AWS create cluster running into error - amazon-web-services

New to AWS. The below job is running into error. Please help
mrjob create-cluster --instance-type m1.medium --region us-east-1 --num-core-instances 3
Trace:
File "c:\python27\lib\site-packages\mrjob\emr.py", line 817, in
_set_cloud_tmp_dir
if (tmp_bucket.get_location() == s3_location_constraint_for_region( File
"c:\python27\lib\site-packages\boto\s3\bucket.py", line 1146, in
get_location
response.status, response.reason, body) error: boto.exception.S3ResponseError: S3ResponseError: 400 Bad Request
InvalidRequestThe authorization mechanism
you have provided is not supported. Please use
AWS4-HMAC-SHA256.AFAFB32563D25847nQrsnGiNfsvYpDYxIWKlvOCWEp5VPuPm2mEkKuDvb29+SpRCjs029CYTx3SjHEQJH5zuYB9XUUo=

Related

Creating Connection for RedshiftDataOperator

So i when to the airflow documentation for aws redshift there is 2 operator that can execute the sql query they are RedshiftSQLOperator and RedshiftDataOperator. I already implemented my job using RedshiftSQLOperator but i want to do it using RedshiftDataOperator instead, because i dont want to using postgres connection in RedshiftSQLOperator but AWS API.
RedshiftDataOperator Documentation
I had read this documentation there is aws_conn_id in the parameter. But when im trying to use the same connection id there is error.
[2023-01-11, 04:55:56 UTC] {base.py:68} INFO - Using connection ID 'redshift_default' for task execution.
[2023-01-11, 04:55:56 UTC] {base_aws.py:206} INFO - Credentials retrieved from login
[2023-01-11, 04:55:56 UTC] {taskinstance.py:1889} ERROR - Task failed with exception
Traceback (most recent call last):
File "/home/airflow/.local/lib/python3.7/site-packages/airflow/providers/amazon/aws/operators/redshift_data.py", line 146, in execute
self.statement_id = self.execute_query()
File "/home/airflow/.local/lib/python3.7/site-packages/airflow/providers/amazon/aws/operators/redshift_data.py", line 124, in execute_query
resp = self.hook.conn.execute_statement(**filter_values)
File "/home/airflow/.local/lib/python3.7/site-packages/botocore/client.py", line 415, in _api_call
return self._make_api_call(operation_name, kwargs)
File "/home/airflow/.local/lib/python3.7/site-packages/botocore/client.py", line 745, in _make_api_call
raise error_class(parsed_response, operation_name)
botocore.exceptions.ClientError: An error occurred (UnrecognizedClientException) when calling the ExecuteStatement operation: The security token included in the request is invalid.
From task id
redshift_data_task = RedshiftDataOperator(
task_id='redshift_data_task',
database='rds',
region='ap-southeast-1',
aws_conn_id='redshift_default',
sql="""
call some_procedure();
"""
)
What should i fill in the airflow connection ? Because in the documentation there is no example of value that i should fill to airflow. Thanks
Airflow RedshiftDataOperator Connection Required Value
Have you tried using the Amazon Redshift connection? There is both an option for authenticating using your Redshift credentials:
Connection ID: redshift_default
Connection Type: Amazon Redshift
Host: <your-redshift-endpoint> (for example, redshift-cluster-1.123456789.us-west-1.redshift.amazonaws.com)
Schema: <your-redshift-database> (for example, dev, test, prod, etc.)
Login: <your-redshift-username> (for example, awsuser)
Password: <your-redshift-password>
Port: <your-redshift-port> (for example, 5439)
(source)
and an option for using an IAM role (there is an example in the first link).
Disclaimer: I work at Astronomer :)
EDIT: Tested the following with Airflow 2.5.0 and Amazon provider 6.2.0:
Added the IP of my Airflow instance to the VPC security group with "All traffic" access.
Airflow Connection with the connection id aws_default, Connection type "Amazon Web Services", extra: { "aws_access_key_id": "<your-access-key-id>", "aws_secret_access_key": "<your-secret-access-key>", "region_name": "<your-region-name>" }. All other fields blank. I used a root key for my toy-aws. If you use other credentials you need to make sure that IAM role has access and the right permissions to the Redshift cluster (there is a list in the link above).
Operator code:
red = RedshiftDataOperator(
task_id="red",
database="dev",
sql="SELECT * FROM dev.public.users LIMIT 5;",
cluster_identifier="redshift-cluster-1",
db_user="awsuser",
aws_conn_id="aws_default"
)

GCP| Composer Dataproc submit job| Auth credential not found

I am running a GCP composer cluster on GKE. I am defining a DAG to submit a job to dataproc cluster. I have read GCP doc, and it says that Composer's service account will get used by the workers to send the dataproc api requests.
But DataprocSubmitJobOperator reports error in getting the auth credentials.
Stack trace below. Composer env info attached.
I need suggestion to fix this issue.
[2022-08-23, 16:03:25 UTC] {taskinstance.py:1448} INFO - Exporting the following env vars:
AIRFLOW_CTX_DAG_OWNER=harshit.bapna#dexterity.ai
AIRFLOW_CTX_DAG_ID=dataproc_spark_operators
AIRFLOW_CTX_TASK_ID=pyspark_task
AIRFLOW_CTX_EXECUTION_DATE=2022-08-23T16:03:16.986859+00:00
AIRFLOW_CTX_DAG_RUN_ID=manual__2022-08-23T16:03:16.986859+00:00
[2022-08-23, 16:03:25 UTC] {dataproc.py:1847} INFO - Submitting job
[2022-08-23, 16:03:25 UTC] {credentials_provider.py:312} INFO - Getting connection using `google.auth.default()` since no key file is defined for hook.
[2022-08-23, 16:03:25 UTC] {taskinstance.py:1776} ERROR - Task failed with exception
Traceback (most recent call last):
File "/opt/python3.8/lib/python3.8/site-packages/airflow/providers/google/cloud/operators/dataproc.py", line 1849, in execute
job_object = self.hook.submit_job(
File "/opt/python3.8/lib/python3.8/site-packages/airflow/providers/google/common/hooks/base_google.py", line 439, in inner_wrapper
return func(self, *args, **kwargs)
File "/opt/python3.8/lib/python3.8/site-packages/airflow/providers/google/cloud/hooks/dataproc.py", line 869, in submit_job
client = self.get_job_client(region=region)
File "/opt/python3.8/lib/python3.8/site-packages/airflow/providers/google/cloud/hooks/dataproc.py", line 258, in get_job_client
credentials=self._get_credentials(), client_info=CLIENT_INFO, client_options=client_options
File "/opt/python3.8/lib/python3.8/site-packages/airflow/providers/google/common/hooks/base_google.py", line 261, in _get_credentials
credentials, _ = self._get_credentials_and_project_id()
File "/opt/python3.8/lib/python3.8/site-packages/airflow/providers/google/common/hooks/base_google.py", line 240, in _get_credentials_and_project_id
credentials, project_id = get_credentials_and_project_id(
File "/opt/python3.8/lib/python3.8/site-packages/airflow/providers/google/cloud/utils/credentials_provider.py", line 321, in get_credentials_and_project_id
return _CredentialProvider(*args, **kwargs).get_credentials_and_project()
File "/opt/python3.8/lib/python3.8/site-packages/airflow/providers/google/cloud/utils/credentials_provider.py", line 229, in get_credentials_and_project
credentials, project_id = self._get_credentials_using_adc()
File "/opt/python3.8/lib/python3.8/site-packages/airflow/providers/google/cloud/utils/credentials_provider.py", line 307, in _get_credentials_using_adc
credentials, project_id = google.auth.default(scopes=self.scopes)
File "/opt/python3.8/lib/python3.8/site-packages/google/auth/_default.py", line 459, in default
credentials, project_id = checker()
File "/opt/python3.8/lib/python3.8/site-packages/google/auth/_default.py", line 221, in _get_explicit_environ_credentials
credentials, project_id = load_credentials_from_file(
File "/opt/python3.8/lib/python3.8/site-packages/google/auth/_default.py", line 107, in load_credentials_from_file
raise exceptions.DefaultCredentialsError(
google.auth.exceptions.DefaultCredentialsError: File celery was not found.
[2022-08-23, 16:03:25 UTC] {taskinstance.py:1279} INFO - Marking task as UP_FOR_RETRY. dag_id=dataproc_spark_operators, task_id=pyspark_task, execution_date=20220823T160316, start_date=20220823T160324, end_date=20220823T160325
[2022-08-23, 16:03:25 UTC] {standard_task_runner.py:93} ERROR - Failed to execute job 32837 for task pyspark_task (File celery was not found.; 356144)
[2022-08-23, 16:03:26 UTC] {local_task_job.py:154} INFO - Task exited with return code 1
[2022-08-23, 16:03:26 UTC] {local_task_job.py:264} INFO - 0 downstream tasks scheduled from follow-on schedule check
GCP Composer Env
Based on the error File celery was not found, I think that the Application Default Credentials (ADC) tries to read a file named celery, and it doesn't find it, so check if you set the environment variable GOOGLE_APPLICATION_CREDENTIALS, because if you set it, ADC will read the the file to use it:
If the environment variable GOOGLE_APPLICATION_CREDENTIALS is set, ADC uses the service account key or configuration file that the variable points to.
If the environment variable GOOGLE_APPLICATION_CREDENTIALS isn't set, ADC uses the service account that is attached to the resource that is running your code.
This service account might be a default service account provided by Compute Engine, Google Kubernetes Engine, App Engine, Cloud Run, or Cloud Functions. It might also be a user-managed service account that you created.
GCP doc

Ansible AWS using a role_arn with ansible playbook not giving permissions

I have been stuck on this issue for days, and I can't seem to find anything around the exact same problem I've been having. Currently, I have credentials and config set up like so:
~/.aws/credentials
[default]
aws_access_key_id = ###########
aws_secret_access_key = ######################
[dev]
role_arn=arn:aws:iam::############:role/###AccessRole
source_profile=default
~/.aws/config
[default]
region = us-east-1
output = json
[profile dev]
role_arn = arn:aws:iam::############:role/###AccessRole
source_profile = default
When I run aws cli commands, everything runs fine. If I end up using AWS creds which have admin permissions, it works - but I can't do this in our system.
Currently, the default role can't access anything on purpose, it assumes the dev role. However, I can't get Ansible to recognise dev. I configured it all, and it works across Terraform, AWS CLI, Git. Currently, this is my input and error using ansible-playbook. I have removed certain info/linted the output below. As you can see, I'm using ec2.ini and ec2.py.
Has anyone come across this? Is it to do with using role_arn with Ansible? I have tried a plethora of things to get this to work, the state below is the current state of things.
Thanks in advance!
AWS_PROFILE=dev ansible-playbook -i ./inventory/ec2.py playbook.yml --private-key ###.pem
----
[WARNING]: * Failed to parse {home}/Ansible/Bastion/inventory/ec2.py with script
plugin: Inventory script ({home}/Ansible/Bastion/inventory/ec2.py) had an
execution error: Traceback (most recent call last): File
"{home}/Ansible/Bastion/inventory/ec2.py", line 1712, in <module>
Ec2Inventory() File "{home}Ansible/Bastion/inventory/ec2.py", line 285, in
__init__ self.do_api_calls_update_cache() File
"{home}/Ansible/Bastion/inventory/ec2.py", line 552, in do_api_calls_update_cache
self.get_instances_by_region(region) File
"{home}/Ansible/Bastion/inventory/ec2.py", line 608, in get_instances_by_region
conn = self.connect(region) File "{home}/Ansible/Bastion/inventory/ec2.py", line
570, in connect conn = self.connect_to_aws(ec2, region) File
"{home}/Ansible/Bastion/inventory/ec2.py", line 591, in connect_to_aws
sts_conn = sts.connect_to_region(region, **connect_args) File "{home}.local/lib/python2.7/site-
packages/boto/sts/__init__.py", line 51, in connect_to_region **kw_params) File
"{home}/.local/lib/python2.7/site-packages/boto/regioninfo.py", line 220, in connect return
region.connect(**kw_params) File "{home}/.local/lib/python2.7/site-packages/boto/regioninfo.py",
line 290, in connect return self.connection_cls(region=self, **kw_params) File
"{home}/.local/lib/python2.7/site-packages/boto/sts/connection.py", line 107, in __init__
provider=provider) File "{home}/.local/lib/python2.7/site-packages/boto/connection.py", line
1100, in __init__ provider=provider) File "{home}/.local/lib/python2.7/site-
packages/boto/connection.py", line 555, in __init__ profile_name) File
"{home}/.local/lib/python2.7/site-packages/boto/provider.py", line 201, in __init__
self.get_credentials(access_key, secret_key, security_token, profile_name) File
"{home}/.local/lib/python2.7/site-packages/boto/provider.py", line 297, in get_credentials
profile_name) boto.provider.ProfileNotFoundError: Profile "dev" not found!
[WARNING]: * Failed to parse {home}/Ansible/Bastion/inventory/ec2.py with ini
plugin: {home}/Ansible/Bastion/inventory/ec2.py:3: Error parsing host definition
''''': No closing quotation
[WARNING]: Unable to parse {home}/Ansible/Bastion/inventory/ec2.py as an inventory
source
[WARNING]: No inventory was parsed, only implicit localhost is available
[WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit localhost does
not match 'all'
PLAY [Create kp and access instance] *********************************************************
TASK [Setup variables] *************************************************************************************
ok: [localhost]
TASK [Backup previous key] *************************************************************************
changed: [localhost]
TASK [generate SSH key]
*******************************************************************
changed: [localhost]
TASK [Start and register instance] *****************************************************************
fatal: [localhost]: FAILED! => {"changed": false, "msg": "Profile given for AWS was not found. Please fix and retry."}
PLAY RECAP *************************************************************************************************
localhost : ok=3 changed=2 unreachable=0 failed=1 skipped=0 rescued=0 ignored=0
EDITS:
Name Value Type Location
---- ----- ---- --------
profile dev manual --profile
access_key ****************#### assume-role
secret_key ****************#### assume-role
region <not set> None None
{
"UserId": "<ACCESS_KEY?>:botocore-session-##########",
"Account": "############",
"Arn": "arn:aws:sts::############:assumed-role/###AccessRole/botocore-session-##########"
}
ec2.py is too old, it only use boto and can't work with roles. It is also deprecated, the correct way now to use aws dynamic inventory is to use aws_ec2 from the aws collection. It used boto3, support roles and is in the end more flexible. If needed, there is a compatiblity ec2.py config here, but it is recommended always to use the aws_ec2 groups and variables directly for the long run.
Check this link in github for the full story

Unable to load AWS credentials from any provider in the chain - error - when trying to load model from S3

I have an MLLib model saved in a folder on S3, say bucket-name/test-model. Now, I have a spark cluster (let's say on a single machine for now). I am running the following commands to load the model:
pyspark --packages com.amazonaws:aws-java-sdk:1.7.4,org.apache.hadoop:hadoop-aws:2.7.3
Then,
sc.setSystemProperty("com.amazonaws.services.s3.enableV4", "true")
hadoopConf = sc._jsc.hadoopConfiguration()
hadoopConf.set("fs.s3a.awsAccessKeyId", AWS_ACCESS_KEY)
hadoopConf.set("fs.s3a.awsSecretAccessKey", AWS_SECRET_KEY)
hadoopConf.set("fs.s3a.endpoint", "s3.us-east-1.amazonaws.com")
hadoopConf.set("com.amazonaws.services.s3a.enableV4", "true")
hadoopConf.set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
from pyspark.ml.classification import RandomForestClassifier, RandomForestClassificationModel
m1 = RandomForestClassificationModel.load('s3a://test-bucket/test-model')
and I get the following error:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/user/.local/lib/python3.6/site-packages/pyspark/ml/util.py", line 362, in load
return cls.read().load(path)
File "/home/user/.local/lib/python3.6/site-packages/pyspark/ml/util.py", line 300, in load
java_obj = self._jread.load(path)
File "/home/user/.local/lib/python3.6/site-packages/pyspark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
File "/home/user/.local/lib/python3.6/site-packages/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/home/user/.local/lib/python3.6/site-packages/pyspark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o35.load.
: com.amazonaws.AmazonClientException: Unable to load AWS credentials from any provider in the chain
at com.amazonaws.auth.AWSCredentialsProviderChain.getCredentials(AWSCredentialsProviderChain.java:117)
at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:3521)
at com.amazonaws.services.s3.AmazonS3Client.headBucket(AmazonS3Client.java:1031)
at com.amazonaws.services.s3.AmazonS3Client.doesBucketExist(AmazonS3Client.java:994)
at org.apache.hadoop.fs.s3a.S3AFileSystem.initialize(S3AFileSystem.java:297)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2669)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:94)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2703)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2685)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:373)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:258)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:229)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:204)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)
at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1343)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.take(RDD.scala:1337)
at org.apache.spark.rdd.RDD$$anonfun$first$1.apply(RDD.scala:1378)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.first(RDD.scala:1377)
at org.apache.spark.ml.util.DefaultParamsReader$.loadMetadata(ReadWrite.scala:615)
at org.apache.spark.ml.tree.EnsembleModelReadWrite$.loadImpl(treeModels.scala:427)
at org.apache.spark.ml.classification.RandomForestClassificationModel$RandomForestClassificationModelReader.load(RandomForestClassifier.scala:316)
at org.apache.spark.ml.classification.RandomForestClassificationModel$RandomForestClassificationModelReader.load(RandomForestClassifier.scala:306)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Honestly, these lines of code are taken from the web and I have no idea about storing and loading MLLib models on to S3. Any help here will be appreciated and also the next step for me is to do the same on a cluster of machines. So any heads up will also be appreciated.
You are using the wrong property names for the s3a connector.
see https://hadoop.apache.org/docs/current3/hadoop-aws/tools/hadoop-aws/#Authentication_properties
Specifically:
fs.s3a.access.key your access key
fs.s3a.secret.key your secret key
Note in particular
it's lower case
there are dots/periods between access and key, secret and key
The mixedCaseOptions are from the s3n connector which is obsolete and has long been deleted from the hadoop codebase. the s3a connector will simply ignore them
The AWS Java SDK has a credential resolution logic/chain to properly resolve the AWS credentials to use when interfacing with AWS services.
See http://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
This error means the SDK could not find credentials in any of the places the SDK looks at. Make sure the credentials exist in at least one of the places mentioned in the above link.
As a starting point, populate environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY. The AWS SDK for Java uses the EnvironmentVariableCredentialsProvider class to load these credentials.
This piece of code did the trick for me.
First, define AWS credential:
config = configparser.ConfigParser()
config.read_file(open('aws/dl.cfg'))
os.environ["AWS_ACCESS_KEY_ID"]= config['default']['AWS_ACCESS_KEY_ID']
os.environ["AWS_SECRET_ACCESS_KEY"]= config['default']['AWS_SECRET_ACCESS_KEY']
Then, start a session like this:
spark = SparkSession \
.builder \
.config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \
.config("spark.hadoop.fs.s3a.impl","org.apache.hadoop.fs.s3a.S3AFileSystem") \
.config("spark.hadoop.fs.s3a.awsAccessKeyId", os.environ['AWS_ACCESS_KEY_ID']) \
.config("spark.hadoop.fs.s3a.awsSecretAccessKey", os.environ['AWS_SECRET_ACCESS_KEY']) \
.getOrCreate()

EndpointConnectionError: Could not connect to the endpoint URL: "http://169.254.169.254/....."

I am trying to create AWS RDS and deploy lambda function using a python script. However, I am getting below error, looks like it is unable to communicate with the aws commands to create rds.
DEBUG: Caught retryable HTTP exception while making metadata service request to http://169.254.169.254/latest/meta-data/iam/security-credentials/: Could not connect to the endpoint URL: "http://169.254.169.254/latest/meta-data/iam/security-credentials/"
Traceback (most recent call last):
File "/usr/lib/python2.7/site-packages/botocore/utils.py", line 303, in _get_request
response = self._session.send(request.prepare())
File "/usr/lib/python2.7/site-packages/botocore/httpsession.py", line 282, in send raise EndpointConnectionError(endpoint_url=request.url, error=e)
EndpointConnectionError: Could not connect to the endpoint URL: "http://169.254.169.254/latest/meta-data/iam/security-credentials/"
I am getting the aws credentials through SSO okta. In the ~/.aws directory,below are the contents of 'credentials' and 'config' file respectively.
[default]
aws_access_key_id = <Key Id>
aws_secret_access_key = <Secret Key>
aws_session_token = <Token>
[default]
region = us-west-2
```python
```
for az in availability_zones:
if aurora.get_db_instance(db_instance_identifier + "-" + az)[0] != 0:
aurora.create_db_instance(db_cluster_identifier, db_instance_identifier + "-" + az, az, subnet_group_identifier, db_instance_type)
else:
aurora.modify_db_instance(db_cluster_identifier, db_instance_identifier + "-" + az, az, db_instance_type)
# Wait for DB to become available for connection
iter_max = 15
iteration = 0
for az in availability_zones:
while aurora.get_db_instance(db_instance_identifier + "-" + az)[1]["DBInstances"][0]["DBInstanceStatus"] != "available":
iteration += 1
if iteration < iter_max:
logging.info("Waiting for DB instances to become available - iteration " + str(iteration) + " of " + str(iter_max))
time.sleep(10*iteration)
else:
raise Exception("Waiting for DB Instance to become available timed out!")
cluster_endpoint = aurora.get_db_cluster(db_cluster_identifier)[1]["DBClusters"][0]["Endpoint"]
The actual error below, coming from the while loop, DEBUG shows unable to locate credential, but the credential is there. I can deploy an Elastic Beanstalk environment from cli using the same aws credential, but not this. Looks like the above aurora.create_db_instance command failed.
DEBUG: Unable to locate credentials
Traceback (most recent call last):
File "./deploy_api.py", line 753, in <module> sync_rds()
File "./deploy_api.py", line 57, in sync_rds
while aurora.get_db_instance(db_instance_identifier + "-" + az)[1]["DBInstances"][0]["DBInstanceStatus"] != "available":
TypeError: 'NoneType' object has no attribute '__getitem__'
I had this error because an ECS task didn't have permissions to write to DynamoDB. The code causing the problem was:
from boto3 import resource
dynamodb_resource = resource("dynamodb")
The problem was resolved when I filled in the region_name, aws_access_key_id and aws_secret_access_key parameters for the resource() function call.
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html#boto3.session.Session.resource
If this doesn't solve your problem then check your code that connects to AWS services and make sure that you are filling in all of the proper function parameters.