C++ using vector as static container for class instances - c++

I use a vector as static member of a class to count all the instance of the class itself and its derived classes. However When trying to resize the container I get a stack-overflow thrown from the vector itself.
// initialize static values:
auto_ptr<HandleManager> ID3OBJ::HM = auto_ptr<HandleManager>(new HandleManager());
auto_ptr<vector<shared_ptr<ID3OBJ>>> ID3OBJ::ObjectList = auto_ptr<vector<shared_ptr<ID3OBJ>>>(new vector<shared_ptr<ID3OBJ>>{});
I initialize the static member as empty as shown above.
// constructors:
ID3OBJ::ID3OBJ(double x, double y, double z) : X(x), Y(y), Z(z), Handle(this->HM->addHandle()) { ObjectList->push_back(auto_ptr<ID3OBJ>(this));}
ID3OBJ::ID3OBJ() : X(0), Y(0), Z(0), Handle(this->HM->addHandle()) { ObjectList->push_back(shared_ptr<ID3OBJ>(this));}
Vector::Vector(double x, double y, double z) { X = x; Y = y; Z = z;
ObjectList->push_back(auto_ptr<Vector>(this));}
Vector::Vector() {
X = 0; Y = 0; Z = 0;
ObjectList->push_back(shared_ptr<Vector>(this));}
The constructors add any new instance to the instancelist, which is called ObjectList. This is working as intended.
// deconstructors:
ID3OBJ::~ID3OBJ()
{
string tempH = this->Handle;
auto iter = ObjectList->end();
if (ObjectList->size() == HM->assignedHandles())
{
iter = remove_if(ObjectList->begin(), ObjectList->end(), [&](shared_ptr<ID3OBJ> ptr) {return ptr->getHandle() == tempH; });
}
ObjectList->erase(iter, ObjectList->end());
this->HM->removeHandle(this->Handle);
}
Vector::~Vector()
{
string tempH = this->Handle;
auto iter = ObjectList->end();
if (ObjectList->size() == HM->assignedHandles())
{
iter=remove_if(ObjectList->begin(), ObjectList->end(), [&](shared_ptr<ID3OBJ> ptr) {return ptr->getHandle() == tempH; });
}
ObjectList->erase(iter, ObjectList->end());
}
As far as I understand remove_if replaces any occurances whose pred returns true with the element after the occurance. Means if the pred with vec[3] as argument returns true, vec[2] points to vec[4] instead of vec[3].
Hence the erase function is needed to shorten the container length, however as soon as I implement this shortening an error occurs.
Header File:
// class-name: ID3OBJ
// Date: 30.01.2017
// Version: 1.0
// Description: The class works as base class for all used 3D-Objects, and defines the operations all 3D-Objects have, namely the Direction in case of a vector, or origion in all other cases
//
class ID3OBJ
{
public:
double X;
double Y;
double Z;
static auto_ptr<vector<shared_ptr<ID3OBJ>>> ObjectList;
ID3OBJ(double x, double y, double z);
ID3OBJ();
~ID3OBJ();
const string getHandle();
protected:
string Handle;
static auto_ptr<HandleManager> HM;
};
// class-name: I3DM
// Date: 23.03.2017
// Version: 1.0
// Description: The class works as Interface for classes which can do Vector-operations
//
template <class T> class I3DM : public virtual ID3OBJ
{
public:
using ID3OBJ::X;
using ID3OBJ::Y;
using ID3OBJ::Z;
static auto_ptr<vector<shared_ptr<T>>> ObjectList;
protected:
using ID3OBJ::Handle;
using ID3OBJ::HM;
};
// class-name: Vector
// Date: 30.01.2017
// Version: 1.0
// Description: The class works as vector, it provides an interface to acces and modify vectors, aswell as most of the vector operations
//
class Vector : public virtual I3DM<Vector>
{
public:
using I3DM<Vector>::X;
using I3DM<Vector>::Y;
using I3DM<Vector>::Z;
using I3DM<Vector>::ObjectList;
Vector(double x, double y, double z);
Vector();
~Vector();
//I'm not sure if the protected members have to be provided aswell in the header file
protected:
using ID3OBJ::Handle;
using ID3OBJ::HM;
};
HM-header:
class HandleManager
{
public:
HandleManager();
const int assignedHandles();
const string addHandle();
void removeHandle(string hexstring);
protected:
int AssignedHandles;
forward_list<int> FreeHandles;
bool FreeHandlesAvailable;
};
CPP:
const int string_to_hex(string s)
{
int returnvalue;
stringstream stream;
stream << hex << s;
stream >> returnvalue;
return returnvalue;
}
HandleManager::HandleManager()
{
this->FreeHandlesAvailable = false;
this->AssignedHandles = 0;
}
const int HandleManager::assignedHandles()
{
return this->AssignedHandles;
}
const string HandleManager::addHandle()
{
string returnValue;
if (this->FreeHandlesAvailable)
{
returnValue = int_to_hex(this->FreeHandles.front());
this->FreeHandles.pop_front();
this->AssignedHandles++;
if (this->FreeHandles.empty()) { this->FreeHandlesAvailable = false; }
}
else
{
returnValue = int_to_hex(this->AssignedHandles);
this->AssignedHandles++;
if (this->AssignedHandles == 1) { returnValue = int_to_hex((int)0); }
}
return returnValue;
}
void HandleManager::removeHandle(string hexstring)
{
this->FreeHandlesAvailable = true;
this->FreeHandles.push_front(string_to_hex(hexstring));
this->AssignedHandles--;
}
error message:
Unhandled exception at 0x00C01899 in RVE.exe: 0xC00000FD: Stack overflow (parameters: 0x00000001, 0x01002F48). occurred
The parameter 0x00000001 is most likely a handle, is there any way to search for the object which has the memory adress given? (0x01002F48)

Consider what happens when you remove an ID3OBJ from the vector:
The vector will destroy the auto_ptr<ID3OBJ>...
Which will try to destroy the ID3OBJ...
Whose destructor will try to remove the auto_ptr<ID3OBJ> from the vector...
Which will destroy the auto_ptr<ID3OBJ>... and we go back to step 1.
This process will recurse until the stack is overflowed. The same is true for the Vector vector too. (Roger, Roger. What's your vector, Victor?)
The standard library vector is not designed to be re-entrant; if a member of vector winds up calling itself, the behavior is undefined. In your case, vector::erase() indirectly calls itself through your destructors.
Therefore, your program's behavior is undefined.

auto_ptr<..>(this), shared_ptr<..>(this) or unique_ptr<..>(this) is never correct and a bug waiting to happen. Smart pointers take values from allocated memory, this is pointer to an object and you do not know how it came about. You are effectively doing something like the following,
int a;
auto_ptr< int > ap0( &a ); // certain death.
shared_ptr< int > ap1( &a ); // also certain death.
or equally bad,
auto_ptr< int > ap( new int );
auto_ptr< int > ap0( ap.get() ); // certain death.
shared_ptr< int > ap1( ap.get() ); // also certain death.
It is hard to understand what you are trying to achieve. If you simply want to track instances your vector should definitely be raw pointers. If your purpose is memory management, then I can't see how this could work from your code.

Related

Comparator for member variable of type std::set that requires access to other member variables

I have a class ShapeDisplay that stores a set of Rectangles. I would like to store them sorted, therefore I use a std::set. My intention is to provide a custom comparator, which compares the origin (x, y) of the rectangle to a reference point (x, y) in the display.
However, in order to achieve this, the comparator needs access to m_reference. How do I use a custom comparator, that needs access to the class members? Is my design flawed? I know there are newer ways to provide the comparator as in this link, but that doesn't solve my access issue.
Alternatively, I could just have a std::vector that I keep sorted, such that each new Rectangle is inserted in the right position. But since std::set::insert() should do that automatically with a custom comparator, I would prefer that.
Thank you.
struct Point
{
int x;
int y;
};
struct Rectangle
{
int x;
int y;
int width;
int height;
};
class ShapeDisplay
{
void insertShape(Rectangle rect)
{
m_shapes.insert(rect);
}
void setReference(Point reference)
{
m_reference = reference;
}
private:
struct CenterComparator
{
bool operator() (const Rectangle & a, const Rectangle & b) const
{
double distA = std::sqrt(std::pow(a.x - m_reference.x, 2)
+ std::pow(a.y - m_reference.y, 2));
double distB = std::sqrt(std::pow(b.x - m_reference.x, 2)
+ std::pow(b.y - m_reference.y, 2));
return distA < distB;
}
};
std::set<Rectangle, CenterComparator> m_shapes;
Point m_reference;
};
CenterComparator isn't related to ShapeDisplay, it isn't aware of its members and it isn't derived from ShapeDisplay. You need to provide CenterComparator with its own reference Point. You then need to provide an instance of CenterComparator whose reference point is set.
Note that if you change that comparator's reference point in any way you will break std::set's sorting resulting in Undefined Behavior if you try to use it. So whenever setReference is called, you need to create a new set with a new comparator and copy over the old set.
Here is your code, adapted with these changes. I assumed you meant setReference and insertShape to be part of the public interface.
#include <cmath>
#include <set>
struct Point
{
int x;
int y;
};
struct Rectangle
{
int x;
int y;
int width;
int height;
};
class ShapeDisplay
{
public:
void insertShape(Rectangle rect)
{
m_shapes.insert(rect);
}
void setReference(Point reference)
{
m_reference = reference;
// Create a comparator using this new reference
auto comparator = CenterComparator{};
comparator.reference = m_reference;
// Create a new set
auto new_shapes = std::set<Rectangle, CenterComparator>(
std::begin(m_shapes), std::end(m_shapes), // Copy these shapes
comparator); // Use this comparator
m_shapes = std::move(new_shapes);
}
private:
struct CenterComparator
{
bool operator() (const Rectangle & a, const Rectangle & b) const
{
double distA = std::sqrt(std::pow(a.x - reference.x, 2)
+ std::pow(a.y - reference.y, 2));
double distB = std::sqrt(std::pow(b.x - reference.x, 2)
+ std::pow(b.y - reference.y, 2));
return distA < distB;
}
Point reference;
};
std::set<Rectangle, CenterComparator> m_shapes;
Point m_reference;
};

Passing pointer to method into template class [duplicate]

I came across this strange code snippet which compiles fine:
class Car
{
public:
int speed;
};
int main()
{
int Car::*pSpeed = &Car::speed;
return 0;
}
Why does C++ have this pointer to a non-static data member of a class? What is the use of this strange pointer in real code?
It's a "pointer to member" - the following code illustrates its use:
#include <iostream>
using namespace std;
class Car
{
public:
int speed;
};
int main()
{
int Car::*pSpeed = &Car::speed;
Car c1;
c1.speed = 1; // direct access
cout << "speed is " << c1.speed << endl;
c1.*pSpeed = 2; // access via pointer to member
cout << "speed is " << c1.speed << endl;
return 0;
}
As to why you would want to do that, well it gives you another level of indirection that can solve some tricky problems. But to be honest, I've never had to use them in my own code.
Edit: I can't think off-hand of a convincing use for pointers to member data. Pointer to member functions can be used in pluggable architectures, but once again producing an example in a small space defeats me. The following is my best (untested) try - an Apply function that would do some pre &post processing before applying a user-selected member function to an object:
void Apply( SomeClass * c, void (SomeClass::*func)() ) {
// do hefty pre-call processing
(c->*func)(); // call user specified function
// do hefty post-call processing
}
The parentheses around c->*func are necessary because the ->* operator has lower precedence than the function call operator.
This is the simplest example I can think of that conveys the rare cases where this feature is pertinent:
#include <iostream>
class bowl {
public:
int apples;
int oranges;
};
int count_fruit(bowl * begin, bowl * end, int bowl::*fruit)
{
int count = 0;
for (bowl * iterator = begin; iterator != end; ++ iterator)
count += iterator->*fruit;
return count;
}
int main()
{
bowl bowls[2] = {
{ 1, 2 },
{ 3, 5 }
};
std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::apples) << " apples\n";
std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::oranges) << " oranges\n";
return 0;
}
The thing to note here is the pointer passed in to count_fruit. This saves you having to write separate count_apples and count_oranges functions.
Another application are intrusive lists. The element type can tell the list what its next/prev pointers are. So the list does not use hard-coded names but can still use existing pointers:
// say this is some existing structure. And we want to use
// a list. We can tell it that the next pointer
// is apple::next.
struct apple {
int data;
apple * next;
};
// simple example of a minimal intrusive list. Could specify the
// member pointer as template argument too, if we wanted:
// template<typename E, E *E::*next_ptr>
template<typename E>
struct List {
List(E *E::*next_ptr):head(0), next_ptr(next_ptr) { }
void add(E &e) {
// access its next pointer by the member pointer
e.*next_ptr = head;
head = &e;
}
E * head;
E *E::*next_ptr;
};
int main() {
List<apple> lst(&apple::next);
apple a;
lst.add(a);
}
Here's a real-world example I am working on right now, from signal processing / control systems:
Suppose you have some structure that represents the data you are collecting:
struct Sample {
time_t time;
double value1;
double value2;
double value3;
};
Now suppose that you stuff them into a vector:
std::vector<Sample> samples;
... fill the vector ...
Now suppose that you want to calculate some function (say the mean) of one of the variables over a range of samples, and you want to factor this mean calculation into a function. The pointer-to-member makes it easy:
double Mean(std::vector<Sample>::const_iterator begin,
std::vector<Sample>::const_iterator end,
double Sample::* var)
{
float mean = 0;
int samples = 0;
for(; begin != end; begin++) {
const Sample& s = *begin;
mean += s.*var;
samples++;
}
mean /= samples;
return mean;
}
...
double mean = Mean(samples.begin(), samples.end(), &Sample::value2);
Note Edited 2016/08/05 for a more concise template-function approach
And, of course, you can template it to compute a mean for any forward-iterator and any value type that supports addition with itself and division by size_t:
template<typename Titer, typename S>
S mean(Titer begin, const Titer& end, S std::iterator_traits<Titer>::value_type::* var) {
using T = typename std::iterator_traits<Titer>::value_type;
S sum = 0;
size_t samples = 0;
for( ; begin != end ; ++begin ) {
const T& s = *begin;
sum += s.*var;
samples++;
}
return sum / samples;
}
struct Sample {
double x;
}
std::vector<Sample> samples { {1.0}, {2.0}, {3.0} };
double m = mean(samples.begin(), samples.end(), &Sample::x);
EDIT - The above code has performance implications
You should note, as I soon discovered, that the code above has some serious performance implications. The summary is that if you're calculating a summary statistic on a time series, or calculating an FFT etc, then you should store the values for each variable contiguously in memory. Otherwise, iterating over the series will cause a cache miss for every value retrieved.
Consider the performance of this code:
struct Sample {
float w, x, y, z;
};
std::vector<Sample> series = ...;
float sum = 0;
int samples = 0;
for(auto it = series.begin(); it != series.end(); it++) {
sum += *it.x;
samples++;
}
float mean = sum / samples;
On many architectures, one instance of Sample will fill a cache line. So on each iteration of the loop, one sample will be pulled from memory into the cache. 4 bytes from the cache line will be used and the rest thrown away, and the next iteration will result in another cache miss, memory access and so on.
Much better to do this:
struct Samples {
std::vector<float> w, x, y, z;
};
Samples series = ...;
float sum = 0;
float samples = 0;
for(auto it = series.x.begin(); it != series.x.end(); it++) {
sum += *it;
samples++;
}
float mean = sum / samples;
Now when the first x value is loaded from memory, the next three will also be loaded into the cache (supposing suitable alignment), meaning you don't need any values loaded for the next three iterations.
The above algorithm can be improved somewhat further through the use of SIMD instructions on eg SSE2 architectures. However, these work much better if the values are all contiguous in memory and you can use a single instruction to load four samples together (more in later SSE versions).
YMMV - design your data structures to suit your algorithm.
You can later access this member, on any instance:
int main()
{
int Car::*pSpeed = &Car::speed;
Car myCar;
Car yourCar;
int mySpeed = myCar.*pSpeed;
int yourSpeed = yourCar.*pSpeed;
assert(mySpeed > yourSpeed); // ;-)
return 0;
}
Note that you do need an instance to call it on, so it does not work like a delegate.
It is used rarely, I've needed it maybe once or twice in all my years.
Normally using an interface (i.e. a pure base class in C++) is the better design choice.
IBM has some more documentation on how to use this. Briefly, you're using the pointer as an offset into the class. You can't use these pointers apart from the class they refer to, so:
int Car::*pSpeed = &Car::speed;
Car mycar;
mycar.*pSpeed = 65;
It seems a little obscure, but one possible application is if you're trying to write code for deserializing generic data into many different object types, and your code needs to handle object types that it knows absolutely nothing about (for example, your code is in a library, and the objects into which you deserialize were created by a user of your library). The member pointers give you a generic, semi-legible way of referring to the individual data member offsets, without having to resort to typeless void * tricks the way you might for C structs.
It makes it possible to bind member variables and functions in the uniform manner. The following is example with your Car class. More common usage would be binding std::pair::first and ::second when using in STL algorithms and Boost on a map.
#include <list>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/bind.hpp>
class Car {
public:
Car(int s): speed(s) {}
void drive() {
std::cout << "Driving at " << speed << " km/h" << std::endl;
}
int speed;
};
int main() {
using namespace std;
using namespace boost::lambda;
list<Car> l;
l.push_back(Car(10));
l.push_back(Car(140));
l.push_back(Car(130));
l.push_back(Car(60));
// Speeding cars
list<Car> s;
// Binding a value to a member variable.
// Find all cars with speed over 60 km/h.
remove_copy_if(l.begin(), l.end(),
back_inserter(s),
bind(&Car::speed, _1) <= 60);
// Binding a value to a member function.
// Call a function on each car.
for_each(s.begin(), s.end(), bind(&Car::drive, _1));
return 0;
}
You can use an array of pointer to (homogeneous) member data to enable a dual, named-member (i.e. x.data) and array-subscript (i.e. x[idx]) interface.
#include <cassert>
#include <cstddef>
struct vector3 {
float x;
float y;
float z;
float& operator[](std::size_t idx) {
static float vector3::*component[3] = {
&vector3::x, &vector3::y, &vector3::z
};
return this->*component[idx];
}
};
int main()
{
vector3 v = { 0.0f, 1.0f, 2.0f };
assert(&v[0] == &v.x);
assert(&v[1] == &v.y);
assert(&v[2] == &v.z);
for (std::size_t i = 0; i < 3; ++i) {
v[i] += 1.0f;
}
assert(v.x == 1.0f);
assert(v.y == 2.0f);
assert(v.z == 3.0f);
return 0;
}
One way I've used it is if I have two implementations of how to do something in a class and I want to choose one at run-time without having to continually go through an if statement i.e.
class Algorithm
{
public:
Algorithm() : m_impFn( &Algorithm::implementationA ) {}
void frequentlyCalled()
{
// Avoid if ( using A ) else if ( using B ) type of thing
(this->*m_impFn)();
}
private:
void implementationA() { /*...*/ }
void implementationB() { /*...*/ }
typedef void ( Algorithm::*IMP_FN ) ();
IMP_FN m_impFn;
};
Obviously this is only practically useful if you feel the code is being hammered enough that the if statement is slowing things done eg. deep in the guts of some intensive algorithm somewhere. I still think it's more elegant than the if statement even in situations where it has no practical use but that's just my opnion.
Pointers to classes are not real pointers; a class is a logical construct and has no physical existence in memory, however, when you construct a pointer to a member of a class it gives an offset into an object of the member's class where the member can be found; This gives an important conclusion: Since static members are not associated with any object so a pointer to a member CANNOT point to a static member(data or functions) whatsoever
Consider the following:
class x {
public:
int val;
x(int i) { val = i;}
int get_val() { return val; }
int d_val(int i) {return i+i; }
};
int main() {
int (x::* data) = &x::val; //pointer to data member
int (x::* func)(int) = &x::d_val; //pointer to function member
x ob1(1), ob2(2);
cout <<ob1.*data;
cout <<ob2.*data;
cout <<(ob1.*func)(ob1.*data);
cout <<(ob2.*func)(ob2.*data);
return 0;
}
Source: The Complete Reference C++ - Herbert Schildt 4th Edition
Here is an example where pointer to data members could be useful:
#include <iostream>
#include <list>
#include <string>
template <typename Container, typename T, typename DataPtr>
typename Container::value_type searchByDataMember (const Container& container, const T& t, DataPtr ptr) {
for (const typename Container::value_type& x : container) {
if (x->*ptr == t)
return x;
}
return typename Container::value_type{};
}
struct Object {
int ID, value;
std::string name;
Object (int i, int v, const std::string& n) : ID(i), value(v), name(n) {}
};
std::list<Object*> objects { new Object(5,6,"Sam"), new Object(11,7,"Mark"), new Object(9,12,"Rob"),
new Object(2,11,"Tom"), new Object(15,16,"John") };
int main() {
const Object* object = searchByDataMember (objects, 11, &Object::value);
std::cout << object->name << '\n'; // Tom
}
Suppose you have a structure. Inside of that structure are
* some sort of name
* two variables of the same type but with different meaning
struct foo {
std::string a;
std::string b;
};
Okay, now let's say you have a bunch of foos in a container:
// key: some sort of name, value: a foo instance
std::map<std::string, foo> container;
Okay, now suppose you load the data from separate sources, but the data is presented in the same fashion (eg, you need the same parsing method).
You could do something like this:
void readDataFromText(std::istream & input, std::map<std::string, foo> & container, std::string foo::*storage) {
std::string line, name, value;
// while lines are successfully retrieved
while (std::getline(input, line)) {
std::stringstream linestr(line);
if ( line.empty() ) {
continue;
}
// retrieve name and value
linestr >> name >> value;
// store value into correct storage, whichever one is correct
container[name].*storage = value;
}
}
std::map<std::string, foo> readValues() {
std::map<std::string, foo> foos;
std::ifstream a("input-a");
readDataFromText(a, foos, &foo::a);
std::ifstream b("input-b");
readDataFromText(b, foos, &foo::b);
return foos;
}
At this point, calling readValues() will return a container with a unison of "input-a" and "input-b"; all keys will be present, and foos with have either a or b or both.
Just to add some use cases for #anon's & #Oktalist's answer, here's a great reading material about pointer-to-member-function and pointer-to-member-data.
https://www.dre.vanderbilt.edu/~schmidt/PDF/C++-ptmf4.pdf
with pointer to member, we can write generic code like this
template<typename T, typename U>
struct alpha{
T U::*p_some_member;
};
struct beta{
int foo;
};
int main()
{
beta b{};
alpha<int, beta> a{&beta::foo};
b.*(a.p_some_member) = 4;
return 0;
}
I love the * and & operators:
struct X
{
int a {0};
int *ptr {NULL};
int &fa() { return a; }
int *&fptr() { return ptr; }
};
int main(void)
{
X x;
int X::*p1 = &X::a; // pointer-to-member 'int X::a'. Type of p1 = 'int X::*'
x.*p1 = 10;
int *X::*p2 = &X::ptr; // pointer-to-member-pointer 'int *X::ptr'. Type of p2 = 'int *X::*'
x.*p2 = nullptr;
X *xx;
xx->*p2 = nullptr;
int& (X::*p3)() = X::fa; // pointer-to-member-function 'X::fa'. Type of p3 = 'int &(X::*)()'
(x.*p3)() = 20;
(xx->*p3)() = 30;
int *&(X::*p4)() = X::fptr; // pointer-to-member-function 'X::fptr'. Type of p4 = 'int *&(X::*)()'
(x.*p4)() = nullptr;
(xx->*p4)() = nullptr;
}
Indeed all is true as long as the members are public, or static
I think you'd only want to do this if the member data was pretty large (e.g., an object of another pretty hefty class), and you have some external routine which only works on references to objects of that class. You don't want to copy the member object, so this lets you pass it around.
A realworld example of a pointer-to-member could be a more narrow aliasing constructor for std::shared_ptr:
template <typename T>
template <typename U>
shared_ptr<T>::shared_ptr(const shared_ptr<U>, T U::*member);
What that constructor would be good for
assume you have a struct foo:
struct foo {
int ival;
float fval;
};
If you have given a shared_ptr to a foo, you could then retrieve shared_ptr's to its members ival or fval using that constructor:
auto foo_shared = std::make_shared<foo>();
auto ival_shared = std::shared_ptr<int>(foo_shared, &foo::ival);
This would be useful if want to pass the pointer foo_shared->ival to some function which expects a shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr/shared_ptr
Pointer to members are C++'s type safe equivalent for C's offsetof(), which is defined in stddef.h: Both return the information, where a certain field is located within a class or struct. While offsetof() may be used with certain simple enough classes also in C++, it fails miserably for the general case, especially with virtual base classes. So pointer to members were added to the standard. They also provide easier syntax to reference an actual field:
struct C { int a; int b; } c;
int C::* intptr = &C::a; // or &C::b, depending on the field wanted
c.*intptr += 1;
is much easier than:
struct C { int a; int b; } c;
int intoffset = offsetof(struct C, a);
* (int *) (((char *) (void *) &c) + intoffset) += 1;
As to why one wants to use offsetof() (or pointer to members), there are good answers elsewhere on stackoverflow. One example is here: How does the C offsetof macro work?

What does Obj::* mean? [duplicate]

I came across this strange code snippet which compiles fine:
class Car
{
public:
int speed;
};
int main()
{
int Car::*pSpeed = &Car::speed;
return 0;
}
Why does C++ have this pointer to a non-static data member of a class? What is the use of this strange pointer in real code?
It's a "pointer to member" - the following code illustrates its use:
#include <iostream>
using namespace std;
class Car
{
public:
int speed;
};
int main()
{
int Car::*pSpeed = &Car::speed;
Car c1;
c1.speed = 1; // direct access
cout << "speed is " << c1.speed << endl;
c1.*pSpeed = 2; // access via pointer to member
cout << "speed is " << c1.speed << endl;
return 0;
}
As to why you would want to do that, well it gives you another level of indirection that can solve some tricky problems. But to be honest, I've never had to use them in my own code.
Edit: I can't think off-hand of a convincing use for pointers to member data. Pointer to member functions can be used in pluggable architectures, but once again producing an example in a small space defeats me. The following is my best (untested) try - an Apply function that would do some pre &post processing before applying a user-selected member function to an object:
void Apply( SomeClass * c, void (SomeClass::*func)() ) {
// do hefty pre-call processing
(c->*func)(); // call user specified function
// do hefty post-call processing
}
The parentheses around c->*func are necessary because the ->* operator has lower precedence than the function call operator.
This is the simplest example I can think of that conveys the rare cases where this feature is pertinent:
#include <iostream>
class bowl {
public:
int apples;
int oranges;
};
int count_fruit(bowl * begin, bowl * end, int bowl::*fruit)
{
int count = 0;
for (bowl * iterator = begin; iterator != end; ++ iterator)
count += iterator->*fruit;
return count;
}
int main()
{
bowl bowls[2] = {
{ 1, 2 },
{ 3, 5 }
};
std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::apples) << " apples\n";
std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::oranges) << " oranges\n";
return 0;
}
The thing to note here is the pointer passed in to count_fruit. This saves you having to write separate count_apples and count_oranges functions.
Another application are intrusive lists. The element type can tell the list what its next/prev pointers are. So the list does not use hard-coded names but can still use existing pointers:
// say this is some existing structure. And we want to use
// a list. We can tell it that the next pointer
// is apple::next.
struct apple {
int data;
apple * next;
};
// simple example of a minimal intrusive list. Could specify the
// member pointer as template argument too, if we wanted:
// template<typename E, E *E::*next_ptr>
template<typename E>
struct List {
List(E *E::*next_ptr):head(0), next_ptr(next_ptr) { }
void add(E &e) {
// access its next pointer by the member pointer
e.*next_ptr = head;
head = &e;
}
E * head;
E *E::*next_ptr;
};
int main() {
List<apple> lst(&apple::next);
apple a;
lst.add(a);
}
Here's a real-world example I am working on right now, from signal processing / control systems:
Suppose you have some structure that represents the data you are collecting:
struct Sample {
time_t time;
double value1;
double value2;
double value3;
};
Now suppose that you stuff them into a vector:
std::vector<Sample> samples;
... fill the vector ...
Now suppose that you want to calculate some function (say the mean) of one of the variables over a range of samples, and you want to factor this mean calculation into a function. The pointer-to-member makes it easy:
double Mean(std::vector<Sample>::const_iterator begin,
std::vector<Sample>::const_iterator end,
double Sample::* var)
{
float mean = 0;
int samples = 0;
for(; begin != end; begin++) {
const Sample& s = *begin;
mean += s.*var;
samples++;
}
mean /= samples;
return mean;
}
...
double mean = Mean(samples.begin(), samples.end(), &Sample::value2);
Note Edited 2016/08/05 for a more concise template-function approach
And, of course, you can template it to compute a mean for any forward-iterator and any value type that supports addition with itself and division by size_t:
template<typename Titer, typename S>
S mean(Titer begin, const Titer& end, S std::iterator_traits<Titer>::value_type::* var) {
using T = typename std::iterator_traits<Titer>::value_type;
S sum = 0;
size_t samples = 0;
for( ; begin != end ; ++begin ) {
const T& s = *begin;
sum += s.*var;
samples++;
}
return sum / samples;
}
struct Sample {
double x;
}
std::vector<Sample> samples { {1.0}, {2.0}, {3.0} };
double m = mean(samples.begin(), samples.end(), &Sample::x);
EDIT - The above code has performance implications
You should note, as I soon discovered, that the code above has some serious performance implications. The summary is that if you're calculating a summary statistic on a time series, or calculating an FFT etc, then you should store the values for each variable contiguously in memory. Otherwise, iterating over the series will cause a cache miss for every value retrieved.
Consider the performance of this code:
struct Sample {
float w, x, y, z;
};
std::vector<Sample> series = ...;
float sum = 0;
int samples = 0;
for(auto it = series.begin(); it != series.end(); it++) {
sum += *it.x;
samples++;
}
float mean = sum / samples;
On many architectures, one instance of Sample will fill a cache line. So on each iteration of the loop, one sample will be pulled from memory into the cache. 4 bytes from the cache line will be used and the rest thrown away, and the next iteration will result in another cache miss, memory access and so on.
Much better to do this:
struct Samples {
std::vector<float> w, x, y, z;
};
Samples series = ...;
float sum = 0;
float samples = 0;
for(auto it = series.x.begin(); it != series.x.end(); it++) {
sum += *it;
samples++;
}
float mean = sum / samples;
Now when the first x value is loaded from memory, the next three will also be loaded into the cache (supposing suitable alignment), meaning you don't need any values loaded for the next three iterations.
The above algorithm can be improved somewhat further through the use of SIMD instructions on eg SSE2 architectures. However, these work much better if the values are all contiguous in memory and you can use a single instruction to load four samples together (more in later SSE versions).
YMMV - design your data structures to suit your algorithm.
You can later access this member, on any instance:
int main()
{
int Car::*pSpeed = &Car::speed;
Car myCar;
Car yourCar;
int mySpeed = myCar.*pSpeed;
int yourSpeed = yourCar.*pSpeed;
assert(mySpeed > yourSpeed); // ;-)
return 0;
}
Note that you do need an instance to call it on, so it does not work like a delegate.
It is used rarely, I've needed it maybe once or twice in all my years.
Normally using an interface (i.e. a pure base class in C++) is the better design choice.
IBM has some more documentation on how to use this. Briefly, you're using the pointer as an offset into the class. You can't use these pointers apart from the class they refer to, so:
int Car::*pSpeed = &Car::speed;
Car mycar;
mycar.*pSpeed = 65;
It seems a little obscure, but one possible application is if you're trying to write code for deserializing generic data into many different object types, and your code needs to handle object types that it knows absolutely nothing about (for example, your code is in a library, and the objects into which you deserialize were created by a user of your library). The member pointers give you a generic, semi-legible way of referring to the individual data member offsets, without having to resort to typeless void * tricks the way you might for C structs.
It makes it possible to bind member variables and functions in the uniform manner. The following is example with your Car class. More common usage would be binding std::pair::first and ::second when using in STL algorithms and Boost on a map.
#include <list>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/bind.hpp>
class Car {
public:
Car(int s): speed(s) {}
void drive() {
std::cout << "Driving at " << speed << " km/h" << std::endl;
}
int speed;
};
int main() {
using namespace std;
using namespace boost::lambda;
list<Car> l;
l.push_back(Car(10));
l.push_back(Car(140));
l.push_back(Car(130));
l.push_back(Car(60));
// Speeding cars
list<Car> s;
// Binding a value to a member variable.
// Find all cars with speed over 60 km/h.
remove_copy_if(l.begin(), l.end(),
back_inserter(s),
bind(&Car::speed, _1) <= 60);
// Binding a value to a member function.
// Call a function on each car.
for_each(s.begin(), s.end(), bind(&Car::drive, _1));
return 0;
}
You can use an array of pointer to (homogeneous) member data to enable a dual, named-member (i.e. x.data) and array-subscript (i.e. x[idx]) interface.
#include <cassert>
#include <cstddef>
struct vector3 {
float x;
float y;
float z;
float& operator[](std::size_t idx) {
static float vector3::*component[3] = {
&vector3::x, &vector3::y, &vector3::z
};
return this->*component[idx];
}
};
int main()
{
vector3 v = { 0.0f, 1.0f, 2.0f };
assert(&v[0] == &v.x);
assert(&v[1] == &v.y);
assert(&v[2] == &v.z);
for (std::size_t i = 0; i < 3; ++i) {
v[i] += 1.0f;
}
assert(v.x == 1.0f);
assert(v.y == 2.0f);
assert(v.z == 3.0f);
return 0;
}
One way I've used it is if I have two implementations of how to do something in a class and I want to choose one at run-time without having to continually go through an if statement i.e.
class Algorithm
{
public:
Algorithm() : m_impFn( &Algorithm::implementationA ) {}
void frequentlyCalled()
{
// Avoid if ( using A ) else if ( using B ) type of thing
(this->*m_impFn)();
}
private:
void implementationA() { /*...*/ }
void implementationB() { /*...*/ }
typedef void ( Algorithm::*IMP_FN ) ();
IMP_FN m_impFn;
};
Obviously this is only practically useful if you feel the code is being hammered enough that the if statement is slowing things done eg. deep in the guts of some intensive algorithm somewhere. I still think it's more elegant than the if statement even in situations where it has no practical use but that's just my opnion.
Pointers to classes are not real pointers; a class is a logical construct and has no physical existence in memory, however, when you construct a pointer to a member of a class it gives an offset into an object of the member's class where the member can be found; This gives an important conclusion: Since static members are not associated with any object so a pointer to a member CANNOT point to a static member(data or functions) whatsoever
Consider the following:
class x {
public:
int val;
x(int i) { val = i;}
int get_val() { return val; }
int d_val(int i) {return i+i; }
};
int main() {
int (x::* data) = &x::val; //pointer to data member
int (x::* func)(int) = &x::d_val; //pointer to function member
x ob1(1), ob2(2);
cout <<ob1.*data;
cout <<ob2.*data;
cout <<(ob1.*func)(ob1.*data);
cout <<(ob2.*func)(ob2.*data);
return 0;
}
Source: The Complete Reference C++ - Herbert Schildt 4th Edition
Here is an example where pointer to data members could be useful:
#include <iostream>
#include <list>
#include <string>
template <typename Container, typename T, typename DataPtr>
typename Container::value_type searchByDataMember (const Container& container, const T& t, DataPtr ptr) {
for (const typename Container::value_type& x : container) {
if (x->*ptr == t)
return x;
}
return typename Container::value_type{};
}
struct Object {
int ID, value;
std::string name;
Object (int i, int v, const std::string& n) : ID(i), value(v), name(n) {}
};
std::list<Object*> objects { new Object(5,6,"Sam"), new Object(11,7,"Mark"), new Object(9,12,"Rob"),
new Object(2,11,"Tom"), new Object(15,16,"John") };
int main() {
const Object* object = searchByDataMember (objects, 11, &Object::value);
std::cout << object->name << '\n'; // Tom
}
Suppose you have a structure. Inside of that structure are
* some sort of name
* two variables of the same type but with different meaning
struct foo {
std::string a;
std::string b;
};
Okay, now let's say you have a bunch of foos in a container:
// key: some sort of name, value: a foo instance
std::map<std::string, foo> container;
Okay, now suppose you load the data from separate sources, but the data is presented in the same fashion (eg, you need the same parsing method).
You could do something like this:
void readDataFromText(std::istream & input, std::map<std::string, foo> & container, std::string foo::*storage) {
std::string line, name, value;
// while lines are successfully retrieved
while (std::getline(input, line)) {
std::stringstream linestr(line);
if ( line.empty() ) {
continue;
}
// retrieve name and value
linestr >> name >> value;
// store value into correct storage, whichever one is correct
container[name].*storage = value;
}
}
std::map<std::string, foo> readValues() {
std::map<std::string, foo> foos;
std::ifstream a("input-a");
readDataFromText(a, foos, &foo::a);
std::ifstream b("input-b");
readDataFromText(b, foos, &foo::b);
return foos;
}
At this point, calling readValues() will return a container with a unison of "input-a" and "input-b"; all keys will be present, and foos with have either a or b or both.
Just to add some use cases for #anon's & #Oktalist's answer, here's a great reading material about pointer-to-member-function and pointer-to-member-data.
https://www.dre.vanderbilt.edu/~schmidt/PDF/C++-ptmf4.pdf
with pointer to member, we can write generic code like this
template<typename T, typename U>
struct alpha{
T U::*p_some_member;
};
struct beta{
int foo;
};
int main()
{
beta b{};
alpha<int, beta> a{&beta::foo};
b.*(a.p_some_member) = 4;
return 0;
}
I love the * and & operators:
struct X
{
int a {0};
int *ptr {NULL};
int &fa() { return a; }
int *&fptr() { return ptr; }
};
int main(void)
{
X x;
int X::*p1 = &X::a; // pointer-to-member 'int X::a'. Type of p1 = 'int X::*'
x.*p1 = 10;
int *X::*p2 = &X::ptr; // pointer-to-member-pointer 'int *X::ptr'. Type of p2 = 'int *X::*'
x.*p2 = nullptr;
X *xx;
xx->*p2 = nullptr;
int& (X::*p3)() = X::fa; // pointer-to-member-function 'X::fa'. Type of p3 = 'int &(X::*)()'
(x.*p3)() = 20;
(xx->*p3)() = 30;
int *&(X::*p4)() = X::fptr; // pointer-to-member-function 'X::fptr'. Type of p4 = 'int *&(X::*)()'
(x.*p4)() = nullptr;
(xx->*p4)() = nullptr;
}
Indeed all is true as long as the members are public, or static
I think you'd only want to do this if the member data was pretty large (e.g., an object of another pretty hefty class), and you have some external routine which only works on references to objects of that class. You don't want to copy the member object, so this lets you pass it around.
A realworld example of a pointer-to-member could be a more narrow aliasing constructor for std::shared_ptr:
template <typename T>
template <typename U>
shared_ptr<T>::shared_ptr(const shared_ptr<U>, T U::*member);
What that constructor would be good for
assume you have a struct foo:
struct foo {
int ival;
float fval;
};
If you have given a shared_ptr to a foo, you could then retrieve shared_ptr's to its members ival or fval using that constructor:
auto foo_shared = std::make_shared<foo>();
auto ival_shared = std::shared_ptr<int>(foo_shared, &foo::ival);
This would be useful if want to pass the pointer foo_shared->ival to some function which expects a shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr/shared_ptr
Pointer to members are C++'s type safe equivalent for C's offsetof(), which is defined in stddef.h: Both return the information, where a certain field is located within a class or struct. While offsetof() may be used with certain simple enough classes also in C++, it fails miserably for the general case, especially with virtual base classes. So pointer to members were added to the standard. They also provide easier syntax to reference an actual field:
struct C { int a; int b; } c;
int C::* intptr = &C::a; // or &C::b, depending on the field wanted
c.*intptr += 1;
is much easier than:
struct C { int a; int b; } c;
int intoffset = offsetof(struct C, a);
* (int *) (((char *) (void *) &c) + intoffset) += 1;
As to why one wants to use offsetof() (or pointer to members), there are good answers elsewhere on stackoverflow. One example is here: How does the C offsetof macro work?

What does Class::* do? [duplicate]

I came across this strange code snippet which compiles fine:
class Car
{
public:
int speed;
};
int main()
{
int Car::*pSpeed = &Car::speed;
return 0;
}
Why does C++ have this pointer to a non-static data member of a class? What is the use of this strange pointer in real code?
It's a "pointer to member" - the following code illustrates its use:
#include <iostream>
using namespace std;
class Car
{
public:
int speed;
};
int main()
{
int Car::*pSpeed = &Car::speed;
Car c1;
c1.speed = 1; // direct access
cout << "speed is " << c1.speed << endl;
c1.*pSpeed = 2; // access via pointer to member
cout << "speed is " << c1.speed << endl;
return 0;
}
As to why you would want to do that, well it gives you another level of indirection that can solve some tricky problems. But to be honest, I've never had to use them in my own code.
Edit: I can't think off-hand of a convincing use for pointers to member data. Pointer to member functions can be used in pluggable architectures, but once again producing an example in a small space defeats me. The following is my best (untested) try - an Apply function that would do some pre &post processing before applying a user-selected member function to an object:
void Apply( SomeClass * c, void (SomeClass::*func)() ) {
// do hefty pre-call processing
(c->*func)(); // call user specified function
// do hefty post-call processing
}
The parentheses around c->*func are necessary because the ->* operator has lower precedence than the function call operator.
This is the simplest example I can think of that conveys the rare cases where this feature is pertinent:
#include <iostream>
class bowl {
public:
int apples;
int oranges;
};
int count_fruit(bowl * begin, bowl * end, int bowl::*fruit)
{
int count = 0;
for (bowl * iterator = begin; iterator != end; ++ iterator)
count += iterator->*fruit;
return count;
}
int main()
{
bowl bowls[2] = {
{ 1, 2 },
{ 3, 5 }
};
std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::apples) << " apples\n";
std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::oranges) << " oranges\n";
return 0;
}
The thing to note here is the pointer passed in to count_fruit. This saves you having to write separate count_apples and count_oranges functions.
Another application are intrusive lists. The element type can tell the list what its next/prev pointers are. So the list does not use hard-coded names but can still use existing pointers:
// say this is some existing structure. And we want to use
// a list. We can tell it that the next pointer
// is apple::next.
struct apple {
int data;
apple * next;
};
// simple example of a minimal intrusive list. Could specify the
// member pointer as template argument too, if we wanted:
// template<typename E, E *E::*next_ptr>
template<typename E>
struct List {
List(E *E::*next_ptr):head(0), next_ptr(next_ptr) { }
void add(E &e) {
// access its next pointer by the member pointer
e.*next_ptr = head;
head = &e;
}
E * head;
E *E::*next_ptr;
};
int main() {
List<apple> lst(&apple::next);
apple a;
lst.add(a);
}
Here's a real-world example I am working on right now, from signal processing / control systems:
Suppose you have some structure that represents the data you are collecting:
struct Sample {
time_t time;
double value1;
double value2;
double value3;
};
Now suppose that you stuff them into a vector:
std::vector<Sample> samples;
... fill the vector ...
Now suppose that you want to calculate some function (say the mean) of one of the variables over a range of samples, and you want to factor this mean calculation into a function. The pointer-to-member makes it easy:
double Mean(std::vector<Sample>::const_iterator begin,
std::vector<Sample>::const_iterator end,
double Sample::* var)
{
float mean = 0;
int samples = 0;
for(; begin != end; begin++) {
const Sample& s = *begin;
mean += s.*var;
samples++;
}
mean /= samples;
return mean;
}
...
double mean = Mean(samples.begin(), samples.end(), &Sample::value2);
Note Edited 2016/08/05 for a more concise template-function approach
And, of course, you can template it to compute a mean for any forward-iterator and any value type that supports addition with itself and division by size_t:
template<typename Titer, typename S>
S mean(Titer begin, const Titer& end, S std::iterator_traits<Titer>::value_type::* var) {
using T = typename std::iterator_traits<Titer>::value_type;
S sum = 0;
size_t samples = 0;
for( ; begin != end ; ++begin ) {
const T& s = *begin;
sum += s.*var;
samples++;
}
return sum / samples;
}
struct Sample {
double x;
}
std::vector<Sample> samples { {1.0}, {2.0}, {3.0} };
double m = mean(samples.begin(), samples.end(), &Sample::x);
EDIT - The above code has performance implications
You should note, as I soon discovered, that the code above has some serious performance implications. The summary is that if you're calculating a summary statistic on a time series, or calculating an FFT etc, then you should store the values for each variable contiguously in memory. Otherwise, iterating over the series will cause a cache miss for every value retrieved.
Consider the performance of this code:
struct Sample {
float w, x, y, z;
};
std::vector<Sample> series = ...;
float sum = 0;
int samples = 0;
for(auto it = series.begin(); it != series.end(); it++) {
sum += *it.x;
samples++;
}
float mean = sum / samples;
On many architectures, one instance of Sample will fill a cache line. So on each iteration of the loop, one sample will be pulled from memory into the cache. 4 bytes from the cache line will be used and the rest thrown away, and the next iteration will result in another cache miss, memory access and so on.
Much better to do this:
struct Samples {
std::vector<float> w, x, y, z;
};
Samples series = ...;
float sum = 0;
float samples = 0;
for(auto it = series.x.begin(); it != series.x.end(); it++) {
sum += *it;
samples++;
}
float mean = sum / samples;
Now when the first x value is loaded from memory, the next three will also be loaded into the cache (supposing suitable alignment), meaning you don't need any values loaded for the next three iterations.
The above algorithm can be improved somewhat further through the use of SIMD instructions on eg SSE2 architectures. However, these work much better if the values are all contiguous in memory and you can use a single instruction to load four samples together (more in later SSE versions).
YMMV - design your data structures to suit your algorithm.
You can later access this member, on any instance:
int main()
{
int Car::*pSpeed = &Car::speed;
Car myCar;
Car yourCar;
int mySpeed = myCar.*pSpeed;
int yourSpeed = yourCar.*pSpeed;
assert(mySpeed > yourSpeed); // ;-)
return 0;
}
Note that you do need an instance to call it on, so it does not work like a delegate.
It is used rarely, I've needed it maybe once or twice in all my years.
Normally using an interface (i.e. a pure base class in C++) is the better design choice.
IBM has some more documentation on how to use this. Briefly, you're using the pointer as an offset into the class. You can't use these pointers apart from the class they refer to, so:
int Car::*pSpeed = &Car::speed;
Car mycar;
mycar.*pSpeed = 65;
It seems a little obscure, but one possible application is if you're trying to write code for deserializing generic data into many different object types, and your code needs to handle object types that it knows absolutely nothing about (for example, your code is in a library, and the objects into which you deserialize were created by a user of your library). The member pointers give you a generic, semi-legible way of referring to the individual data member offsets, without having to resort to typeless void * tricks the way you might for C structs.
It makes it possible to bind member variables and functions in the uniform manner. The following is example with your Car class. More common usage would be binding std::pair::first and ::second when using in STL algorithms and Boost on a map.
#include <list>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/bind.hpp>
class Car {
public:
Car(int s): speed(s) {}
void drive() {
std::cout << "Driving at " << speed << " km/h" << std::endl;
}
int speed;
};
int main() {
using namespace std;
using namespace boost::lambda;
list<Car> l;
l.push_back(Car(10));
l.push_back(Car(140));
l.push_back(Car(130));
l.push_back(Car(60));
// Speeding cars
list<Car> s;
// Binding a value to a member variable.
// Find all cars with speed over 60 km/h.
remove_copy_if(l.begin(), l.end(),
back_inserter(s),
bind(&Car::speed, _1) <= 60);
// Binding a value to a member function.
// Call a function on each car.
for_each(s.begin(), s.end(), bind(&Car::drive, _1));
return 0;
}
You can use an array of pointer to (homogeneous) member data to enable a dual, named-member (i.e. x.data) and array-subscript (i.e. x[idx]) interface.
#include <cassert>
#include <cstddef>
struct vector3 {
float x;
float y;
float z;
float& operator[](std::size_t idx) {
static float vector3::*component[3] = {
&vector3::x, &vector3::y, &vector3::z
};
return this->*component[idx];
}
};
int main()
{
vector3 v = { 0.0f, 1.0f, 2.0f };
assert(&v[0] == &v.x);
assert(&v[1] == &v.y);
assert(&v[2] == &v.z);
for (std::size_t i = 0; i < 3; ++i) {
v[i] += 1.0f;
}
assert(v.x == 1.0f);
assert(v.y == 2.0f);
assert(v.z == 3.0f);
return 0;
}
One way I've used it is if I have two implementations of how to do something in a class and I want to choose one at run-time without having to continually go through an if statement i.e.
class Algorithm
{
public:
Algorithm() : m_impFn( &Algorithm::implementationA ) {}
void frequentlyCalled()
{
// Avoid if ( using A ) else if ( using B ) type of thing
(this->*m_impFn)();
}
private:
void implementationA() { /*...*/ }
void implementationB() { /*...*/ }
typedef void ( Algorithm::*IMP_FN ) ();
IMP_FN m_impFn;
};
Obviously this is only practically useful if you feel the code is being hammered enough that the if statement is slowing things done eg. deep in the guts of some intensive algorithm somewhere. I still think it's more elegant than the if statement even in situations where it has no practical use but that's just my opnion.
Pointers to classes are not real pointers; a class is a logical construct and has no physical existence in memory, however, when you construct a pointer to a member of a class it gives an offset into an object of the member's class where the member can be found; This gives an important conclusion: Since static members are not associated with any object so a pointer to a member CANNOT point to a static member(data or functions) whatsoever
Consider the following:
class x {
public:
int val;
x(int i) { val = i;}
int get_val() { return val; }
int d_val(int i) {return i+i; }
};
int main() {
int (x::* data) = &x::val; //pointer to data member
int (x::* func)(int) = &x::d_val; //pointer to function member
x ob1(1), ob2(2);
cout <<ob1.*data;
cout <<ob2.*data;
cout <<(ob1.*func)(ob1.*data);
cout <<(ob2.*func)(ob2.*data);
return 0;
}
Source: The Complete Reference C++ - Herbert Schildt 4th Edition
Here is an example where pointer to data members could be useful:
#include <iostream>
#include <list>
#include <string>
template <typename Container, typename T, typename DataPtr>
typename Container::value_type searchByDataMember (const Container& container, const T& t, DataPtr ptr) {
for (const typename Container::value_type& x : container) {
if (x->*ptr == t)
return x;
}
return typename Container::value_type{};
}
struct Object {
int ID, value;
std::string name;
Object (int i, int v, const std::string& n) : ID(i), value(v), name(n) {}
};
std::list<Object*> objects { new Object(5,6,"Sam"), new Object(11,7,"Mark"), new Object(9,12,"Rob"),
new Object(2,11,"Tom"), new Object(15,16,"John") };
int main() {
const Object* object = searchByDataMember (objects, 11, &Object::value);
std::cout << object->name << '\n'; // Tom
}
Suppose you have a structure. Inside of that structure are
* some sort of name
* two variables of the same type but with different meaning
struct foo {
std::string a;
std::string b;
};
Okay, now let's say you have a bunch of foos in a container:
// key: some sort of name, value: a foo instance
std::map<std::string, foo> container;
Okay, now suppose you load the data from separate sources, but the data is presented in the same fashion (eg, you need the same parsing method).
You could do something like this:
void readDataFromText(std::istream & input, std::map<std::string, foo> & container, std::string foo::*storage) {
std::string line, name, value;
// while lines are successfully retrieved
while (std::getline(input, line)) {
std::stringstream linestr(line);
if ( line.empty() ) {
continue;
}
// retrieve name and value
linestr >> name >> value;
// store value into correct storage, whichever one is correct
container[name].*storage = value;
}
}
std::map<std::string, foo> readValues() {
std::map<std::string, foo> foos;
std::ifstream a("input-a");
readDataFromText(a, foos, &foo::a);
std::ifstream b("input-b");
readDataFromText(b, foos, &foo::b);
return foos;
}
At this point, calling readValues() will return a container with a unison of "input-a" and "input-b"; all keys will be present, and foos with have either a or b or both.
Just to add some use cases for #anon's & #Oktalist's answer, here's a great reading material about pointer-to-member-function and pointer-to-member-data.
https://www.dre.vanderbilt.edu/~schmidt/PDF/C++-ptmf4.pdf
with pointer to member, we can write generic code like this
template<typename T, typename U>
struct alpha{
T U::*p_some_member;
};
struct beta{
int foo;
};
int main()
{
beta b{};
alpha<int, beta> a{&beta::foo};
b.*(a.p_some_member) = 4;
return 0;
}
I love the * and & operators:
struct X
{
int a {0};
int *ptr {NULL};
int &fa() { return a; }
int *&fptr() { return ptr; }
};
int main(void)
{
X x;
int X::*p1 = &X::a; // pointer-to-member 'int X::a'. Type of p1 = 'int X::*'
x.*p1 = 10;
int *X::*p2 = &X::ptr; // pointer-to-member-pointer 'int *X::ptr'. Type of p2 = 'int *X::*'
x.*p2 = nullptr;
X *xx;
xx->*p2 = nullptr;
int& (X::*p3)() = X::fa; // pointer-to-member-function 'X::fa'. Type of p3 = 'int &(X::*)()'
(x.*p3)() = 20;
(xx->*p3)() = 30;
int *&(X::*p4)() = X::fptr; // pointer-to-member-function 'X::fptr'. Type of p4 = 'int *&(X::*)()'
(x.*p4)() = nullptr;
(xx->*p4)() = nullptr;
}
Indeed all is true as long as the members are public, or static
I think you'd only want to do this if the member data was pretty large (e.g., an object of another pretty hefty class), and you have some external routine which only works on references to objects of that class. You don't want to copy the member object, so this lets you pass it around.
A realworld example of a pointer-to-member could be a more narrow aliasing constructor for std::shared_ptr:
template <typename T>
template <typename U>
shared_ptr<T>::shared_ptr(const shared_ptr<U>, T U::*member);
What that constructor would be good for
assume you have a struct foo:
struct foo {
int ival;
float fval;
};
If you have given a shared_ptr to a foo, you could then retrieve shared_ptr's to its members ival or fval using that constructor:
auto foo_shared = std::make_shared<foo>();
auto ival_shared = std::shared_ptr<int>(foo_shared, &foo::ival);
This would be useful if want to pass the pointer foo_shared->ival to some function which expects a shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr/shared_ptr
Pointer to members are C++'s type safe equivalent for C's offsetof(), which is defined in stddef.h: Both return the information, where a certain field is located within a class or struct. While offsetof() may be used with certain simple enough classes also in C++, it fails miserably for the general case, especially with virtual base classes. So pointer to members were added to the standard. They also provide easier syntax to reference an actual field:
struct C { int a; int b; } c;
int C::* intptr = &C::a; // or &C::b, depending on the field wanted
c.*intptr += 1;
is much easier than:
struct C { int a; int b; } c;
int intoffset = offsetof(struct C, a);
* (int *) (((char *) (void *) &c) + intoffset) += 1;
As to why one wants to use offsetof() (or pointer to members), there are good answers elsewhere on stackoverflow. One example is here: How does the C offsetof macro work?

Can I pass an array of a class that is within/or is a subcomponent of an array of classes to a function in C++?

Can I pass an array (contactsLonN ..) of a class that is within/or a subcomponent of an array of classes (chainref) to a function in C++?
// ChainNetwork.cpp
void build_contact_map(Chain *chain, int num_chains,Contact *map) {
//accept 1 of contactsLonN, contactsLonS, contactsLatW, contactsLatE;
}
// ChainNetwork.h
class Vector {
public:
double x;
double y;
double z;
Vector (); // Constructor declared.
};
inline Vector::Vector() {
x = 0.0;
y = 0.0;
z = 0.0;
}
class Contact {
public:
int cresid;
double distance;
Contact (); // Constructor declared.
};
inline Contact::Contact() {
cresid = -1;
distance = 0.0;
}
class ChainNetwork {
public:
struct Contact contactsLonN[1000][20];
struct Contact contactsLonS[1000][20];
struct Contact contactsLatW[1000][20];
struct Contact contactsLatE[1000][20];
}
// declarations in ChainNetwork.h
void build_contact_map(ChainNetwork *chain, int num_chains,Contact *map);
double distance ( Vector v1, Vector v2 );
// main.cpp main()
ChainNetwork *chainref;
try {
chainref = new ChainNetwork [num_chains];
} catch (std::bad_alloc xa) {
std::cout << "Allocation Failure\n";
return 1;
}
// 1 generic function I would like to call .. but seems to grow uncontrollably if I try to use switch(s)
build_contact_map(chainref,chains_to_use,chainref[i].contactsLonN);
build_contact_map(chainref,chains_to_use,chainref[i].contactsLonS);
build_contact_map(chainref,chains_to_use,chainref[i].contactsLatW);
build_contact_map(chainref,chains_to_use,chainref[i].contactsLatE);
Note: Related results usually employed simpler structures like ints, float, or struct, but not an array or double index array of a class within a class.
Note2: I have made extensive use of functions receiving "Vector" correctly, by reference or address; how about contactsLonN ..
Contact[1000][20] cannot be converted to Contact*; they are different types. You could change build_contact_contact_map() to accept Contact (*map)[20], or, better yet, use a std::vector<std::vector<Contact>> instead of raw arrays.