much like what you need, even though it does not use Variadic Templates.
There is no specific feature for it right now but there are some workarounds you can use.
Using initialization list
One workaround uses the fact, that subexpressions of initialization lists are evaluated in order. int a[] = {get1(), get2()} will execute get1 before executing get2. Maybe fold expressions will come handy for similar techniques in the future. To call do() on every argument, you can do something like this:
template <class... Args>
void doSomething(Args... args) {
int x[] = {args.do()...};
}
However, this will only work when do() is returning an int. You can use the comma operator to support operations which do not return a proper value.
template <class... Args>
void doSomething(Args... args) {
int x[] = {(args.do(), 0)...};
}
To do more complex things, you can put them in another function:
template <class Arg>
void process(Arg arg, int &someOtherData) {
// You can do something with arg here.
}
template <class... Args>
void doSomething(Args... args) {
int someOtherData;
int x[] = {(process(args, someOtherData), 0)...};
}
Note that with generic lambdas (C++14), you can define a function to do this boilerplate for you.
template <class F, class... Args>
void do_for(F f, Args... args) {
int x[] = {(f(args), 0)...};
}
template <class... Args>
void doSomething(Args... args) {
do_for([&](auto arg) {
// You can do something with arg here.
}, args...);
}
Using recursion
Another possibility is to use recursion. Here is a small example that defines a similar function do_for as above.
template <class F, class First, class... Rest>
void do_for(F f, First first, Rest... rest) {
f(first);
do_for(f, rest...);
}
template <class F>
void do_for(F f) {
// Parameter pack is empty.
}
template <class... Args>
void doSomething(Args... args) {
do_for([&](auto arg) {
// You can do something with arg here.
}, args...);
}
You can't iterate, but you can recurse over the list. Check the printf() example on wikipedia: http://en.wikipedia.org/wiki/C++0x#Variadic_templates
You can use multiple variadic templates, this is a bit messy, but it works and is easy to understand.
You simply have a function with the variadic template like so:
template <typename ...ArgsType >
void function(ArgsType... Args){
helperFunction(Args...);
}
And a helper function like so:
void helperFunction() {}
template <typename T, typename ...ArgsType >
void helperFunction(T t, ArgsType... Args) {
//do what you want with t
function(Args...);
}
Now when you call "function" the "helperFunction" will be called and isolate the first passed parameter from the rest, this variable can b used to call another function (or something). Then "function" will be called again and again until there are no more variables left. Note you might have to declare helperClass before "function".
The final code will look like this:
void helperFunction();
template <typename T, typename ...ArgsType >
void helperFunction(T t, ArgsType... Args);
template <typename ...ArgsType >
void function(ArgsType... Args){
helperFunction(Args...);
}
void helperFunction() {}
template <typename T, typename ...ArgsType >
void helperFunction(T t, ArgsType... Args) {
//do what you want with t
function(Args...);
}
The code is not tested.
#include <iostream>
template <typename Fun>
void iteratePack(const Fun&) {}
template <typename Fun, typename Arg, typename ... Args>
void iteratePack(const Fun &fun, Arg &&arg, Args&& ... args)
{
fun(std::forward<Arg>(arg));
iteratePack(fun, std::forward<Args>(args)...);
}
template <typename ... Args>
void test(const Args& ... args)
{
iteratePack([&](auto &arg)
{
std::cout << arg << std::endl;
},
args...);
}
int main()
{
test(20, "hello", 40);
return 0;
}
Output:
20
hello
40

compile time loops

I would like to know if it is possible to have sort of compile time loops.
For example, I have the following templated class:
template<class C, int T=10, int B=10>
class CountSketch
{
public:
CountSketch()
{
hashfuncs[0] = &CountSketch<C>::hash<0>;
hashfuncs[1] = &CountSketch<C>::hash<1>;
// ... for all i until i==T which is known at compile time
};
private:
template<int offset>
size_t hash(C &c)
{
return (reinterpret_cast<int>(&c)+offset)%B;
}
size_t (CountSketch::*hashfuncs[T])(C &c);
};
I would thus like to know if I can do a loop to initialize the T hash functions using a loop. The bounds of the loops are known at compile time, so, in principle, I don't see any reason why it couldn't be done (especially since it works if I unroll the loop manually).
Of course, in this specific example, I could just have made a single hash function with 2 parameters (although it would be less efficient I guess). I am thus not interested in solving this specific problem, but rather knowing if "compile time loops" existed for similar cases.
Thanks!
Nope, it's not directly possible. Template metaprogramming is a pure functional language. Every value or type defined through it are immutable. A loop inherently requires mutable variables (Repeatedly test some condition until X happens, then exit the loop).
Instead, you would typically rely on recursion. (Instantiate this template with a different template parameter each time, until you reach some terminating condition).
However, that can solve all the same problems as a loop could.
Edit: Here's a quick example, computing the factorial of N using recursion at compile-time:
template <int N>
struct fac {
enum { value = N * fac<N-1>::value };
};
template <>
struct fac<0> {
enum { value = 1 };
};
int main() {
assert(fac<4>::value == 24);
}
Template metaprogramming in C++ is a Turing-complete language, so as long as you don't run into various internal compiler limits, you can solve basically any problem with it.
However, for practical purposes, it may be worth investigating libraries like Boost.MPL, which contains a large number of data structures and algorithms which simplify a lot of metaprogramming tasks.
Yes. Possible using compile time recursion.
I was trying with your code but since it was not compilable here is a modified and compiling exmaple:
template<class C, int T=10>
class CountSketch
{
template<int N>
void Init ()
{
Init<N-1>();
hashfuncs[N] = &CountSketch<C>::template hash<N>;
cout<<"Initializing "<<N<<"th element\n";
}
public:
CountSketch()
{
Init<T>();
}
private:
template<int offset>
size_t hash(C &c)
{
return 0;
}
size_t (CountSketch::*hashfuncs[T])(C &c);
};
template<>
template<>
void CountSketch<int,10>::Init<0> ()
{
hashfuncs[0] = &CountSketch<int,10>::hash<0>;
cout<<"Initializing "<<0<<"th element\n";
}
Demo. The only constraint of this solution is that you have to provide the final specialized version as, CountSketch<int,10>::Init<0> for whatever type and size.
You need a combination of boost::mpl::for_each and boost::mpl::range_c.
Note: This will result in run-time code and this is what you actually need. Because there is no way to know the result of operator& at compile time. At least none that I'm aware of.
The actual difficulty with this is to build a struct that is templated on an int parameter (mpl::int_ in our case) and that does the assignment when operator() is called and we also need a functor to actually capture the this pointer.
This is somewhat more complicated than I anticipated but it's fun.
#include <boost/mpl/range_c.hpp>
#include <boost/mpl/vector.hpp>
#include <boost/mpl/for_each.hpp>
#include <boost/mpl/transform.hpp>
#include <boost/mpl/copy.hpp>
// aforementioned struct
template<class C, class I>
struct assign_hash;
// this actually evaluates the functor and captures the this pointer
// T is the argument for the functor U
template<typename T>
struct my_apply {
T* t;
template<typename U>
void operator()(U u) {
u(t);
}
};
template<class C, int T=10, int B=10>
class CountSketch
{
public:
CountSketch()
{
using namespace boost::mpl;
// we need to do this because range_c is not an ExtensibleSequence
typedef typename copy< range_c<int, 0, T>,
back_inserter< vector<> > >::type r;
// fiddle together a vector of the correct types
typedef typename transform<r, typename lambda< assign_hash<C, _1 > >::type >
::type assignees;
// now we need to unfold the type list into a run-time construct
// capture this
my_apply< CountSketch<C, T, B> > apply = { this };
// this is a compile-time loop which actually does something at run-time
for_each<assignees>(apply);
};
// no way around
template<typename TT, typename I>
friend struct assign_hash;
private:
template<int offset>
size_t hash(C& c)
{
return c;
// return (reinterpret_cast<int>(&c)+offset)%B;
}
size_t (CountSketch::*hashfuncs[T])(C &c);
};
// mpl uses int_ so we don't use a non-type template parameter
// but get a compile time value through the value member
template<class C, class I>
struct assign_hash {
template<typename T>
void operator()(T* t) {
t->hashfuncs[I::value] = &CountSketch<C>::template hash<I::value>;
}
};
int main()
{
CountSketch<int> a;
}
with C++20 and consteval compile time loops became possible without doing template hell unless the value can have multiple types:
consteval int func() {
int out = 0;
for(int i = 10; i--;) out += i;
return out;
}
int main() {
std::cout << func(); // outputs 45
}
There are compilers that will see the loop and unroll it. But it's not part of the language specification that it must be done (and, in fact, the language specification throws all sorts of barriers in the way of doing it), and there's no guarantee that it will be done, in a particular case, even on a compiler that "knows how".
There are a few languages that explicitly do this, but they are highly specialized.
(BTW, there's no guarantee that the "unrolled" version of your initializations would be done "at compile time" in a reasonably efficient fashion. But most compilers will, when not compiling to a debug target.)
Here is, I think, a better version of the solution given above.
You can see that we use the compile-time recursive on the function params.
This enables putting all the logic inside your class, and the base case of Init(int_<0>) is very clear - just do nothing :)
Just so you won't fear performance penalty, know that the optimizer will throw away these unused parameters.
As a matter of fact, all these function calls will be inlined anyway. that's the whole point here.
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <iostream>
using namespace std;
template <class C, int N = 10, int B = 10>
class CountSketch {
public:
CountSketch() {
memset(&_hashFunctions, sizeof(_hashFunctions), 0); // for safety
Init(int_<N>());
}
size_t HashAll(C& c)
{
size_t v = 0;
for(const auto& h : _hashFunctions)
{
v += (this->*h)(c); // call through member pointer
}
return v;
}
private:
template<int offset>
size_t hash(C &c)
{
return (reinterpret_cast<size_t>(&c)+offset)%B;
}
size_t (CountSketch::*_hashFunctions[N])(C &c);
private: // implementation detail
// Notice: better approach.
// use parameters for compile-time recursive call.
// you can just override for the base case, as seen for N-1 below
template <int M>
struct int_ {};
template <int M>
void Init(int_<M>) {
Init(int_<M - 1>());
_hashFunctions[M - 1] = &CountSketch<C, N, B>::template hash<M>;
printf("Initializing %dth element\n", M - 1);
}
void Init(int_<0>) {}
};
int main() {
int c;
CountSketch<int, 10> cs;
int i;
cin >> i;
printf("HashAll: %d", cs.HashAll(c));
return 0;
}
Compiler Explorer