If I have mask like
And I have a image( the size is same to the mask) like
I want to hightlight the mask in the image. If I'm in other Language,I just
As you can see, the result image have a transparent red show the mask. I hope implement this in OpenCV. So I write this code
#include <opencv.hpp>
using namespace cv;
using namespace std;
int main() {
Mat srcImg = imread("image.jpg");
Mat mask = imread("mask.jpg", IMREAD_GRAYSCALE)>200;
for(int i=0;i<srcImg.rows;i++)
for(int j=0;j<srcImg.cols;j++)
if(mask.at<uchar>(i, j)==255)
circle(srcImg, Point(j,i), 3, Scalar(0, 0, 128,128));
imshow("image",srcImg);
waitKey();
return 0;
}
But as you see, I use a alpha value in Scalar, but it is not a transparent red.
Maybe this is due to the srcImg just have 3 channels. I have two question about this
How to hightlight the mask with a transparent red(even the image just have 3 channels)?
I have to draw circle pixel by pixel to do this thing?
#include<opencv2/core.hpp>
#include<opencv2/imgproc.hpp>
#include<opencv2/highgui.hpp>
using namespace cv;
int main(int argc, char** argv)
{
Mat srcImg = imread("image.png");
Mat mask = imread("mask.png", IMREAD_GRAYSCALE) > 200;
Mat red;
cvtColor(mask, red, COLOR_GRAY2BGR);
red = (red - Scalar(0, 0, 255)) / 2;
srcImg = srcImg - red;
imshow("image", srcImg);
waitKey();
return 0;
}
I've written this in python but you can easily port it to C++. Assuming that your source and mask images are CV_8UC3 images:
src = cv2.imread("source.png", -1)
mask = cv2.imread("mask.png", -1)
# convert mask to gray and then threshold it to convert it to binary
gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 40, 255, cv2.THRESH_BINARY)
# find contours of two major blobs present in the mask
im2,contours,hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# draw the found contours on to source image
for contour in contours:
cv2.drawContours(src, contour, -1, (255,0,0), thickness = 1)
# split source to B,G,R channels
b,g,r = cv2.split(src)
# add a constant to R channel to highlight the selected area in reed
r = cv2.add(b, 30, dst = b, mask = binary, dtype = cv2.CV_8U)
# merge the channels back together
cv2.merge((b,g,r), src)
Related
I set my mask from BGR2HSV. I have my image:
How I can change the white color in the mask? So I want to change the white parts with other colors.
Mat mask;
mask = imread("C:\\Users\\...\\Desktop\\...\\mask.png");
if (!img.data)
{
cout << "Could not find the image";
return -1;
}
cvtColor(mask, mask, COLOR_BGR2HSV);
cvtColor(mask, mask, COLOR_HSV2BGR);
imshow("Ergebnis", mask);
waitKey(0);
Between two cvtColor functions, you need to split the image into its 3 channels with split. Looking at the conversion between RGB and HSV, make S channel 0 and choose an H value between [0-180]. Then, merge the channels back.
cv::Mat hsv = mask.clone(); // from your code
std::vector<cv::Mat> hsv_vec;
cv::split(hsv, hsv_vec);
cv::Mat &H = hsv_vec[0];
cv::Mat &S = hsv_vec[1];
cv::Mat &V = hsv_vec[2];
S = 0;
mask = (V > 10); // non-zero pixels in the original image
H(mask) = your_H_value_here; // H is between 0-180 in OpenCV
cv::merge(hsv_vec, hsv);
mask = hsv; // according to your code
As a side note, I suggest using convenient names for variables.
I'm currently working on a project that uses a Lacatan Banana, and I would like to know how to further separate the foreground from the background:
I already got a segmented image of it using erosion, dilation, and thresholding only. The problem is that it is still not properly segmented.
Here is my code:
cv::Mat imggray, imgthresh, fg, bgt, bg;
cv::cvtColor(src, imggray, CV_BGR2GRAY); //Grayscaling the image from RGB color space
cv::threshold(imggray, imgthresh, 0, 255, CV_THRESH_BINARY_INV | CV_THRESH_OTSU); //Create an inverted binary image from the grayscaled image
cv::erode(imgthresh, fg, cv::Mat(), cv::Point(-1, -1), 1); //erosion of the binary image and setting it as the foreground
cv::dilate(imgthresh, bgt, cv::Mat(), cv::Point(-1, -1), 4); //dilation of the binary image to reduce the background region
cv::threshold(bgt, bg, 1, 128, CV_THRESH_BINARY); //we get the background by setting the threshold to 1
cv::Mat markers = cv::Mat::zeros(src.size(), CV_32SC1); //initializing the markers with a size same as the source image and setting its data type as 32-bit Single channel
cv::add(fg, bg, markers); //setting the foreground and background as markers
cv::Mat mask = cv::Mat::zeros(markers.size(), CV_8UC1);
markers.convertTo(mask, CV_8UC1); //converting the 32-bit single channel marker to a 8-bit single channel
cv::Mat mthresh;
cv::threshold(mask, mthresh, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU); //threshold further the mask to reduce the noise
// cv::erode(mthresh,mthresh,cv::Mat(), cv::Point(-1,-1),2);
cv::Mat result;
cv::bitwise_and(src, src, result, mthresh); //use the mask to subtrack the banana from the background
for (int x = 0; x < result.rows; x++) { //changing the black background to white
for (int y = 0; y < result.cols; y++) {
if (result.at<Vec3b>(x, y) == Vec3b(0, 0, 0)){
result.at<Vec3b>(x, y)[0] = 255;
result.at<Vec3b>(x, y)[1] = 255;
result.at<Vec3b>(x, y)[2] = 255;
}
}
}
This is my result:
As the background is near gray-color, try using Hue channel and Saturation channel instead of grayscale image.
You can get them easily.
cv::Mat hsv;
cv::cvtColor(src, hsv, CV_BGR2HSV);
std::vector<cv::Mat> channels;
cv::split(src, channels);
cv::Mat hue = channels[0];
cv::Mat saturation = channels[1];
// If you want to combine those channels, use this code.
cv::Mat hs = cv::Mat::zeros(src.size(), CV_8U);
for(int r=0; r<src.rows; r++) {
for(int c=0; c<src.cols; c++) {
int hp = h.at<uchar>(r,c);
int sp = s.at<uchar>(r,c);
hs.at<uchar>(r, c) = static_cast<uchar>((h+s)>>1);
}
}
adaptiveThreshold() should work better than just level-cut threshold(), because it does not consider absolute color levels, but rather a change in color in small area around the point being checked.
Try replacing your thresholding with adaptive one.
Use a top-hat instead of just erosion/dilation. It will take care of the background variations at the same time.
Then in your case a simple thresholding should be good enough to have an accurate segmentation. Else, you can couple it with a watershed.
(I will share some images asap).
Thanks guys, I tried to apply your advises and was able to come up with this
However as you can see there are still bits of the background,any ideas how to "clean" these further, i tried thresholding further but it would still have the bits.The Code I came up with is below and i apologize in advance if the variables and coding style is somewhat confusing didn't have the time to properly sort them.
#include <stdio.h>
#include <iostream>
#include <opencv2\core.hpp>
#include <opencv2\opencv.hpp>
#include <opencv2\highgui.hpp>
using namespace cv;
using namespace std;
Mat COLOR_MAX(Scalar(65, 255, 255));
Mat COLOR_MIN(Scalar(15, 45, 45));
int main(int argc, char** argv){
Mat src,hsv_img,mask,gray_img,initial_thresh;
Mat second_thresh,add_res,and_thresh,xor_thresh;
Mat result_thresh,rr_thresh,final_thresh;
// Load source Image
src = imread("sample11.jpg");
imshow("Original Image", src);
cvtColor(src,hsv_img,CV_BGR2HSV);
imshow("HSV Image",hsv_img);
//imwrite("HSV Image.jpg", hsv_img);
inRange(hsv_img,COLOR_MIN,COLOR_MAX, mask);
imshow("Mask Image",mask);
cvtColor(src,gray_img,CV_BGR2GRAY);
adaptiveThreshold(gray_img, initial_thresh, 255,ADAPTIVE_THRESH_GAUSSIAN_C,CV_THRESH_BINARY_INV,257,2);
imshow("AdaptiveThresh Image", initial_thresh);
add(mask,initial_thresh,add_res);
erode(add_res, add_res, Mat(), Point(-1, -1), 1);
dilate(add_res, add_res, Mat(), Point(-1, -1), 5);
imshow("Bitwise Res",add_res);
threshold(gray_img,second_thresh,170,255,CV_THRESH_BINARY_INV | CV_THRESH_OTSU);
imshow("TreshImge", second_thresh);
bitwise_and(add_res,second_thresh,and_thresh);
imshow("andthresh",and_thresh);
bitwise_xor(add_res, second_thresh, xor_thresh);
imshow("xorthresh",xor_thresh);
bitwise_or(and_thresh,xor_thresh,result_thresh);
imshow("Result image", result_thresh);
bitwise_and(add_res,result_thresh,final_thresh);
imshow("Final Thresh",final_thresh);
erode(final_thresh, final_thresh, Mat(), Point(-1,-1),5);
bitwise_and(src,src,rr_thresh,final_thresh);
imshow("Segmented Image", rr_thresh);
imwrite("Segmented Image.jpg", rr_thresh);
waitKey(0);
return 1;
}
I have the following image:
I would like to detect the red rectangle using cv::inRange method and HSV color space.
int H_MIN = 0;
int H_MAX = 10;
int S_MIN = 70;
int S_MAX = 255;
int V_MIN = 50;
int V_MAX = 255;
cv::cvtColor( input, imageHSV, cv::COLOR_BGR2HSV );
cv::inRange( imageHSV, cv::Scalar( H_MIN, S_MIN, V_MIN ), cv::Scalar( H_MAX, S_MAX, V_MAX ), imgThreshold0 );
I already created dynamic trackbars in order to change the values for HSV, but I can't get the desired result.
Any suggestion for best values (and maybe filters) to use?
In HSV space, the red color wraps around 180. So you need the H values to be both in [0,10] and [170, 180].
Try this:
#include <opencv2\opencv.hpp>
using namespace cv;
int main()
{
Mat3b bgr = imread("path_to_image");
Mat3b hsv;
cvtColor(bgr, hsv, COLOR_BGR2HSV);
Mat1b mask1, mask2;
inRange(hsv, Scalar(0, 70, 50), Scalar(10, 255, 255), mask1);
inRange(hsv, Scalar(170, 70, 50), Scalar(180, 255, 255), mask2);
Mat1b mask = mask1 | mask2;
imshow("Mask", mask);
waitKey();
return 0;
}
Your previous result:
Result adding range [170, 180]:
Another interesting approach which needs to check a single range only is:
invert the BGR image
convert to HSV
look for cyan color
This idea has been proposed by fmw42 and kindly pointed out by Mark Setchell. Thank you very much for that.
#include <opencv2\opencv.hpp>
using namespace cv;
int main()
{
Mat3b bgr = imread("path_to_image");
Mat3b bgr_inv = ~bgr;
Mat3b hsv_inv;
cvtColor(bgr_inv, hsv_inv, COLOR_BGR2HSV);
Mat1b mask;
inRange(hsv_inv, Scalar(90 - 10, 70, 50), Scalar(90 + 10, 255, 255), mask); // Cyan is 90
imshow("Mask", mask);
waitKey();
return 0;
}
While working with dominant colors such as red, blue, green and yellow; analyzing the two color channels of the LAB color space keeps things simple. All you need to do is apply a suitable threshold on either of the two color channels.
1. Detecting Red color
Background :
The LAB color space represents:
the brightness value in the image in the primary channel (L-channel)
while colors are expressed in the two remaining channels:
the color variations between red and green are expressed in the secondary channel (A-channel)
the color variations between yellow and blue are expressed in the third channel (B-channel)
Code :
import cv2
img = cv2.imread('red.png')
# convert to LAB color space
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
# Perform Otsu threshold on the A-channel
th = cv2.threshold(lab[:,:,1], 127, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
Result:
I have placed the LAB converted image and the threshold image besides each other.
2. Detecting Blue color
Now lets see how to detect blue color
Sample image:
Since I am working with blue color:
Analyze the B-channel (since it expresses blue color better)
Perform inverse threshold to make the blue region appear white
(Note: the code changes below compared to the one above)
Code :
import cv2
img = cv2.imread('blue.jpg')
# convert to LAB color space
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
# Perform Otsu threshold on the A-channel
th = cv2.threshold(lab[:,:,2], 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
Result:
Again, stacking the LAB and final image:
Conclusion :
Similar processing can be performed on green and yellow colors
Moreover segmenting a range of one of these dominant colors is also much simpler.
I use OpenCV Watershed with my image:
#include "opencv2/opencv.hpp"
#include <string>
using namespace cv;
using namespace std;
class WatershedSegmenter{
private:
cv::Mat markers;
public:
void setMarkers(cv::Mat& markerImage)
{
markerImage.convertTo(markers, CV_32S);
}
cv::Mat process(cv::Mat &image)
{
cv::watershed(image, markers);
markers.convertTo(markers,CV_8U);
return markers;
}
};
int main(int argc, char* argv[])
{
cv::Mat image = cv::imread("d:\\projekty\\OpenCV\\trainData\\base01.jpg"); //http://i.imgur.com/sEWFHfY.jpg
cv::Mat blank(image.size(),CV_8U,cv::Scalar(0xFF));
cv::Mat dest;
imshow("originalimage", image);
// Create markers image
cv::Mat markers(image.size(),CV_8U,cv::Scalar(-1));
//Rect(topleftcornerX, topleftcornerY, width, height);
//top rectangle
markers(Rect(0,0,image.cols, 5)) = Scalar::all(1);
//bottom rectangle
markers(Rect(0,image.rows-5,image.cols, 5)) = Scalar::all(1);
//left rectangle
markers(Rect(0,0,5,image.rows)) = Scalar::all(1);
//right rectangle
markers(Rect(image.cols-5,0,5,image.rows)) = Scalar::all(1);
//centre rectangle
int centreW = image.cols/4;
int centreH = image.rows/4;
markers(Rect((image.cols/2)-(centreW/2),(image.rows/2)-(centreH/2), centreW, centreH)) = Scalar::all(2);
markers.convertTo(markers,CV_BGR2GRAY);
imshow("markers", markers);
//Create watershed segmentation object
WatershedSegmenter segmenter;
segmenter.setMarkers(markers);
cv::Mat wshedMask = segmenter.process(image);
cv::Mat mask;
convertScaleAbs(wshedMask, mask, 1, 0);
double thresh = threshold(mask, mask, 1, 255, THRESH_BINARY);
bitwise_and(image, image, dest, mask);
dest.convertTo(dest,CV_8U);
imshow("final_result", dest);
cv::waitKey(0);
return 0;
}
But this give me only individual mask. I also tried to create markers as two points - the result was only one mask. Is it possible with OpenCV to separate cells (objects) with contours as is in example http://biodynamics.ucsd.edu/ir/ ?
If not, is it possible create as result mask with values: 1 for first object, 2 - for second, .. 99 for 99 ?
after performing
cv::watershed(image, markers);
the markers image will be -1 at the boundaries of the regions, and will be 1 in the region corresponding to the seed that was labelled 1, and will be 2 in the region corresponding to the seed that was labelled 2, and so on. So you can do something like this:
cv::Mat region1 = markers==1;
I use the following approach for extracting objects countours after watershed segmentation. Watershed output is one markers image containing a segment code of each pixel. I create a binary mask image for each single object segment from the markers image. That can be done in one iteration over all pixels of the markers image. For the core "for loop", see opencv example https://github.com/Itseez/opencv/blob/master/samples/cpp/watershed.cpp. I have all the objects masks stored in a vector <Mat>. Then I run findContours on every such mask -> contour of each object. See http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/find_contours/find_contours.html. You just don't need to use the edge detector Canny as the mask images are already binary.
I have split an image into 3 separate color channels - one blue, one green, and one red. I would like to normalize each of these channels by the image's intensity, where intensity = (red + blue + green)/3. To be clear, I am trying to make an image that is composed of one of the three color channels, divided by the image's intensity, where the intensity is described by the equation above.
I am new to OpenCV and I do not think I am doing this correctly; when the images are displayed, all the pixels appear to be black.
I am new to OpenCV (I have worked through the tutorials that come with the documentation, but that is it) - any advice about how to go about this normalization would be extremely helpful.
Thanks!
Here is my attempt:
int main(int argc, char** argv){
Mat sourceImage, I;
const char* redWindow = "Red Color Channel";
const char* greenWindow = "Green Color Channel";
const char* blueWindow = "Blue Color Channel";
if(argc != 2)
{
cout << "Incorrect number of arguments" << endl;
}
/* Load the image */
sourceImage = imread(argv[1], 1);
if(!sourceImage.data)
{
cout << "Image failed to load" << endl;
}
/* First, we have to allocate the new channels */
Mat r(sourceImage.rows, sourceImage.cols, CV_8UC1);
Mat b(sourceImage.rows, sourceImage.cols, CV_8UC1);
Mat g(sourceImage.rows, sourceImage.cols, CV_8UC1);
/* Now we put these into a matrix */
Mat out[] = {b, g, r};
/* Split the image into the three color channels */
split(sourceImage, out);
/* I = (r + b + g)/3 */
add(b, g, I);
add(I, r, I);
I = I/3;
Mat red = r/I;
Mat blue = b/I;
Mat green = g/I;
/* Create the windows */
namedWindow(blueWindow, 0);
namedWindow(greenWindow, 0);
namedWindow(redWindow, 0);
/* Show the images */
imshow(blueWindow, blue);
imshow(greenWindow, green);
imshow(redWindow, red);
waitKey(0);
return 0;
}
Once you divide by the intensity the pixel values will be in the range [0, 1], except since they are integers they will be 0 or 1. For a display image white is 255 and 0 is black, so this is why everything appears black to you.
You need to use floating point to get an accurate result, and you need to scale the result by 255 to see it.
Doing that results in this (which I an not sure is particularly useful)
(Image source: BSDS500)
And here is the code that generated it:
#include <opencv2/core/core.hpp>
#include <vector>
int main(int argc, char** argv)
{
// READ RGB color image and convert it to Lab
cv::Mat bgr_image = cv::imread("208001.jpg"); // BSDS500 mushroom
cv::imshow("original image", bgr_image);
cv::Mat bgr_image_f;
bgr_image.convertTo(bgr_image_f, CV_32FC3);
// Extract the color planes and calculate I = (r + g + b) / 3
std::vector<cv::Mat> planes(3);
cv::split(bgr_image_f, planes);
cv::Mat intensity_f((planes[0] + planes[1] + planes[2]) / 3.0f);
cv::Mat intensity;
intensity_f.convertTo(intensity, CV_8UC1);
cv::imshow("intensity", intensity);
//void divide(InputArray src1, InputArray src2, OutputArray dst, double scale=1, int dtype=-1)
cv::Mat b_normalized_f;
cv::divide(planes[0], intensity_f, b_normalized_f);
cv::Mat b_normalized;
b_normalized_f.convertTo(b_normalized, CV_8UC1, 255.0);
cv::imshow("b_normalized", b_normalized);
cv::Mat g_normalized_f;
cv::divide(planes[1], intensity_f, g_normalized_f);
cv::Mat g_normalized;
g_normalized_f.convertTo(g_normalized, CV_8UC1, 255.0);
cv::imshow("g_normalized", g_normalized);
cv::Mat r_normalized_f;
cv::divide(planes[2], intensity_f, r_normalized_f);
cv::Mat r_normalized;
r_normalized_f.convertTo(r_normalized, CV_8UC1, 255.0);
cv::imshow("r_normalized", r_normalized);
cv::waitKey();
}