Identify annotated variable in an LLVM pass - llvm

How can I identify an annotated variable in an LLVM pass?
#include <stdio.h>
int main (){
int x __attribute__((annotate("my_var")))= 0;
int a,b;
x = x + 1;
a = 5;
b = 6;
x = x + a;
return x;
}
For example, I want to identify the instructions which have the annotated variable (x in this case) and print them out (x = x+1; and x = x+a)
How can I achieve this?
This is the .ll file generated using LLVM
; ModuleID = 'test.c'
source_filename = "test.c"
target datalayout = "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"
target triple = "aarch64"
#.str = private unnamed_addr constant [7 x i8] c"my_var\00", section "llvm.metadata"
#.str.1 = private unnamed_addr constant [7 x i8] c"test.c\00", section "llvm.metadata"
; Function Attrs: noinline nounwind optnone
define i32 #main() #0 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
%3 = alloca i32, align 4
%4 = alloca i32, align 4
store i32 0, i32* %1, align 4
%5 = bitcast i32* %2 to i8*
call void #llvm.var.annotation(i8* %5, i8* getelementptr inbounds ([7 x i8], [7 x i8]* #.s$
store i32 0, i32* %2, align 4
%6 = load i32, i32* %2, align 4
%7 = add nsw i32 %6, 1
store i32 %7, i32* %2, align 4
store i32 5, i32* %3, align 4
store i32 6, i32* %4, align 4
%8 = load i32, i32* %2, align 4
%9 = load i32, i32* %3, align 4
%10 = add nsw i32 %8, %9
store i32 %10, i32* %2, align 4
%11 = load i32, i32* %2, align 4
ret i32 %11
}
; Function Attrs: nounwind
declare void #llvm.var.annotation(i8*, i8*, i8*, i32) #1
attributes #0 = { noinline nounwind optnone "correctly-rounded-divide-sqrt-fp-math"="false" $
attributes #1 = { nounwind }
!llvm.module.flags = !{!0}
!llvm.ident = !{!1}
!0 = !{i32 1, !"wchar_size", i32 4}

I recently encountered similiary problem, as I searched Google still not found a solution.
But in the end , I found "ollvm" project's Utils.cpp ,it solved my problem.
In your case,
%5 = bitcast i32* %2 to i8*
call void #llvm.var.annotation(i8* %5, i8* getelementptr inbounds ([7 x i8], [7 x i8]* #.s$
as we can see there is a call to #llvm.var.annotation , in our pass ,
we can loop through instructions over a function , and search for "call" instruction.
Then get the called function's name:
Function *fn = callInst->getCalledFunction();
StringRef fn_name = fn->getName();
and compare the called function's name with "llvm.var.annotation" .
If they match ,then we found the location of "int x " in your case .
The function "llvm.var.annotation" is documented in llvm's doc :
http://llvm.org/docs/LangRef.html#llvm-var-annotation-intrinsic
If you have learn the function "llvm.var.annotation"'s prototype,
then you know that it's second argument is a pointer ,the pointer
points to "my_var\00" in your case . If you thought you can simply
convert it to a GlobalVariable ,then you will failed to get what
you wanted . The actual second argument passed to "llvm.var.annotation"
is
i8* getelementptr inbounds ([7 x i8], [7 x i8]* #.s$
in your case.
It's a expression but a GlobalVariable !!! By knowing this , we can
finally get the annotation of our target variable by :
ConstantExpr *ce =
cast<ConstantExpr>(callInst->getOperand(1));
if (ce) {
if (ce->getOpcode() == Instruction::GetElementPtr) {
if (GlobalVariable *annoteStr =
dyn_cast<GlobalVariable>(ce->getOperand(0))) {
if (ConstantDataSequential *data =
dyn_cast<ConstantDataSequential>(
annoteStr->getInitializer())) {
if (data->isString()) {
errs() << "Found data " << data->getAsString();
}
}
}
}
Hope you already solved the problem .
Have a nice day .

You have to loop on instructions and identify calls to llvm.var.annotation
First argument is a pointer to the annotated variable (i8*).
To get the actual annotated variable, you then need to find what this pointer points to.
In your case, this is the source operand of the bitcast instruction.

Related

How to re-arragne LLVM GEP instructions?

I have LLVM IR like below :
for.body: ; preds = %for.cond
%add = add nsw i32 %i.0, 3
%idxprom = sext i32 %add to i64
%arrayidx = getelementptr inbounds i32, i32* %arr, i64 %idxprom
%0 = load i32, i32* %arrayidx, align 4
%add1 = add nsw i32 %sum1.0, %0
%add2 = add nsw i32 %i.0, 2
%idxprom3 = sext i32 %add2 to i64
%arrayidx4 = getelementptr inbounds i32, i32* %arr, i64 %idxprom3
%1 = load i32, i32* %arrayidx4, align 4
%add5 = add nsw i32 %sum2.0, %1
%add6 = add nsw i32 %i.0, 1
%idxprom7 = sext i32 %add6 to i64
%arrayidx8 = getelementptr inbounds i32, i32* %arr, i64 %idxprom7
%2 = load i32, i32* %arrayidx8, align 4
%add9 = add nsw i32 %sum3.0, %2
%idxprom10 = sext i32 %i.0 to i64
%arrayidx11 = getelementptr inbounds i32, i32* %arr, i64 %idxprom10
%3 = load i32, i32* %arrayidx11, align 4
%add12 = add nsw i32 %sum4.0, %3
br label %for.inc
I want to re-arrang GEP instructions above. It should be arranged like below for this example :
%arrayidx11 = getelementptr inbounds i32, i32* %arr, i64 %idxprom10
%arrayidx8 = getelementptr inbounds i32, i32* %arr, i64 %idxprom7
%arrayidx4 = getelementptr inbounds i32, i32* %arr, i64 %idxprom3
%arrayidx = getelementptr inbounds i32, i32* %arr, i64 %idxprom
I know that even the uses of array access has to be moved after this arrangement. So I am trying to get use-chain for each GEP instruction using below code :
// Get all the use chain instructions
for (Value::use_iterator i = inst1->use_begin(),e = inst1->use_end(); i!=e;++i) {
dyn_cast<Instruction>(*i)->dump();
}
But I am getting only the declaration instruction with this code, I was expecting to get all the below instructions for %arrayidx4 :
%arrayidx4 = getelementptr inbounds i32, i32* %arr, i64 %idxprom3
%1 = load i32, i32* %arrayidx4, align 4
Please help me out here. Thanks in advance.
I don't really like this question, but I should be doing paperwork for my taxes today...
Your first task is to find the GEPs and sort them into the order you want. When doing this, you need a separate list. LLVM's BasicBlock class does provide a list, but as a general rule, never modify that list while you're iterating over it. That's permitted but too error-prone.
So at the start:
std::vector<GetElementPtr *> geps;
for(auto & i : block->getInstList())
if(GetElementPtrInst * g = dyn_cast<GetElementPTrInst>(&i))
geps.push_back(g);
You can use any container class, your project's code standard will probably suggest using either std::whatever or an LLVM class.
Next, sort geps into the order you prefer. I leave that part out.
After that, move each GEP to the latest permissible point in the block. Which point is that? Well, if the block was valid, then each GEP is already after the values it uses and before the instructions that use it, so moving it to a possibly later point while keeping it before its users will do.
for(auto g : geps) {
Instruction * firstUser = nullptr;
for(auto u : g->users()) {
Instruction * i = dyn_cast<Instruction>(u);
if(i &&
i->getParent() == g->getParent() &&
(!firstUser ||
i->comesBefore(firstUser)))
firstUser = i;
}
}
if(firstUser)
g->moveBefore(firstUser);
}
For each user, check that it is an instruction within the same basic block, and if it is so, check whether it's earlier in the block than the other users seen so far. Finally, move the GEP.
You may prefer a different approach. Several are possible. For example, you could reorder the GEPs after sorting them (using moveAfter() to move each GEP after the previous one) and then use a combination of users() and moveAfter() to make sure all users are after the instructions they use.
for(auto u : foo->users))) {
Instruction * i = dyn_cast<Instruction>(u);
if(i &&
i->getParent() == foo->getParent() &&
i->comesBefore(foo))
i->moveAfter(foo);
}
Note again that this code never modifies the basic block's list while iterating over it. If you have any mysterious errors, check that first.

LLVM IR How to pass struct to function

I'm making my own c-like language and I'm trying to pass a struct to a function. The struct
is representing an array(one member is a pointer to the array and the other member is the length). If I call the function "test" like this: call void #test(%structintarray %a) I get error: '%a' defined with type '%structintarray*' but expected '%structintarray = type { i32*, i32 }' . But if I call "test" like this: call void #test(%structintarray* %a) I get error: '#test' defined with type 'void (%structintarray)*' but expected 'void (%structintarray*)*' I don't understand this second error.
What I'm I doing wrong here?
`
void test(int[] a) {
}
int main() {
int[] a = new int[5];
test(a);
return 0;
}
generates;
%structintarray = type { i32*, i32 }
define void #test(%structintarray %__p__a) {
entry: %a = alloca %structintarray, align 4
store %structintarray %__p__a , %structintarray* %a, align 4
ret void
}
define i32 #main() {
entry: %t0 = call noalias i8* #calloc(i32 5 , i32 4)
%t1 = bitcast i8* %t0 to i32*
%a = alloca %structintarray, align 4
%t2 = getelementptr %structintarray, %structintarray* %a, i32 0, i32 0
store i32* %t1 , i32** %t2, align 4 ; pointer to array
%t3 = getelementptr %structintarray, %structintarray* %a, i32 0, i32 1
store i32 5 , i32* %t3, align 4 ; size of array
call void #test(%structintarray %a)
ret i32 0
}

clang-4.0 generates redundant methods when initializing global variables

I'm learning LLVM these days via observing how clang deal with complex situations. I wrote (top level, not in a function):
int qaq = 666;
int tat = 233;
auto hh = qaq + tat;
And I use the command:
clang-4.0 003.cpp -emit-llvm -S -std=c++11
And clang generates codes like this:
#qaq = global i32 666, align 4
#tat = global i32 233, align 4
#hh = global i32 0, align 4
#llvm.global_ctors = appending global [1 x { i32, void ()*, i8* }] [{ i32, void ()*, i8* } { i32 65535, void ()* #_GLOBAL__sub_I_003.cpp, i8* null }]
; Function Attrs: noinline uwtable
define internal void #__cxx_global_var_init() #0 section ".text.startup" {
%1 = load i32, i32* #qaq, align 4
%2 = load i32, i32* #tat, align 4
%3 = add nsw i32 %1, %2
store i32 %3, i32* #hh, align 4
ret void
}
; Function Attrs: noinline uwtable
define internal void #_GLOBAL__sub_I_003.cpp() #0 section ".text.startup" {
call void #__cxx_global_var_init()
ret void
}
I'm confused with _GLOBAL__sub_I_003.cpp: why does clang generate a function that actually only invoke another function (and not doing anything else)? Even both of them have no parameters?
Disclaimer: This is my interpretation of the logic, I'm not part of the LLVM team.
In order to understand the reasoning behind this, you have to understand a fundamental concept in software engineering: Complexity creates bugs, and makes testing harder.
But first, let's make your example a little more interesting:
int qaq = 666;
int tat = 233;
auto hh = qaq + tat;
auto ii = qaq - tat;
Which leads to:
; Function Attrs: noinline uwtable
define internal void #__cxx_global_var_init() #0 section ".text.startup" !dbg !16 {
%1 = load i32, i32* #qaq, align 4, !dbg !19
%2 = load i32, i32* #tat, align 4, !dbg !20
%3 = add nsw i32 %1, %2, !dbg !21
store i32 %3, i32* #hh, align 4, !dbg !21
ret void, !dbg !20
}
; Function Attrs: noinline uwtable
define internal void #__cxx_global_var_init.1() #0 section ".text.startup" !dbg !22 {
%1 = load i32, i32* #qaq, align 4, !dbg !23
%2 = load i32, i32* #tat, align 4, !dbg !24
%3 = sub nsw i32 %1, %2, !dbg !25
store i32 %3, i32* #ii, align 4, !dbg !25
ret void, !dbg !24
}
; Function Attrs: noinline uwtable
define internal void #_GLOBAL__sub_I_example.cpp() #0 section ".text.startup" !dbg !26 {
call void #__cxx_global_var_init(), !dbg !28
call void #__cxx_global_var_init.1(), !dbg !29
ret void
}
So we see that CLANG emits a single function for each non-trivial initialization, and calls each of them one after the other in _GLOBAL__sub_I_example.cpp(). That makes sense and is sensible, as things are neatly organized this way, and could become a garbled mess in larger/more complicated files otherwise.
Notice how that's the exact same logic that is being applied in your example.
Doing otherwise would imply an algorithm of the type: "if there is a single non-trivial global initialization, then put the code directly in the translation unit's global constructor".
Note the following:
The current logic handles that case correctly already.
In optimized code, the end result would be the exact same.
So what would that logic get us, really?
More branches to test.
More opportunities to accidentaly insert a bug.
More code to maintain in the long run.
Removal of a single function call in the global initialization of some translation units in non-optimized builds.
Keeping things the way they are is just the right decision.

Need insights about writing a pass

For my source code, I have the following IR:
; ModuleID = '<stdin>'
#.str = private unnamed_addr constant [9 x i8] c"SOME_ENV_VAR\00", align 1
#.str1 = private unnamed_addr constant [26 x i8] c"Need to set $ENV_Variable.\0A\00", align 1
; Function Attrs: nounwind
define void #foo(i8* %bar) #0 {
entry:
%bar.addr = alloca i8*, align 4
%baz = alloca i8*, align 4
store i8* %bar, i8** %bar.addr, align 4
%call = call i8* #getenv(i8* getelementptr inbounds ([9 x i8]* #.str, i32 0, i32 0)) #2
store i8* %call, i8** %baz, align 4
%0 = load i8** %baz, align 4
%cmp = icmp eq i8* %0, null
br i1 %cmp, label %if.then, label %if.else
if.then: ; preds = %entry
%call1 = call i32 (i8*, ...)* #printf(i8* getelementptr inbounds ([26 x i8]* #.str1, i32 0, i32 0))
br label %if.end
if.else: ; preds = %entry
%1 = load i8** %bar.addr, align 4
%2 = load i8** %baz, align 4
%call2 = call i8* #strcpy(i8* %1, i8* %2) #2
br label %if.end
if.end: ; preds = %if.else, %if.then
ret void
}
; Function Attrs: nounwind
declare i8* #getenv(i8*) #0
declare i32 #printf(i8*, ...) #1
; Function Attrs: nounwind
declare i8* #strcpy(i8*, i8*) #0
I intend to write a pass, which when compiled (using LLVM), produces bitcode where the call to strcpy(dest,src) is replaced with strncpy(dest,src,n).
I've written the following code so far:
#include <stdlib.h>
#include <stdio.h>
#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/IR/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/IR/IRBuilder.h"
using namespace llvm;
namespace
{
Module* makeLLVMModule() {
Module* mod = new Module(llvm::StringRef("CustomPass"),getGlobalContext());
Constant* c = mod->getOrInsertFunction(llvm::StringRef("foo"),Type::getInt32Ty(getGlobalContext()),NULL);
Function* foo = cast<Function>(c);
Function::arg_iterator args =foo->arg_begin();
Value* bar = args++;
BasicBlock* Entry = BasicBlock::Create(getGlobalContext(),llvm::Twine("Entry"), foo);
BasicBlock* False = BasicBlock::Create(getGlobalContext(),llvm::Twine("False"), foo);
BasicBlock* True = BasicBlock::Create(getGlobalContext(),llvm::Twine("True"), foo);
char* pPath;
pPath = getenv("SOME_ENV_VAR");
IRBuilder<> builder(Entry);
Value* envVarDoesntExist = builder.CreateICmpEQ(llvm::StringRef(pPath),Constant::getNullValue(Value),llvm::Twine("temp"));
//---1
builder.CreateCondBr(envVarDoesntExist, False, True);
builder.SetInsertPoint(True);
builder.CreateCall3(strncpy,bar,llvm::StringRef(pPath),45,llvm::Twine("temp"));
//---2
builder.SetInsertPoint(False);
builder.CreateCall(printf,llvm::StringRef("Need to set $ENV_Variable.\n"),llvm::Twine("temp"));
//---1
return mod;
}
}
char funcP::ID = 0;
static RegisterPass<funcP> X("funcp", "funcP", false, false);
From ---1:How to convert llvm::StringRef to Value* ?
From ---2:How to convert char* to Value*
Could Constant::getNullValue(Value) be used for getting a NULL value?
I intend to write a pass, which when compiled (using LLVM), produces bitcode where the call to strcpy(dest,src) is replaced with strncpy(dest,src,n).
Then what you need to do is to locate the call instruction and change it. There's no need to recreate the entire flow, it's already in your source code.
All you need to do is to create a function pass, iterate over all the instructions in the function, and if the instruction is a call instruction and the callee's name is strcpy then create a new call instruction to your new function, then replace the old instruction with the new instruction.
Also there seems to be some fundamental misunderstanding in your code between values in the compiler (such as 45 and all the StringRefs) and values in the code you are processing (instances of one of the subtypes of llvm::Value). Specifically, you can't just use 45 as a parameter to a function in the code you are processing - you have to create a constant int from that number, and then you can use that constant.
One final note - you can implicitly construct a StringRef from a const char*, you don't need to explicitly call the StringRef's constructor all over the place. Same with Twine.

Find values in a basicblock,which are computed in previous basicblocks

In a basicblock I wants to find all the values used in instructions, That are not computed in the same basicblock.
Example,
for.body5:
%i.015 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%add1 = add nsw i32 %2, %i.015
%arrayidx = getelementptr inbounds [100 x i32]* %b, i32 0, i32 %i.015
store i32 %add1, i32* %arrayidx, align 4, !tbaa !0
%arrayidx2 = getelementptr inbounds [100 x i32]* %a, i32 0, i32 %i.015
store i32 %add1, i32* %arrayidx2, align 4, !tbaa !0
%inc = add nsw i32 %i.015, 1
%cmp = icmp slt i32 %inc, %3
br i1 %cmp, label %for.body, label %for.cond3.preheader
In above example i should get,
%2
%b
%a
%3
Which are declared and/or assigned in other basicblocks.
Please Suggest me a method.
Thanks in advance.
Hi I havent tested this out, but I would do something like this:
vector<Value*> values;
BasicBlock::iterator it;
User::op_iterator it;
// Iterate over all of the instructions in the Block
for (it=block->begin(); it++; it != block->end()){
// Iterate over the operands used by an instruction. 'op_begin' Defined in llvm::User class.
for (operand_it=it->op_begin(); operand_it++; operand_it != it->op_end() ){
// Could this if else statement be reduced?
// If this operand is an argument it was not defined in the block.
if (isa<Argument>(operand_it)){
values.push_back(operand_it);
}
// Otherwize, it could be a constant value or ...
else if (!isa<Instruction>(operand_it)){
continue;
}
// Check if the parent of the instruction is not the block in question.
else if (((Instruction*)operand_it)->getParent() != block){
values.push_back(operand_it);
}
}
}