Openssl X509 cert get string human readable - c++

I have a client/server architecture in which I use the openssl library to implement an encrypted communication (TLSv1.2).
Since I'm using "self signed" certificates, in order to verify server's identity, my idea is to put in the client side a physical copy of the server's public key (server_public_key.pem) and then verify if it is equals to which received in the handshake phase of TLS.
On the client, I can retrieve the latter with:
X509 *cert = SSL_get_peer_certificate(ssl);
Now, I would extract the human readable string of the public key contained in this object.
I know that I can print it in this way:
EVP_PKEY *pkey = X509_get_pubkey(cert);
PEM_write_PUBKEY(stdout, pkey);
But I need to keep it as a string (instead of send it to stdout). How can I do this ?

Use BIO_new() to create a new BIO backed by an internal memory buffer (initially empty).
Then use PEM_write_bio_PUBKEY() to write the public key to the BIO, at which point use the functions documented in the BIO's manual page to retrieve the public key.
See the cited documentation for a simple example of creating a BIO, writing to it, then reading from it. Replacing the sample write operation with PEM_write_bio_PUBKEY() should be sufficient.

Related

How to store my key for encryption on aws?

I am developing rest api system running on ec2 service.
My requirement is
encrypt/decrypt on plain text with AES256
generate key with pbkdf2
Store key on aws cloud system
Java
I tried to used KMS & Crypto sdk but it’s not working. (ex) result of encryption value is changed every time When I called method with same plaint text.
Do you have any ideas?
public String encrypt(String text) {
String plaintext = text;
try {
ByteBuffer byteBuffer = getByteBuffer(plaintext);
EncryptRequest encryptRequest = new EncryptRequest().withKeyId(key_arn).withPlaintext(byteBuffer);
EncryptResult encryptResult = client.encrypt(encryptRequest);
String ciphertext = getString(java.util.Base64.getEncoder().encode(encryptResult.getCiphertextBlob()));
plaintext = ciphertext;
} catch (Exception e) {
e.printStackTrace();
}
return plaintext;
}
public String decrypt(String text) {
String bb = null;
try {
byte[] ciphertextBytes = text.getBytes();
DecryptRequest request = new DecryptRequest();
request.setCiphertextBlob(ByteBuffer.wrap(ciphertextBytes));
DecryptResult result = client.decrypt(request);
// Convert to byte array
byte[] plaintext = new byte[result.getPlaintext().remaining()];
ByteBuffer a = result.getPlaintext().get(plaintext);
bb = getString(a);
} catch (Exception e) {
e.printStackTrace();
}
return bb;
}
This is a hard question to answer succinctly because there are a lot of details and background knowledge that go into crypto and using the AWS crypto capabilities correctly.
First to your specific question - different values from the same plaintext is ok and expected. Encrypt returns different values for the same plain text because it attaches additional data to the plain text, such as an Initialization Vector (IV). This is a way to include non-deterministic data in the plain text precisely so that you don't end up with the exact same cipher text from the same plain text when using the same key.
More importantly, though, note that Encrypt and Decrypt are not general-purpose tools - they are designed to handle small payloads (< 8KB), specifically Data Keys. So where you go from here will depend on what kind of data you are encrypting. If you just need to decrypt a small value like a password, you can continue with Encrypt/Decrypt, and don't worry that two Encrypt operations produce different cipher texts. If you need to encrypt files or other arbitrary chunks of data, read on.
AWS promotes the idea of Envelope Encryption, which is the notion that the key used to actually en/decrypt is stored alongside data it protects, and is itself en/decrypted via a separate master key. In the AWS case, that's Customer Master Key (CMK), which never leaves KMS.
So you can use Encrypt to encrypt an encryption key that you generate, or you could use the AWS method GenerateDataKey to 1) create a key and 2) encrypt it for you. That will return both a plaintext (base64) and cipher text version of the key. Use the plaintext in memory, store the cipher text to disk.
A more typical workflow would be something like:
Call GenerateDataKey - you need to specify the KeyId and a KeySpec (AES_128 or AES_256). There are also options to generate asymmetric keys.
The result includes both a plain text and encrypted version of the generated key. Store the encrypted version.
At some later time, call Decrypt when you need to use the key.
Use the plaintext from that Decrypt method as the key in your local crypto code.
AWS actually provides a separate library to do all that for you - the AWS Encryption SDK, with support for a range of languages including Java. I've not used it extensively, but it provides the framework to do envelope encryption via best practices (which algorithms, master vs. data keys, etc). Take a look (link below).
Hope this helps; encryption is tough to get right.
For more info:
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
https://en.wikipedia.org/wiki/Initialization_vector

wc_RsaSSL_Verify returns BAD_FUNC_ARG, and I can't tell why

I am trying to RSA public key decrypt a signed file using wolfcrypt - yes, I may or may not be abusing the "sign/verify" power of RSA to encrypt a separate AES key using the private key and decrypt using the public key.
Unfortunately, I am stuck at wc_RsaSSL_Verify() - for the life of me I can't figure out why it is returning BAD_FUNC_ARG - I figured an error like that should be immediately visible to somebody else so I'm deciding to call upon the collective powers of StackOverflow.
As far as I can tell, I'm giving the function what it's asking for - an input buffer, an output buffer, the size of each, and a pointer to the RsaKey struct. Here is a code snippet from the function in question:
bool VerifyWorker::GetAESKey()
{
bool result = true;
uint8_t en_aes_file_buff[VerifyWorkerLocal::RSA_KEY_SIZE];
uint8_t de_aes_file_buff[VerifyWorkerLocal::RSA_KEY_SIZE];
uint8_t* aes_iv_ptr = NULL;
// keyfile filestream
std::fstream aes_file;
// rsa_key must be initialized
if(rsa_key == NULL)
{
result = false;
}
// Open the key file and read it into a local buffer, then decrypt it and use it to initialize the
// aes struct
if(result)
{
aes_file.open(this->aes_key_file, std::ios_base::in | std::ios_base::binary);
if(aes_file.fail())
{
// Unable to open file - perror?
perror("GetAESKey");
result = false;
}
else
{
aes_file.read(reinterpret_cast<char*>(en_aes_file_buff), VerifyWorkerLocal::RSA_KEY_SIZE + 1);
if(!aes_file.eof())
{
// we didn't have enough space to read the whole signature!
std::cerr << "aes_file read failed! " << aes_file.rdstate() << std::endl;
result = false;
}
}
}
// "Unsign" the aes key file with RSA verify, and load the aes struct with the result
if(result)
{
int wc_ret = 0;
wc_ret = wc_RsaSSL_Verify(const_cast<const byte*>(en_aes_file_buff),
VerifyWorkerLocal::RSA_KEY_SIZE, reinterpret_cast<byte*>(&de_aes_file_buff),
VerifyWorkerLocal::RSA_KEY_SIZE, rsa_key);
The rsa_key is a private member initialized (successfully, using wc_PublicKeyDecode()) in a separate function with a public key DER file. I generated both the public and private key using OpenSSL - which should properly pad my AES key and iv file using PKCS#1 v1.5 b default.
I should also mention that I am using wolfssl version 3.9.8. Thanks!
The issue, I found, was that the file that I had signed with my RSA key was not signed correctly. When I signed the file using OpenSSL, my cli invocation was
openssl rsautl -in keyfile -out keyfile -inkey private.pem -sign
Apparently, openssl does not like you to specify the same file for -in and -out. When I changed it to something like
openssl rsautl -in keyfile -out keyfile_signed -inkey private.pem -sign
I was actually able to verify the file using wc_RsaSSL_Verify.
So, like most stupid late-night, last hour software problems, I was looking in the wrong place entirely. I was a bit thrown off by the BAD_FUNC_ARG being returned and thought that it had to do explicitly with the format of the function arguments, not necessarily their content. Hopefully this answer is useful for somebody else, too.
It sounds like you are trying to use RSA_Sign to perform an "Encrypt" of an AES key. Then I assume you are sending to a remote partner or computer who will then run an RSA_Verify operation to decrypt the AES key do I understand the scenario correctly?
If so I apologize it did not show up if you searched on how to do this initially but we actually have an example of doing exactly that here:
https://github.com/wolfSSL/wolfssl-examples/tree/master/signature/encryption-through-signing
That example includes two separate applications. The first app, "rsa-private-encrypt-app.c", will sign (encrypt) the "fake Aes Key" and output the result to a file. The second app, "rsa-public-decrypt-app.c", then opens the file that was output and does a verify (decrypt) on the data contained in the file to recover the original "fake Aes Key".
I may or may not be abusing the "sign/verify" power of RSA to encrypt a separate AES key using the private key and decrypt using the public key.
No not at all, that is a valid use of RSA sign/verify ASSUMING you are working with fixed-length inputs such as an AES key.
That's why we created the example! We actually had a user ask a very similar question on our forums awhile back which led to us making the example.
One thing to make note of though on the issues you encountered with openssl and wolfssl is actually talked about in the README:
https://github.com/wolfSSL/wolfssl-examples/blob/master/signature/encryption-through-signing/README.md
... Keep in mind this is not a TRUE RSA ENCRYPT and will likely not inter-op with other libraries that offer a RSA_PRIVATE_ENCRYPT type API.
This is a true SIGN operation.
If you have any other questions feel free to post them here (and add the wolfssl tag of course) or you can also send us an email anytime at support#wolfssl.com
Disclaimer: I work for wolfSSL Inc.

How to send EVP_PKEY to other party?

I am struggling with the OpenSSL API for C++ at the moment. I'm using the EVP functions to generate a RSA keypair which then is used to encrypt the AES key that was used for encrypting the data (hybrid encryption).
Key generation:
EVP_PKEY* keypair = NULL;
EVP_PKEY_CTX* ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
EVP_PKEY_keygen_init(ctx);
EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 4096);
EVP_PKEY_keygen(ctx, &keypair);
EVP_PKEY_CTX_free(ctx);
Now I have a keypair. When Encrypting a message on my own machine via EVP_SealInit / EVP_SealUpdate / EVP_SealFinal there is no problem. Same for the decrypting process. I simply give keypair as an argument to the SealInit / OpenInit function.
But consider that I want to generate a keypair and send the public or private key as a char* over a socket to another person: how do I do that?
One way I found in the Internet is using PEM_write_bio_PUBKEY or PEM_write_bio_PrivateKey to convert the Keys to char*. When trying it seemed to work. But I'm still not 100% sure. So Please look at my code and tell me if those functions are the way to go:
unsigned char* publicKey;
BIO* bio = BIO_new(BIO_s_mem());
PEM_write_bio_PUBKEY(bio, keypair);
RSAmakeString(&publicKey, bio);
unsigned char* privateKey;
BIO* bio = BIO_new(BIO_s_mem());
PEM_write_bio_PrivateKey(bio, keypair, NULL, NULL, 0, 0, NULL);
RSAmakeString(&privateKey, bio);
The other thing is how do I convert the char* back to EVP_PKEY*? Are there any functions? Because if I want to use SealInit with my public Key on another computer I have to convert it back from a char* to an EVP_PKEY*, so I can use it in the function. Any suggestions?
But consider that I want to generate a keypair and send the public or private key as a char* over a socket to another person: how do I do that?
You need something for serialization and wire formats or a presentation format. Your public key and encrypted messages will likely have 0 characters, which appear as embedded NULL. So you need to have both a buffer and explicit length .
Use Google's ProtocolBuffers, Binary JSON, or even ASN.1/DER encoding. I think Google's ProtocolBuffers are message oriented, so they won't return a message until the complete message is available.
You could also Hex, Base32 or Base64 encode it. But you still need to communicate a length so the receiving party knows they got the whole message. On a local LAN you will probably never experience a problem. Over the Internet you will probably get occasional failures as your perform short reads on occasion.
Your thoughts on PEM_write_bio_PUBKEY are effectively Base64 encoding the key, so it suffers the same potential problem as Hex, Base32 or Base64 encoding.
how do I convert the char* back to EVP_PKEY
Well, you probably won't be using a char* based on your changes above. Once you refine the design, you should probably ask a new question.
But at the moment, and given you saved the key with PEM_write_bio_PUBKEY and PEM_write_bio_PrivateKey, then you would use PEM_read_bio_PUBKEY or PEM_read_bio_PrivateKey, respectively. Also see OpenSSL's PEM man page.
Related to C++, here are some tricks when working with OpenSSL. If you are using C++11, then unique_ptr really makes it easy to work with some OpenSSL objects.
unique_ptr and OpenSSL's STACK_OF(X509)*
How to get PKCS7_sign result into a char * or std::string
Non-printable character after generating random n-byte Base64 string
EVP Symmetric Encryption and Decryption | C++ Programs on the OpenSSL wiki

Prevent prompting for PEM passphrase

I am building a Qt-based application that will communicate through https with a webserver. The setup should allow client-authentication with a local certificate and private key. The application must run without any user interaction.
Now I have a problem when the private key file is protected by a passphrase:
OpenSSL will prompt for a password, blocking the whole application!
The openSSL API allows to pass a callback for getting the passphrase, but this is not accessible though the Qt Wrapper. Is there another way to prevent openSSL from prompting for a password? Or can this somehow be interrupted?
On looking at the online documentation, I don't see any callback options when decrypting the private key.
The simplest way is to make the private key password-free. Here's how you could do it (assuming you have password-protected RSA keys):
openssl rsa -in privateKey.pem -out newPrivateKey.pem
Here privateKey.pem is password protected but newPrivateKey.pem is not. Note that while this means the private key is unprotected, this is a common technique to do uninterrupted SSL communication (even used in stunnel for instance). The assumption is that the private key is stored in a directory which has restricted permissions and is protected by the operating system access policy.
The harder way is to write your application by directly linking with OpenSSL instead of going through the wrapper. That way, you have a fine-grained control on the password callbacks.
You can specify the password when you construct the QSslKey. The constructor takes a passphrase which will be used to decrypt the key, see the docs at the link below:
http://qt-project.org/doc/qt-4.8/qsslkey.html#QSslKey-2
I came up with a solution:
OpenSSL will only prompt for a password, when none is specified in the decode function. As Richard Moore pointed out in his answer, QSslKey has a constructor where you can pass the passphrase.
As long as an non-empty string is passed here, OpenSSL won't prompt for a password. Plus: If the key is not protected, the password is ignored. Therefore, I simply make sure that a non-empty string is passed, so this is my solution:
// Never use empty PWD, as this blocks. (Use null-string)
// PLUS: setting a password for a non-protected key still correctly loads the key!
QByteArray thePwd = pwd.isEmpty() ? QByteArray("\0", 1) : pwd.toUtf8();
// Try all encodings
QList<QSslKey> keys = QList<QSslKey>()
<< QSslKey( theKey, QSsl::Rsa, QSsl::Pem, QSsl::PrivateKey, thePwd )
<< QSslKey( theKey, QSsl::Rsa, QSsl::Der, QSsl::PrivateKey, thePwd )
<< QSslKey( theKey, QSsl::Dsa, QSsl::Pem, QSsl::PrivateKey, thePwd )
<< QSslKey( theKey, QSsl::Dsa, QSsl::Der, QSsl::PrivateKey, thePwd );
// Find a valid encoding
foreach ( QSslKey k, keys ) {
if ( !k.isNull() ) {
ret = k;
break;
}
}

Converting between Windows CryptoAPI and OpenSSL x509 formats

I have a CERT_CONTEXT structure which I've extracted from a smart card on Windows via the CryptoAPI. I need to convert this structure into a DER encoded byte array which is consistent with OpenSSL. The closest match I've got so far is via CryptEncodeObject using X509_ASN_ENCODING and the X509_CERT_TO_BE_SIGNED modifier which takes the CERT_INFO structure as input.
The problem is that it doesn't match with the output produced by the OpenSSL i2d_X509 function. Using a 2048 bit x509 certificate as input, OpenSSL produces 1789 bytes of encoded output whilst the Windows CryptoAPI produces 1638 bytes of encoded output.
The only option left that I can see is to create an X509 cert on the fly using the values from the CERT_CONTEXT structure and the encode the resulting object directly with the i2d_X509 function. The only problem with this is that I can't extract the private key from the smart card, so this may cause problems with the x509 cert creation routines.
If anyone can provide any insight/advice/tips into these matters, I'd be much obliged.
DER encoded certificate can be obtained from (ctx->pbCertEncoded, ctx->cbCertEncoded) buffer where ctx is a PCCERT_CONTEXT object. Still you won't be able to recover the private key.