Pandas Nested DataFrame assignment - python-2.7

I have the following DataFrame:
prefix operator_name country_name mno_subscribers
0 267.0 Airtel Botswana 490
1 373.0 Orange Moldova 207
2 248.0 Airtel Seychelles 490
3 91.0 Reliance Bostwana 92
4 233.0 Vodafone Bostwana 516
I am trying to acheive this:
prefix operator_name country_name mno_subscribers operator_proba
0 267.0 Airtel Botswana 490 0.045
1 373.0 Orange Moldova 207 0.004
2 248.0 Airtel Seychelles 490 0.135
3 91.0 Reliance India 92 0.945
4 233.0 Vodafone Ghana 516 0.002
With this:
countries = df["country_name"].unique()
df["operator_proba"] = 0
for country in countries:
country_name = df[df["country_name"] == country]
for operator in country:
mno_sum = country_name["mno_subscribers"].sum()
df["operator_proba"]["country_name"] = country_name["mno_subscribers"] / mno_sum
Where am I going wrong in assigning the operator_proba to the original DataFrame?

This line
df["operator_proba"]["country_name"] = country_name["mno_subscribers"] / mno_sum
can't really work, since df["operator_proba"] is a column (or Series); you can't use ["country_name"] indexing on that.
That is probably why things don't work for you.
It's not entirely clear what you want to achieve, but I guess this may work:
df['operator_proba'] = df.groupby('country_name')['mno_subscribers'].apply(lambda x : x/x.sum())
This saves you a double loop, and is more Pandas-style (there are probably even nicer ways to compute this). The result is:
prefix operator_name country_name mno_subscribers operator_proba
0 267.0 Airtel Botswana 490 1.000000
1 373.0 Orange Moldova 207 1.000000
2 248.0 Airtel Seychelles 490 1.000000
3 91.0 Reliance Bostwana 92 0.151316
4 233.0 Vodafone Bostwana 516 0.848684
with the limited data set (and Botswana/Bostwana difference), most "probabilities" are 1.

Related

Divide full name into first and last when middle name is present

I wanted to see if this was doable in SAS. I have a dataset of the members of congress and want to split full name into first and last. However, occasionally they seem to list their middle initial or name. It is from a .txt file.
Norton, Eleanor Holmes [D-DC] 16 0 440 288 0
Cohen, Steve [D-TN] 15 0 320 209 0
Schakowsky, Janice D. [D-IL] 6 0 289 186 0
McGovern, James P. [D-MA] 8 1 252 139 0
Clarke, Yvette D. [D-NY] 7 0 248 166 0
Moore, Gwen [D-WI] 2 3 244 157 1
Hastings, Alcee L. [D-FL] 13 1 235 146 0
Raskin, Jamie [D-MD] 8 1 232 136 0
Grijalva, Raul M. [D-AZ] 9 1 228 143 0
Khanna, Ro [D-CA] 4 0 223 150 0
Good day,
SAS is a bit clunky when it comes to Strings. However it can be done. As other have mentioned, it's the logic defined, which is the really hard part.
Begin with some raw data...
data begin;
input raw_str $ 1-100;
cards;
Norton, Eleanor Holmes [D-DC] 16 0 440 288 0
Cohen, Steve [D-TN] 15 0 320 209 0
Schakowsky, Janice D. [D-IL] 6 0 289 186 0
McGovern, James P. [D-MA] 8 1 252 139 0
Clarke, Yvette D. [D-NY] 7 0 248 166 0
Moore, Gwen [D-WI] 2 3 244 157 1
Hastings, Alcee L. [D-FL] 13 1 235 146 0
Raskin, Jamie [D-MD] 8 1 232 136 0
Grijalva, Raul M. [D-AZ] 9 1 228 143 0
Khanna, Ro [D-CA] 4 0 223 150 0
; run;
first I select the leading names till the first bracket.
count the number of strings
data names;
set begin;
names_only = scan(raw_str,1,'[');
Nr_of_str = countw(names_only,' ');
run;
Assumption: First sting is the last name.
If there are only 2 strings, the first and last are pretty easy with scan and substring:
data names2;
set names;
if Nr_of_str = 2 then do;
last_name = scan(names_only, 1, ' ');
_FirstBlank = find(names_only, ' ');
first_name = strip(substr(names_only, _FirstBlank));
end;
run;
Assumption: there are only 3 strings.
approach 1. Middle name has dot in it. Filter it out.
approach 2. Middle name is shorter than real name:
data names3;
set names2;
if Nr_of_str > 2 then do;
last_name = scan(names_only, 1, ' '); /*this should still hold*/
_FirstBlank = find(names_only, ' '); /*Substring approach */
first_name = strip(substr(names_only, _FirstBlank));
second_str = scan(names_only, 2, ' ');
third_str = scan(names_only, 3, ' ');
if find(second_str,'.') = 0 then /*1st approch */
first_name = scan(names_only, 2, ' ');
else
first_name = scan(names_only, 3, ' ');
if len(second_str) > len(second_str) then /*2nd approch */
first_name = second_str;
else
first_name = third_str;
end;
run;
For more see about subsring and scan:

Merge rows based on index

I have a pandas dataframe like this,
Timestamp Meter1 Meter2
0 234 NaN
1 235 NaN
2 236 NaN
0 NaN 100
1 NaN 101
2 NaN 102
and I'm having trouble merging the rows based on the index Timestamp to something like this,
Timestamp Meter1 Meter2
0 234 100
1 235 101
2 236 102
Option 0
df.max(level=0)
Meter1 Meter2
Timestamp
0 234.0 100.0
1 235.0 101.0
2 236.0 102.0
Option 1
df.sum(level=0)
Meter1 Meter2
Timestamp
0 234.0 100.0
1 235.0 101.0
2 236.0 102.0
Option 2
Disturbing Answer
df.stack().unstack()
Meter1 Meter2
Timestamp
0 234.0 100.0
1 235.0 101.0
2 236.0 102.0
As brought up by #jezrael and linked to issue here
However, As I've understood groupby.first and groupby.last is that it will return the first (or last) valid value in the group per column. In other words, it is my belief that this is working as intended.
Option 3
df.groupby(level=0).first()
Meter1 Meter2
Timestamp
0 234.0 100.0
1 235.0 101.0
2 236.0 102.0
Option 4
df.groupby(level=0).last()
Meter1 Meter2
Timestamp
0 234.0 100.0
1 235.0 101.0
2 236.0 102.0
​
Use groupby:
df.groupby(level=0).max()
OR
df.groupby('Timestamp').max()
Output
Meter1 Meter2
Timestamp
0 234.0 100.0
1 235.0 101.0
2 236.0 102.0
Use groupby and aggregate sum:
df = df.groupby(level=0).sum()
print (df)
Meter1 Meter2
Timestamp
0 234.0 100.0
1 235.0 101.0
2 236.0 102.0
And if only ints:
df = df.groupby(level=0).sum().astype(int)
print (df)
Meter1 Meter2
Timestamp
0 234 100
1 235 101
2 236 102
But maybe problem was you forget axis=1 in concat:
print (df1)
Meter1
Timestamp
0 234
1 235
2 236
print (df2)
Meter2
Timestamp
0 100
1 101
2 102
print (pd.concat([df1, df2]))
Meter1 Meter2
Timestamp
0 234.0 NaN
1 235.0 NaN
2 236.0 NaN
0 NaN 100.0
1 NaN 101.0
2 NaN 102.0
print (pd.concat([df1, df2], axis=1))
Meter1 Meter2
Timestamp
0 234 100
1 235 101
2 236 102

plotly choropleth not plotting data

here is a link to my data https://docs.google.com/document/d/1oIiwiucRkXBkxkdbrgFyPt6fwWtX4DJG4nbRM309M20/edit?usp=sharing
My problem is that when I run this in a Jupyter Notebook. I get just the USA map with the colour bar and the lakes in blue. No data is on the map, not the labels nor the actual z data.
Here is my header:
import plotly.graph_objs as go
import cufflinks as cf
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
%matplotlib inline
init_notebook_mode(connected=True) # For Plotly For Notebooks
cf.go_offline() # For Cufflinks For offline use
%matplotlib inline
init_notebook_mode(connected=True) # For Plotly For Notebooks
cf.go_offline() # For Cufflinks For offline use
Here is my data and layout:
data = dict(type='choropleth',
locations = gb_state['state'],
locationmode = 'USA-states',
colorscale = 'Portland',
text =gb_state['state'],
z = gb_state['beer'],
colorbar = {'title':"Styles of beer"}
)
data
layout = dict(title = 'Styles of beer by state',
geo = dict(scope='usa',
showlakes = True,
lakecolor = 'rgb(85,173,240)')
)
layout
and here is how I fire off the command:
choromap = go.Figure(data = [data],layout = layout)
iplot(choromap)
Any help, guidelines or pointers would be appreciated
Here is a minified working example which will give you the desired output.
import pandas as pd
import io
import plotly.graph_objs as go
from plotly.offline import plot
txt = """ state abv ibu id beer style ounces brewery city
0 AK 25 17 25 25.0 25.0 25 25 25
1 AL 10 9 10 10.0 10.0 10 10 10
2 AR 5 1 5 5.0 5.0 5 5 5
3 AZ 44 24 47 47.0 46.0 47 47 47
4 CA 182 135 183 183.0 183.0 183 183 183
5 CO 250 146 265 265.0 263.0 265 265 265
6 CT 27 6 27 27.0 27.0 27 27 27
7 DC 8 4 8 8.0 8.0 8 8 8
8 DE 1 1 2 2.0 2.0 2 2 2
9 FL 56 37 58 58.0 58.0 58 58 58
10 GA 16 7 16 16.0 16.0 16 16 16
"""
gb_state = pd.read_csv(io.StringIO(txt), delim_whitespace=True)
data = dict(type='choropleth',
locations=gb_state['state'],
locationmode='USA-states',
text=gb_state['state'],
z=gb_state['beer'],
)
layout = dict(geo = dict(scope='usa',
showlakes= False)
)
choromap = go.Figure(data=[data], layout=layout)
plot(choromap)

How to get cut needed value in to different col in python dataframe?

I have a data frame like follow:
pop state value1 value2
0 1.8 Ohio 2000001 2100345
1 1.9 Ohio 2001001 1000524
2 3.9 Nevada 2002100 1000242
3 2.9 Nevada 2001003 1234567
4 2.0 Nevada 2002004 1420000
And I have a ordered dictionary like following:
OrderedDict([(1, OrderedDict([('value1_1', [1, 2]),('value1_2', [3, 4]),('value1_3',[5,7])])),(1, OrderedDict([('value2_1', [1, 1]),('value2_2', [2, 5]),('value2_3',[6,7])]))])
I want to changed the data frame as the OrderedDict needed.
pop state value1_1 value1_2 value1_3 value2_1 value2_2 value2_3
0 1.8 Ohio 20 0 1 2 1003 45
1 1.9 Ohio 20 1 1 1 5 24
2 3.9 Nevada 20 2 100 1 2 42
3 2.9 Nevada 20 1 3 1 2345 67
4 2.0 Nevada 20 2 4 1 4200 0
I think it is really a complex logic in python pandas. How can I solve it? Thanks.
First, your OrderedDict overwrites the same key, you need to use different keys.
d= OrderedDict([(1, OrderedDict([('value1_1', [1, 2]),('value1_2', [3, 4]),('value1_3',[5,7])])),(2, OrderedDict([('value2_1', [1, 1]),('value2_2', [2, 5]),('value2_3',[6,7])]))])
Now, for your actual problem, you can iterate through d to get the items, and use the apply function on the DataFrame to get what you need.
for k,v in d.items():
for k1,v1 in v.items():
if k == 1:
df[k1] = df.value1.apply(lambda x : int(str(x)[v1[0]-1:v1[1]]))
else:
df[k1] = df.value2.apply(lambda x : int(str(x)[v1[0]-1:v1[1]]))
Now, df is
pop state value1 value2 value1_1 value1_2 value1_3 value2_1 \
0 1.8 Ohio 2000001 2100345 20 0 1 2
1 1.9 Ohio 2001001 1000524 20 1 1 1
2 3.9 Nevada 2002100 1000242 20 2 100 1
3 2.9 Nevada 2001003 1234567 20 1 3 1
4 2.0 Nevada 2002004 1420000 20 2 4 1
value2_2 value2_3
0 1003 45
1 5 24
2 2 42
3 2345 67
4 4200 0
I think this would point you in the right direction.
Converting the value1 and value2 columns to string type:
df['value1'], df['value2'] = df['value1'].astype(str), df['value2'].astype(str)
dct_1,dct_2 = OrderedDict([('value1_1', [1, 2]),('value1_2', [3, 4]),('value1_3',[5,7])]),
OrderedDict([('value2_1', [1, 1]),('value2_2', [2, 5]),('value2_3',[6,7])])
Converting Ordered Dictionary to a list of tuples:
dct_1_list, dct_2_list = list(dct_1.items()), list(dct_2.items())
Flattening a list of lists to a single list:
L1, L2 = sum(list(x[1] for x in dct_1_list), []), sum(list(x[1] for x in dct_2_list), [])
Subtracting the even slices of the list by 1 as the string indices start from 0 and not 1:
L1[::2], L2[::2] = np.array(L1[0::2]) - np.array([1]), np.array(L2[0::2]) - np.array([1])
Taking the appropriate slice positions and mapping those values to the newly created columns of the dataframe:
df['value1_1'],df['value1_2'],df['value1_3']= map(df['value1'].str.slice,L1[::2],L1[1::2])
df['value2_1'],df['value2_2'],df['value2_3']= map(df['value2'].str.slice,L2[::2],L2[1::2])
Dropping off unwanted columns:
df.drop(['value1', 'value2'], axis=1, inplace=True)
Final result:
print(df)
pop state value1_1 value1_2 value1_3 value2_1 value2_2 value2_3
0 1.8 Ohio 20 00 001 2 1003 45
1 1.9 Ohio 20 01 001 1 0005 24
2 3.9 Nevada 20 02 100 1 0002 42
3 2.9 Nevada 20 01 003 1 2345 67
4 2.0 Nevada 20 02 004 1 4200 00

Creating A Dataframe From A Text Dataset

I have a dataset that has hundreds of thousands of fields. The following is a simplified dataset
dataSet <- c("Plnt SLoc Material Description L.T MRP Stat Auto MatSG PC PN Freq Qty CFreq CQty Cur.RPt New.RPt CurRepl NewRepl Updt Cost ServStock Unit OpenMatResb DFStorLocLevel",
"0231 0002 GB.C152260-00001 ASSY PISTON & SEAL/O-RING 44 PD X A A A 18 136 30 29 50 43 24.88 51.000 EA",
"0231 0002 WH.112734 MOTOR REDUCER, THREE-PHAS 41 PD X B B A 16 17 3 3 5 4 483.87 1.000 EA X",
"0231 0002 WH.920569 SPINDLE MOTOR MINI O 22 PD X A A A 69 85 15 9 25 13 680.91 21.000 EA",
"0231 0002 GB.C150583-00001 VALVE-AIR MDI 64 PD X A A A 16 113 50 35 80 52 19.96 116.000 EA",
"0231 0002 FG.124-0140 BEARING 32 PD X A A A 36 205 35 32 50 48 21.16 55.000 EA",
"0231 0002 WP.254997 BEARING,BALL .9843 X 2.04 52 PD X A A A 18 155 50 39 100 58 2.69 181.000 EA"
)
I would like to create a dataframe out of this dataSet for further calculation. The approach I am following is as follows:
I split the dataSet by space and then recombine it.
dataSetSplit <- strsplit(dataSet, "\\s+")
The header (which is the first line) splits correctly and produces 25 characters. This can be seen by the str() function.
str(dataSetSplit)
I will then intend to combine all the rows together using the folloing script
combinedData <- data.frame(do.call(rbind, dataSetSplit))
Please note that the above script "combinedData " errors because the split did not produce equal number of fields.
For this approach to work all the fields must split correctly into 25 fields.
If you think this is a sound approach please let me know how to split the fileds into 25 fields.
It is worth mentioning that I do not like the approach of splitting the data set with the function strsplit(). It is an extremely time consuming step if used with a large data set. Can you please recommend an alternate approach to create a data frame out of the supplied data?
By the looks of it, you have a header row that is actually helpful. You can easily use gregexpr to calculate your "widths" to use with read.fwf.
Here's how:
## Use gregexpr to find the position of consecutive runs of spaces
## This will tell you the starting position of each column
Widths <- gregexpr("\\s+", dataSet[1])[[1]]
## `read.fwf` doesn't need the starting position, but the width of
## each column. We can use `diff` to calculate this.
Widths <- c(Widths[1], diff(Widths))
## Since there are no spaces after the last column, we need to calculate
## a reasonable width for that column too. We can do this with `nchar`
## to find the widest row in the data. From this, subtract the `sum`
## of all the previous values.
Widths <- c(Widths, max(nchar(dataSet)) - sum(Widths))
Let's also extract the column names. We could do this in read.fwf, but it would require us to substitute the spaces in the first line with a "sep" character.
Names <- scan(what = "", text = dataSet[1])
Now, read in everything except the first line. You would use the actual file instead of textConnection, I would suppose.
read.fwf(textConnection(dataSet), widths=Widths, strip.white = TRUE,
skip = 1, col.names = Names)
# Plnt SLoc Material Description L.T MRP Stat Auto MatSG PC PN Freq Qty
# 1 231 2 GB.C152260-00001 ASSY PISTON & SEAL/O-RING 44 PD NA X A A A 18 136
# 2 231 2 WH.112734 MOTOR REDUCER, THREE-PHAS 41 PD NA X B B A 16 17
# 3 231 2 WH.920569 SPINDLE MOTOR MINI O 22 PD NA X A A A 69 85
# 4 231 2 GB.C150583-00001 VALVE-AIR MDI 64 PD NA X A A A 16 113
# 5 231 2 FG.124-0140 BEARING 32 PD NA X A A A 36 205
# 6 231 2 WP.254997 BEARING,BALL .9843 X 2.04 52 PD NA X A A A 18 155
# CFreq CQty Cur.RPt New.RPt CurRepl NewRepl Updt Cost ServStock Unit OpenMatResb
# 1 NA NA 30 29 50 43 NA 24.88 51 EA <NA>
# 2 NA NA 3 3 5 4 NA 483.87 1 EA X
# 3 NA NA 15 9 25 13 NA 680.91 21 EA <NA>
# 4 NA NA 50 35 80 52 NA 19.96 116 EA <NA>
# 5 NA NA 35 32 50 48 NA 21.16 55 EA <NA>
# 6 NA NA 50 39 100 58 NA 2.69 181 EA <NA>
# DFStorLocLevel
# 1 NA
# 2 NA
# 3 NA
# 4 NA
# 5 NA
# 6 NA
Many thanks to Ananda Mahto, he provided many pieces to this answer.
widthMinusFirst <- diff(gregexpr('(\\s[A-Z])+', dataSet[1])[[1]])
widthFirst <- gregexpr('\\s+', dataSet[1])[[1]][1]
Width <- c(widthFirst, widthMinusFirst)
Widths <- c(Width, max(nchar(dataSet)) - sum(Width))
columnNames <- scan(what = "", text = dataSet[1])
read.fwf(textConnection(dataSet[-1]), widths = Widths, strip.white = FALSE,
skip = 0, col.names = columnNames)