VTK Python Wrapper - Exporting Surface Plot - c++

I'm using VTK 8.0.1 and python 3.5 and am brand new to VTK. I am trying to export a surface plot using vtkPlotSurface.
By referencing TestSurfacePlot.cxx I have successfully created a surface plot and have been able to render it in python (even though it doesn't really look like a surface plot).
import vtk
import math as m
import numpy as np
## Set things up
chart = vtk.vtkChartXYZ()
view = vtk.vtkContextView()
view.GetRenderWindow().SetSize(800,800)
view.GetScene().AddItem(chart)
## Create a surface
table = vtk.vtkTable()
numPoints = 70;
inc = 9.424778 / (numPoints - 1);
for i in range(0,numPoints):
arr = vtk.vtkFloatArray()
table.AddColumn(arr)
table.SetNumberOfRows(numPoints)
for i in range(0,numPoints):
x = i * inc;
for j in range(0,numPoints):
y = j * inc;
table.SetValue(i, j, m.sin(m.sqrt(x*x + y*y)))
# Using table, create a surface plot
test = vtk.vtkPlotSurface()
test.SetXRange(0,9.424778)
test.SetYRange(0,9.424778)
test.SetInputData(table)
# Start visualizing the surface plot
chart.AddPlot(test)
view.GetRenderWindow().SetMultiSamples(0)
view.GetInteractor().Initialize()
view.GetRenderWindow().Render()
out = vtk.vtkOBJExporter()
out.SetFilePrefix("test")
out.SetInput(chart)
out.Write()
view.GetInteractor().Start()
In order to better visualize what I've made, I wanted to try and export it and then visualize using Paraview/Visit. However, I'm struggling to find any concrete examples where this type of vtk object is exported...
I have tried adding the following:
out = vtk.vtkOBJExporter()
out.SetFilePrefix("test")
out.SetInput(chart)
out.Write()
But end up with the following type error:
TypeError: SetInput argument 1: method requires a vtkRenderWindow, a vtkContextView was provided.
Can anyone provide assistance? Thanks in advance.

You might benefit from using PyVista as it makes creating these types of spatially reference datasets and rendering much more user-friendly. I would avoid using a vtkTable like you have above and move towards VTK data objects that actually represent meshes/surfaces.
import pyvista as pv
import numpy as np
# Create a spatial reference
numPoints = 70
inc = 9.424778 / (numPoints - 1)
x = np.arange(0, numPoints) * inc
y = np.arange(0, numPoints) * inc
xx, yy, _ = np.meshgrid(x, y, [0])
zz = np.sin(np.sqrt(xx*xx + yy*yy))
# Make a PyVista/VTK mesh
surface = pv.StructuredGrid(xx, yy, zz)
# Plot it!
surface.plot(show_edges=True, show_grid=True, notebook=False)
# or save it out for opening in ParaView
surface.save("my_surface.vtk")

Related

What is the correct usage of TransformedPiecewiseLinearFunctionND in Pyomo?

Background
I'm trying to use a surrogate model in Pyomo. Given a set of data labeled x, y, and z, I would like to write z as an inexpensive function of x and y.
Issue
Pyomo has tools for multivariate piecewise linear functions. See here. I setup a simple example and my function is evaluating correctly. But there there doesn't seem to be any constraint getting added for Z. I would expect the model value to be equal to the interpolated value below. I'm guessing I did something wroing in setting up TransformedPiecewiseLinearFunctionND, but I couldn't find any examples in the documentation. Any insights would be appreciated.
Code
from pyomo.core import ConcreteModel, Var, Constraint
import pyomo.environ as pe
from pyomo.core.kernel.piecewise_library.transforms_nd import (
PiecewiseLinearFunctionND,
TransformedPiecewiseLinearFunctionND
)
from pyomo.core.kernel.variable import (
variable,
variable_list
)
import pyomo.core.kernel.piecewise_library.util as util
import numpy as np
from scipy.spatial import Delaunay
npts = 100
vlist = variable_list([variable(lb=-1, ub=1),
variable(lb=-1, ub=1)])
tri = util.generate_delaunay(vlist, num=npts)
x, y = tri.points.T
z = np.cos(x) * np.sin(y)
model = ConcreteModel()
model.X = Var(initialize=0)
model.Y = Var(initialize=0)
model.Z = Var(initialize=999)
f = PiecewiseLinearFunctionND(tri, z)
model.g = TransformedPiecewiseLinearFunctionND(
f=f,
input=(model.X, model.Y),
output=model.Z
)
def x_rule(model):
return model.X == 0.5
def y_rule(model):
return model.Y == 0.5
model.x_const = Constraint(rule=x_rule)
model.y_const = Constraint(rule=y_rule)
solver = pe.SolverFactory('ipopt')
solver.solve(model)
z_exact = np.cos(0.5) * np.sin(0.5)
z_interp = f([0.5, 0.5])
x_model = pe.value(model.X)
y_model = pe.value(model.Y)
z_model = pe.value(model.Z)
print(f'Z Exact: {z_exact}')
print(f'Z Interpolated: {z_interp}')
print(f'Model values (X, Y, Z): {x_model}, {y_model}, {z_model}')
Output
Z Exact: 0.42073549240394825
Z Interpolated: 0.42067082611089646
Model values (X, Y, Z): 0.5, 0.5, 999
I've also tried adding a constraint for Z manually. This produces an error:
def z_rule(model):
return model.Z == f([model.X, model.Y])
model.z_const = Constraint(rule=z_rule)
You are mixing modeling components between the pyomo.kernel and pyomo.environ modeling layers. This is not supported (this page has more information).
The multi-dimensional piecewise functionality is currently only available using the pyomo.kernel interface. An example of how to use it can be found here:
https://github.com/Pyomo/pyomo/blob/main/examples/kernel/piecewise_nd_functions.py

Cut a bounding box using numpy meshgrid python

I want to create a bounding box out of the following dimensions using meshgrid but just not able to get the right box.
My parent dimensions are x = 0 to 19541 and y = 0 to 14394. Out of that, I want to cut a box from x' = 4692 to 12720 and y' = 4273 to 10117.
However, I am not getting the right bounds. Could someone please help me here?
from matplotlib.path import Path
xmin, xmax = 4692, 12720
ymin, ymax = 4273, 10117
sar_ver = [(4692, 10117), (12720, 10117), (12658, 4274), (4769, 4273), (4692, 10117)]
x, y = np.meshgrid(np.arange(xmin, xmax + 1), np.arange(ymin, ymax + 1))
shx = x
x, y = x.flatten(), y.flatten()
points = np.vstack((x, y)).T
path = Path(sar_ver)
grid = path.contains_points(points)
grid.shape = shx.shape # 5845 X 8029
print grid
UPDATE: This is what I tried and I am close to what I want but not exactly. I want to change the original origin from 0 to the image's surrounding box as shown in expected output.
The updated code that I am using is this
from matplotlib.path import Path
nx, ny = 16886, 10079
sar_ver = [(16886, 1085), (15139, 2122), (14475, 5226), (8419, 5601), (14046, 6876), (14147, 10079), (16816, 3748), (16886, 1085)]
x, y = np.meshgrid(np.arange(nx), np.arange(ny))
x, y = x.flatten(), y.flatten()
points = np.vstack((x,y)).T
path = Path(sar_ver)
grid = path.contains_points(points)
grid.shape = (10079, 16886)
grid = np.multiply(grid,255)
int_grid = grid.astype(np.uint8)
grid_img = Image.fromarray(int_grid)
grid_img.save('grid_image.png') # ACTUAL OUTPUT IMAGE WITH ORIGIN NOT SHIFTED
Input geom:
Expected output is this: Doesn't matter if the image is rotated the other way round but will be a cherry on top if its aligned correctly.
However I am getting right now this so my ACTUAL OUTPUT from the updated code posted is this:
So I want to shift the origin around the box.
BOUNDING BOX PROBLEM DETAILS AFTER GETTING THE MASK: This code comes after the line posted in the second update grid_img.save('grid_image.png') # ACTUAL OUTPUT IMAGE WITH ORIGIN NOT SHIFTED
Here im is the matrix of the actual image. What should be the x-y min, max of im to have the same shape as mask and multiply both of them to get pixel values and the rest cancelled out with 0s.
img_x = 19541 # 0 - 19541
img_y = 14394 # 0 - 14394
im = np.fromfile(binary_file_path, dtype='>f4')
im = np.reshape(im.astype(np.float32), (img_x, img_y))
im = im[:10079, :16886]
bb_list = np.multiply(grid, im)
# slice and dice
slice_rows = np.any(bb_list, axis=1)
slice_cols = np.any(bb_list, axis=0)
ymin, ymax = np.where(slice_rows)[0][[0, -1]]
xmin, xmax = np.where(slice_cols)[0][[0, -1]]
answer = bb_list[ymin:ymax + 1, xmin:xmax + 1]
# convert to unit8
int_ans = answer.astype(np.uint8)
fin_img = Image.fromarray(int_ans)
fin_img.save('test_this.jpeg')
My GOAL is to cut out a polygon of a given geom out of a given image. So I am taking the mask out of that polygon and then using that mask to cut the same out of the original image. So multiplying mask's 1's and 0's with the pixel values in the image to just get 1*pixel values.
I tried the following to cut out the actual image to have the same dimensions so that I can multiply np.multiply(im, mask) but it didn't work as image's shape is not cut into same shape as mask's. I tried your min and max below but didn't work!
im = im[xmin:xmax, ymin:ymax]
ipdb> im.shape
(5975, 8994)
ipdb> mask.shape
(8994, 8467)
Clearly I cannot multiple mask and im now.
I think you got it almost right in the first attempt, in the second one you're building a meshgrid for the full image while you just want the shape mask, don't you?
import numpy as np
import matplotlib as mpl
from matplotlib.path import Path
from matplotlib import patches
import matplotlib.pyplot as plt
from PIL import Image
sar_ver = [(16886, 1085), (15139, 2122), (14475, 5226), (8419, 5601),
(14046, 6876), (14147, 10079), (16816, 3748), (16886, 1085)]
path = Path(sar_ver)
xmin, ymin, xmax, ymax = np.asarray(path.get_extents(), dtype=int).ravel()
x, y = np.mgrid[xmin:xmax, ymin:ymax]
points = np.transpose((x.ravel(), y.ravel()))
mask = path.contains_points(points)
mask = mask.reshape(x.shape).T
img = Image.fromarray((mask * 255).astype(np.uint8))
img.save('mask.png')
# plot shape and mask for debug purposes
fig = plt.figure(figsize=(8,4))
gs = mpl.gridspec.GridSpec(1,2)
gs.update(wspace=0.2, hspace= 0.01)
ax = plt.subplot(gs[0])
patch = patches.PathPatch(path, facecolor='orange', lw=2)
ax.add_patch(patch)
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax = plt.subplot(gs[1])
ax.imshow(mask, origin='lower')
plt.savefig("shapes.png", bbox_inches="tight", pad_inches=0)
It produces the mask:
And also plots both the mask and the path for debugging purposes:
The different orientation comes from the different origin position in matplotlib plots and images, but it should be trivial enough to change it the way you want.
EDIT after latest question edits
Here's an updated script that takes an image, generates a mask for your path and cuts it out. I'm using a dummy image and scaling down shapes a bit so they're easier to work with.
import numpy as np
import matplotlib as mpl
from matplotlib.path import Path
from matplotlib import patches
import matplotlib.pyplot as plt
import skimage.transform
import skimage.data
from PIL import Image
sar_ver = np.asarray([(16886, 1085), (15139, 2122), (14475, 5226), (8419, 5601),
(14046, 6876), (14147, 10079), (16816, 3748), (16886, 1085)])
# reshape into smaller path for faster debugging
sar_ver = sar_ver // 20
# create dummy image
img = skimage.data.chelsea()
img = skimage.transform.rescale(img, 2)
# matplotlib path
path = Path(sar_ver)
xmin, ymin, xmax, ymax = np.asarray(path.get_extents(), dtype=int).ravel()
# create a mesh grid of the shape of the final mask
x, y = np.mgrid[:img.shape[1], :img.shape[0]]
# mesh grid to points
points = np.vstack((x.ravel(), y.ravel())).T
# mask for the point included in the path
mask = path.contains_points(points)
mask = mask.reshape(x.shape).T
# plots
fig = plt.figure(figsize=(8,6))
gs = mpl.gridspec.GridSpec(2,2)
gs.update(wspace=0.2, hspace= 0.2)
# image + patch
ax = plt.subplot(gs[0])
ax.imshow(img)
patch = patches.PathPatch(path, facecolor="None", edgecolor="cyan", lw=3)
ax.add_patch(patch)
# mask
ax = plt.subplot(gs[1])
ax.imshow(mask)
# filter image with mask
ax = plt.subplot(gs[2])
ax.imshow(img * mask[..., np.newaxis])
# remove mask from image
ax = plt.subplot(gs[3])
ax.imshow(img * ~mask[..., np.newaxis])
# plt.show()
plt.savefig("shapes.png", bbox_inches="tight", pad_inches=0)
I tried the open cv2 library and it appears to be faster than meshgrid or mgrid on large images. Posting opencv2 solution:
import numpy as np
import cv2
import matplotlib.pyplot as plt
from matplotlib.path import Path
sar_ver = np.array([[[1688, 108], [1513, 212], [1447, 522], [841, 560], [1404, 687], [1414, 1007], [1681, 374], [1688, 108]]] , 'int32')
print sar_ver.shape
mask=np.zeros((1439, 1954))
cv2.fillPoly(mask, sar_ver, 255)
sar_ver = np.asarray([(1688, 108), (1513, 212), (1447, 522), (841, 560), (1404, 687), (1414, 1007), (1681, 374), (1688, 108)])
path = Path(sar_ver)
xmin, ymin, xmax, ymax = np.asarray(path.get_extents(), dtype=int).ravel()
plt.imshow(mask[ymin:ymax+1, xmin:xmax+1])
plt.show()
Also, posting mgrid solution helped by Filippo above and on online chat:
import cv2
from matplotlib.path import Path
from PIL import Image
import numpy as np
sar_ver = np.asarray([(1518, 2024), (2018, 2024), (1518, 2524), (1518, 2024)])
imag = cv2.imread('test_image.jpg')
img = cv2.cvtColor(imag, cv2.COLOR_BGR2GRAY)
h, w = img.shape
path = Path(sar_ver)
xmin, ymin, xmax, ymax = np.asarray(path.get_extents(), dtype=int).ravel()
# create a mesh grid of the shape of the final mask
x, y = np.mgrid[:w, :h]
# mesh grid to points
points = np.vstack((x.ravel(), y.ravel())).T
# mask for the point included in the path
mask = path.contains_points(points)
mask = mask.reshape(x.shape).T
im = np.array(img)
bb = np.multiply(im, mask)[ymin:ymax+1, xmin:xmax+1]
# saving image or we can do plt.show
int_ans = bb.astype(np.uint8)
fin = Image.fromarray(int_ans)
fin.save('crop_test.png')

Different colors for scatter plots based on origin of data

I have a LIST called 'samples', I am loading several images into this LIST from 2 different folders, let's say Folder1 and Folder2. Then I convert this list to a DataFrame and plot them in a 2D scatter plot. I want the scatter plot to show all contents from Folder1 to be Red color and all contents from Folder2 to be in blue color. How can I accomplish this. My code is below:
samples = []
Folder1 = glob.iglob('/home/..../Folder1/*.png')
Folder2 = glob.iglob('/home/..../Folder2/*.png')
for fname in Folder1:
img = misc.imread(fname)
samples.append((img[::2, ::2] / 255.0).reshape(-1))
for fname in Folder2:
img = misc.imread(fname)
samples.append((img[::2, ::2] / 255.0).reshape(-1))
samples = pd.DataFrame(samples)
def do_ISO(df):
from sklearn import manifold
iso = manifold.Isomap(n_neighbors=6, n_components=3)
iso.fit(df)
A = iso.transform(df)
return A
def Plot2D(T, title, x, y):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(title)
ax.set_xlabel('Component: {0}'.format(x))
ax.set_ylabel('Component: {0}'.format(y))
x_size = (max(T[:,x]) - min(T[:,x])) * 0.08
y_size = (max(T[:,y]) - min(T[:,y])) * 0.08
ax.scatter(T[:,x],T[:,y], marker='.',alpha=0.7)
Plot2D(do_ISO(samples), 'ISO_Chart', 0, 1)
plt.show()
It's pretty difficult to say without seeing the arrays you are working with. You are actually plotting the result of your do_ISO() function, which creates an array using sklearn.manifold.Isomap.transform().
Does this function preserves the ordering of your elements in you array?
If so, things could be fairly easy. As you are first filling all the images from Folder1 and then from Folder2, you could simply count the number of items in Folder1, and split your array in 2 based on that number (eg. nbFilesFolder1). then you do 2 calls to scatter:
ax.scatter(T[:nbFilesFolder1,x],T[:nbFilesFolder1,y], marker='.',alpha=0.7, c='red')
ax.scatter(T[nbFilesFolder1:,x],T[nbFilesFolder1:,y], marker='.',alpha=0.7, c='blue')

Scatter plot segregate clusters by color plotly python

I am using plotly (to be able to get point information when I hoover over) to visualise my clustered scatter plot. I am having trouble with assigning different colours to the clusters I have produced by using KMeans. When plotting this in matplotlib.pyplot (as plt) I use the following code:
plt.scatter(restult[:,0], result[:,1], c=cluster_labels
cluster_labels being:
n_clusters = 3
km = KMeans(n_clusters).fit(result)
labels = km.labels_
And it works totally fine, but I need the hoover info.
This is where I am at so far with plotly:
trace = go.Scatter(
x = result[:,0],
y = result[:,1],
mode = 'markers',
text = index, # I want to see the index of each point
)
data = [trace]
# Plot and embed in ipython notebook!
py.iplot(data, filename='basic-scatter')
I appreciate the help!
Let's use the iris data set
The labels from kmeans are used as colors (marker=dict(color=kmeans.labels_)), just like in matplotlib
from sklearn import datasets
from sklearn import cluster
import plotly
plotly.offline.init_notebook_mode()
iris = datasets.load_iris()
kmeans = cluster.KMeans(n_clusters=3,
random_state=42).fit(iris.data[:,0:2])
data = [plotly.graph_objs.Scatter(x=iris.data[:,0],
y=iris.data[:,1],
mode='markers',
marker=dict(color=kmeans.labels_)
)
]
plotly.offline.iplot(data)
Just to expand on Maxmimilian's method - if you're using sklearn version >=0.17 then you'll need to reshape your array since passing 1d arrays is deprecated in 0.17.
Here's an example with reshaping:
x = df[df.columns[1]]
x = x.values.reshape(-1,1)
y = df[df.columns[2]]
y = y.values.reshape(-1,1)
kmeans = cluster.KMeans(n_clusters = 3, random_state = 0).fit(x, y)
trace1 = go.Scatter(
x = df[df.columns[1]],
y = df[df.columns[2]],
mode = 'markers',
marker=dict(color=kmeans.labels_,
size = 7.5,
line = dict(width=2)
),
text = df.index,
name='Actual'
)

Interpolating 3d data at a single point in space (Python 2.7)

I have a point cloud in 4 dimensions, where each point in the cloud has a location and a value (x,y,z,Value). In addition, I have a 'special' point, S0, within the 3d point cloud; I've used this example to find the closest 10 points in the cloud, relative to S0. Now, I have a numpy array for each of the 10 closest points and their values. How can I interpolate these 10 points, to find the interpolated value at point S0? Example code is shown below:
import numpy as np
import matplotlib.pyplot as plt
numpoints = 20
linexs = 320
lineys = 40
linezs = 60
linexe = 20
lineye = 20
lineze = 0
# Create vectors of points
xpts = np.linspace(linexs, linexe, numpoints)
ypts = np.linspace(lineys, lineye, numpoints)
zpts = np.linspace(linezs, lineze, numpoints)
lin = np.dstack((xpts,ypts,zpts))
# Image line of points
fig = plt.figure()
ax = fig.add_subplot(211, projection='3d')
ax.set_xlim(0,365); ax.set_ylim(-85, 85); ax.set_zlim(0, 100)
ax.plot_wireframe(xpts, ypts, zpts)
ax.view_init(elev=12, azim=78)
def randrange(n, vmin, vmax):
return (vmax - vmin)*np.random.rand(n) + vmin
n = 10
for n in range(21):
xs = randrange(n, 0, 350)
ys = randrange(n, -75, 75)
zs = randrange(n, 0, 100)
ax.scatter(xs, ys, zs)
dat = np.dstack((xs,ys,zs))
ax.set_xlabel('X Label')
ax.set_xlim(0,350)
ax.set_ylabel('Y Label')
ax.set_ylim(-75,75)
ax.set_zlabel('Z Label')
ax.set_zlim(0,100)
ax = fig.add_subplot(212, projection='3d')
ax.set_xlim(0,365); ax.set_ylim(-85, 85); ax.set_zlim(0, 100)
ax.plot_wireframe(xpts,ypts,zpts)
ax.view_init(elev=12, azim=78)
plt.show()
dist = []
# Calculate distance from first point to all other points in cloud
for l in range(len(xpts)):
aaa = lin[0][0]-dat
dist.append(np.sqrt(aaa[0][l][0]**2+aaa[0][l][1]**2+aaa[0][l][2]**2))
full = np.dstack((dat,dist))
aaa = full[0][full[0][:,3].argsort()]
print(aaa[0:10])
A basic example. Note that the meshgrid is not needed for the interpolation, but only to make a fast ufunc to generate an example function A=f(x,y,z), here A=x+y+z.
from scipy.interpolate import interpn
import numpy as np
#make up a regular 3d grid
X=np.linspace(-5,5,11)
Y=np.linspace(-5,5,11)
Z=np.linspace(-5,5,11)
xv,yv,zv = np.meshgrid(X,Y,Z)
# make up a function
# see http://docs.scipy.org/doc/numpy/reference/ufuncs.html
A = np.add(xv,np.add(yv,zv))
#this one is easy enough for us to know what to expect at (.5,.5,.5)
# usage : interpn(points, values, xi, method='linear', bounds_error=True, fill_value=nan)
interpn((X,Y,Z),A,[0.5,0.5,0.5])
Output:
array([ 1.5])
If you pass in an array of points of interest, it will give you multiple answers.