Python Pandas Data frame creation - python-2.7

I tried to create a data frame df using the below code :
import numpy as np
import pandas as pd
index = [0,1,2,3,4,5]
s = pd.Series([1,2,3,4,5,6],index= index)
t = pd.Series([2,4,6,8,10,12],index= index)
df = pd.DataFrame(s,columns = ["MUL1"])
df["MUL2"] =t
print df
MUL1 MUL2
0 1 2
1 2 4
2 3 6
3 4 8
4 5 10
5 6 12
While trying to create the same data frame using the below syntax, I am getting a wierd output.
df = pd.DataFrame([s,t],columns = ["MUL1","MUL2"])
print df
MUL1 MUL2
0 NaN NaN
1 NaN NaN
Please explain why the NaN is being displayed in the dataframe when both the Series are non empty and why only two rows are getting displayed and no the rest.
Also provide the correct way to create the data frame same as has been mentioned above by using the columns argument in the pandas DataFrame method.

One of the correct ways would be to stack the array data from the input list holding those series into columns -
In [161]: pd.DataFrame(np.c_[s,t],columns = ["MUL1","MUL2"])
Out[161]:
MUL1 MUL2
0 1 2
1 2 4
2 3 6
3 4 8
4 5 10
5 6 12
Behind the scenes, the stacking creates a 2D array, which is then converted to a dataframe. Here's what the stacked array looks like -
In [162]: np.c_[s,t]
Out[162]:
array([[ 1, 2],
[ 2, 4],
[ 3, 6],
[ 4, 8],
[ 5, 10],
[ 6, 12]])

If remove columns argument get:
df = pd.DataFrame([s,t])
print (df)
0 1 2 3 4 5
0 1 2 3 4 5 6
1 2 4 6 8 10 12
Then define columns - if columns not exist get NaNs column:
df = pd.DataFrame([s,t], columns=[0,'MUL2'])
print (df)
0 MUL2
0 1.0 NaN
1 2.0 NaN
Better is use dictionary:
df = pd.DataFrame({'MUL1':s,'MUL2':t})
print (df)
MUL1 MUL2
0 1 2
1 2 4
2 3 6
3 4 8
4 5 10
5 6 12
And if need change columns order add columns parameter:
df = pd.DataFrame({'MUL1':s,'MUL2':t}, columns=['MUL2','MUL1'])
print (df)
MUL2 MUL1
0 2 1
1 4 2
2 6 3
3 8 4
4 10 5
5 12 6
More information is in dataframe documentation.
Another solution by concat - DataFrame constructor is not necessary:
df = pd.concat([s,t], axis=1, keys=['MUL1','MUL2'])
print (df)
MUL1 MUL2
0 1 2
1 2 4
2 3 6
3 4 8
4 5 10
5 6 12

A pandas.DataFrame takes in the parameter data that can be of type ndarray, iterable, dict, or dataframe.
If you pass in a list it will assume each member is a row. Example:
a = [1,2,3]
b = [2,4,6]
df = pd.DataFrame([a, b], columns = ["Col1","Col2", "Col3"])
# output 1:
Col1 Col2 Col3
0 1 2 3
1 2 4 6
You are getting NaN because it expects index = [0,1] but you are giving [0,1,2,3,4,5]
To get the shape you want, first transpose the data:
data = np.array([a, b]).transpose()
How to create a pandas dataframe
import pandas as pd
a = [1,2,3]
b = [2,4,6]
df = pd.DataFrame(dict(Col1=a, Col2=b))
Output:
Col1 Col2
0 1 2
1 2 4
2 3 6

Related

pandas dataframe category codes from two columns

I got a pandas dataframe where two columns correspond to names of people. The columns are related and the same name means same person. I want to assign the category code such that it is valid for the whole "name" space.
For example my data frame is
df = pd.DataFrame({"P1":["a","b","c","a"], "P2":["b","c","d","c"]})
>>> df
P1 P2
0 a b
1 b c
2 c d
3 a c
I want it to be replaced by the corresponding category codes, such that
>>> df
P1 P2
0 1 2
1 2 3
2 3 4
3 1 3
The categories are in fact derived from the concatenated array ["a","b","c","d"] and applied on individual columns seperatly. How can I achive this ?.
Use:
print (df.stack().rank(method='dense').astype(int).unstack())
P1 P2
0 1 2
1 2 3
2 3 4
3 1 3
EDIT:
For more general solution I used another answer, because problem with duplicates in index:
df = pd.DataFrame({"P1":["a","b","c","a"],
"P2":["b","c","d","c"],
"A":[3,4,5,6]}, index=[2,2,3,3])
print (df)
A P1 P2
2 3 a b
2 4 b c
3 5 c d
3 6 a c
cols = ['P1','P2']
df[cols] = (pd.factorize(df[cols].values.ravel())[0]+1).reshape(-1, len(cols))
print (df)
A P1 P2
2 3 1 2
2 4 2 3
3 5 3 4
3 6 1 3
You can do
In [465]: pd.DataFrame((pd.factorize(df.values.ravel())[0]+1).reshape(df.shape),
columns=df.columns)
Out[465]:
P1 P2
0 1 2
1 2 3
2 3 4
3 1 3

Python: max occurence of consecutive days

I have an Input file:
ID,ROLL_NO,ADM_DATE,FEES
1,12345,01/12/2016,500
2,12345,02/12/2016,200
3,987654,01/12/2016,1000
4,12345,03/12/2016,0
5,12345,04/12/2016,0
6,12345,05/12/2016,100
7,12345,06/12/2016,0
8,12345,07/12/2016,0
9,12345,08/12/2016,0
10,987654,02/12/2016,150
11,987654,03/12/2016,300
I'm trying to find maximum count of consecutive days where FEES is 0 for a particular ROLL_NO. If FEES is not equal to zero for consecutive days, max count will be zero for that particular ROLL_NO.
Expected Output:
ID,ROLL_NO,MAX_CNT -- First occurrence of ID for a particular ROLL_NO should come as ID in output
1,12345,3
3,987654,0
This is what I've come up with so far,
import pandas as pd
df = pd.read_csv('I5.txt')
df['COUNT'] = df.groupby(['ROLLNO','ADM_DATE'])['ROLLNO'].transform(pd.Series.value_counts)
print df
But I don't believe this is the right way to approach this.
Could someone help out a python newbie out here?
You can use:
#consecutive groups
r = df['ROLL_NO'] * df['FEES'].eq(0)
a = r.ne(r.shift()).cumsum()
print (a)
ID
1 1
2 1
3 1
4 2
5 2
6 3
7 4
8 4
9 4
10 5
11 5
dtype: int32
#filter 0 FEES, count, get max per first level and last add missing roll no by reindex
mask = df['FEES'].eq(0)
df = (df[mask].groupby(['ROLL_NO',a[mask]])
.size()
.max(level=0)
.reindex(df['ROLL_NO'].unique(), fill_value=0)
.reset_index(name='MAX_CNT'))
print (df)
ROLL_NO MAX_CNT
0 12345 3
1 987654 0
Explanation:
First compare FEES column with 0, eq is same as == and multiple mask by column ROLL_NO:
mask = df['FEES'].eq(0)
r = df['ROLL_NO'] * mask
print (r)
0 0
1 0
2 0
3 12345
4 12345
5 0
6 12345
7 12345
8 12345
9 0
10 0
dtype: int64
Get consecutive groups by compare shifted Series r and cumsum:
a = r.ne(r.shift()).cumsum()
print (a)
0 1
1 1
2 1
3 2
4 2
5 3
6 4
7 4
8 4
9 5
10 5
dtype: int32
Filter only 0 in FEES and groupby with size, also filter a for same indexes:
print (df[mask].groupby(['ROLL_NO',a[mask]]).size())
ROLL_NO
12345 2 2
4 3
dtype: int64
Get max values per first level of MultiIndex:
print (df[mask].groupby(['ROLL_NO',a[mask]]).size().max(level=0))
ROLL_NO
12345 3
dtype: int64
Last add missing ROLL_NO without 0 by reindex:
print (df[mask].groupby(['ROLL_NO',a[mask]])
.size()
.max(level=0)
.reindex(df['ROLL_NO'].unique(), fill_value=0))
ROLL_NO
12345 3
987654 0
dtype: int64
and for columns from index use reset_index.
EDIT:
For first ID use drop_duplicates with insert and map:
r = df['ROLL_NO'] * df['FEES'].eq(0)
a = r.ne(r.shift()).cumsum()
s = df.drop_duplicates('ROLL_NO').set_index('ROLL_NO')['ID']
mask = df['FEES'].eq(0)
df1 = (df[mask].groupby(['ROLL_NO',a[mask]])
.size()
.max(level=0)
.reindex(df['ROLL_NO'].unique(), fill_value=0)
.reset_index(name='MAX_CNT'))
df1.insert(0, 'ID', df1['ROLL_NO'].map(s))
print (df1)
ID ROLL_NO MAX_CNT
0 1 12345 3
1 3 987654 0

In pandas, i have 2 columns(ID and Name). If ID is assigned to more than one name how do i replace duplicates with first occurance

Image with the csv file with the two columns
You can use:
df.drop_duplicates('Salesperson_1')
Or maybe need:
df.groupby('Salesperson_1')['Salesperson_1_ID'].transform('first')
Sample:
df = pd.DataFrame({'Salesperson_1':['a','a','b'],
'Salesperson_1_ID':[4,5,6]})
print (df)
Salesperson_1 Salesperson_1_ID
0 a 4
1 a 5
2 b 6
df1 = df.drop_duplicates('Salesperson_1')
print (df1)
Salesperson_1 Salesperson_1_ID
0 a 4
2 b 6
df.Salesperson_1_ID = df.groupby('Salesperson_1')['Salesperson_1_ID'].transform('first')
print (df)
Salesperson_1 Salesperson_1_ID
0 a 4
1 a 4
2 b 6
Pandas.groupby.first()
if your DataFrame is called df, you could just do this:
df.groupby('Salesperson_1_ID').first()

pandas dataframe update or set column[y] = x where column[z] = 'abc'

I'm new to python pandas and haven't found an answer to this in the documentation. I have an existing dataframe and I've added a new column Y. I want to set the value of column Y to 'abc' in all rows in which column Z = 'xyz'. In sql this would be a simple
update table set colY = 'abc' where colZ = 'xyz'
Is there a similar way to do this update in pandas?
Thanks!
You can use loc or numpy.where if you need set other value too:
df.loc[df.Z == 'xyz', 'Y'] = 'abc'
Sample:
import pandas as pd
import numpy as np
df = pd.DataFrame({'X':[1,2,3],
'Z':['xyz',5,6],
'C':[7,8,9]})
print (df)
C X Z
0 7 1 xyz
1 8 2 5
2 9 3 6
df.loc[df.Z == 'xyz', 'Y'] = 'abc'
print (df)
C X Z Y
0 7 1 xyz abc
1 8 2 5 NaN
2 9 3 6 NaN
df['Y1'] = np.where(df.Z == 'xyz', 'abc', 'klm')
print (df)
C X Z Y Y1
0 7 1 xyz abc abc
1 8 2 5 NaN klm
2 9 3 6 NaN klm
You can use set column values too:
df['Y2'] = np.where(df.Z == 'xyz', 'abc', df.C)
print (df)
C X Z Y Y2
0 7 1 xyz abc abc
1 8 2 5 NaN 8
2 9 3 6 NaN 9

the order within group apply function

Having the code (below) I am trying to figure will particular group order always remain the same as in original dataframe.
It looks like the order within the group preserved for my little example, but what if I have dataframe with ~1 mln records? Will pandas provide such guarantee and I should worry about that by myself?
Code:
import numpy as np
import pandas as pd
N = 10
df = pd.DataFrame(index = xrange(N))
df['A'] = map(lambda x: int(x) / 5, np.random.randn(N) * 10.0)
df['B'] = map(lambda x: int(x) / 5, np.random.randn(N) * 10.0)
df['v'] = np.random.randn(N)
def show_x(x):
print x
print "----------------"
df.groupby('A').apply(show_x)
print "==============="
print df
Output:
A B v
6 -4 -1 -2.047354
[1 rows x 3 columns]
----------------
A B v
6 -4 -1 -2.047354
[1 rows x 3 columns]
----------------
A B v
8 -3 0 -1.190831
[1 rows x 3 columns]
----------------
A B v
0 -1 -1 0.456397
9 -1 -2 -1.329169
[2 rows x 3 columns]
----------------
A B v
1 0 0 0.663928
2 0 2 0.626204
7 0 -3 -0.539166
[3 rows x 3 columns]
----------------
A B v
4 2 2 -1.115721
5 2 1 -1.905266
[2 rows x 3 columns]
----------------
A B v
3 4 -1 0.751016
[1 rows x 3 columns]
----------------
===============
A B v
0 -1 -1 0.456397
1 0 0 0.663928
2 0 2 0.626204
3 4 -1 0.751016
4 2 2 -1.115721
5 2 1 -1.905266
6 -4 -1 -2.047354
7 0 -3 -0.539166
8 -3 0 -1.190831
9 -1 -2 -1.329169
[10 rows x 3 columns]
If you are using apply not only is the order not guaranteed, but as you've found it can trigger the function for the same group a couple of times (to decide which "path" to take / what type of result to return). So if your function has side-effects don't do this!
I recommend simply iterating through the groupby object!
In [11]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])
In [12]: df
Out[12]:
A B
0 1 2
1 1 4
2 5 6
In [13]: g = df.groupby('A')
In [14]: for key, sub_df in g:
print("key =", key)
print(sub_df)
print('') # apply whatever function you want
key = 1
A B
0 1 2
1 1 4
key = 5
A B
2 5 6
Note that this is ordered (the same as the levels) see g.grouper._get_group_keys():
In [21]: g.grouper.levels
Out[21]: [Int64Index([1, 5], dtype='int64')]
It's sorted by default (there's a sort kwarg when doing the groupby), through it's not clear what this actually means if it's not a numeric dtype.