Consider a bit vector of N bits in it (N is large) and an array of M numbers (M is moderate, usually much smaller than N), each in range 0..N-1 indicating which bit of the vector must be set to 1. The latter array is not sorted. The bit vector is just an array of integers, specifically __m256i, where 256 bits are packed into each __m256i structure.
How can this work be split efficiently accross multiple threads?
Preferred language is C++ (MSVC++2017 toolset v141), assembly is also great. Preferred CPU is x86_64 (intrinsics are ok). AVX2 is desired, if any benefit from it.
Let's assume you want to divide this work up among T threads. It's a pretty interesting problem since it isn't trivially parallelizable via partitioning and various solutions may apply for different sizes of N and M.
Fully Concurrent Baseline
You could simply divide up the array M into T partitions and have each thread work on its own partition of M with a shared N. The main problem is that since M is not sorted, all threads may access any element of N and hence stomp on each others work. To avoid this, you'd have to use atomic operations such as std::atomic::fetch_or for each modification of the shared N array, or else come up with some locking scheme. Both approaches are likely to kill performance (i.e., using an atomic operation to set a bit is likely to be an order of magnitude slower than the equivalent single-threaded code).
Let's look at ideas that are likely faster.
Private N
One relatively obvious idea to avoid the "shared N" problem which requires atomic operations for all mutations of N is simply to give each T a private copy of N and merge them at the end via or.
Unfortunately, this solution is O(N) + O(M/T) whereas the original single-threaded solution is O(M) and the "atomic" solution above is something like O(M/T)4. Since we know that N >> M this is likely to be a poor tradeoff in this case. Still, it's worth noting that the hidden constants in each term are very different: the O(N) term, which comes from the merging step0 can use 256-bit wide vpor instructions, meaning a throughput of something close to 200-500 bits/cycle (if cached), while the bit-setting step which is O(M/T) I estimate at closer to 1 bit/cycle. So this approach can certainly be the best one for moderate T even if the size of N is 10 or 100 times the size of M.
Partitions of M
The basic idea here is to partition the indexes in M such that each worker thread can then work on a disjoint part of the N array. If M was sorted, that would be trivial, but it's not, so...
A simple algorithm that will work well if M is smoothly distributed is to first partition that values of M into T buckets, with the buckets having values in the ranges [0, N/T), [N/T, 2N/T], ..., [(T-1)N/T, N). That is, divide N into T disjoint regions and then find the values of M that fall into each of them. You can spread that work across the T threads by assigning each thread an equal size chunk of M, and having them each create the T partitions and then logically merging1 them at the end so you have the T partitions of M.
The second step is to actually set all the bits: you assign one partition to each thread T which can set the bits in a "single threaded" way, i.e., not worrying about concurrent updates, since each thread is working on a disjoint partition of N2.
Both steps O(M) and the second step is identical to the single-threaded case, so the overhead for parallelizing this is the first step. I suspect the first will range from about the same speed as the second to perhaps 2-4 times as slow, depending on implementation and hardware, so you can expect a speedup on a machine with many cores, but with only 2 or 4 it might not be any better.
If the distribution of M is not smooth, such that the partitions created in the first step have very different sizes, it will work poorly because some threads will get a lot more work. A simple strategy is to create say 10 * T partitions, rather than only T and have the threads in the second pass all consume from the same queue of partitions until complete. In this way you spread the work more evenly, unless the array M is very bunched up. In that case you might consider a refinement of the first step which first essentially creates a bucketed histogram of the elements, and then a reduce stage which looks at the combined histogram to create a good partitioning.
Essentially, we are just progressively refining the first stage into a type of parallel sort/partitioning algorithm, for which there is already lots of literature. You might even find that a full (parallel) sort is fastest, since it will greatly help in bit-setting phase, since accesses will be in-order and have the best spatial locality (helping with prefetching and caching, respectively).
0 ... and also from the "allocate a private array of length N" step, although this is likely to be quite fast.
1 The conceptually simplest form of merging would be to simply copy each thread's partitions of M such that you have a contiguous partition of all of M, but in practice if the partitions are large you can just leave the partitions where they are and link them together, adding some complexity to the consuming code, but avoiding the compacting step.
2 To make it truly disjoint from a threading point of view you want to ensure the partition of N falls on "byte boundaries", and perhaps even cache-line boundaries to avoid false sharing (although the latter is likely not to be a big problem since it only occurs at the edge of each partition, and the order of processing means that you are not likely to get contention).
4 In practice, the exact "order" of the baseline concurrent solution using shared N is hard to define because there will be contention so the O(M/T) scaling will break down for large enough T. If we assume N is quite large and T is limited to typical hardware concurrency of at most a dozen cores or so it's probably an OK approximation.
#IraBaxter posted an interesting but flawed idea which can be made to work (at significant cost). I suspect #BeeOnRope's idea of partial-sort / partitioning the M array will perform better (especially for CPUs with large private caches which can keep parts of N hot). I'll summarize the modified version of Ira's idea that I described in comments on his deleted answer. (That answer has some suggestions about how big N has to be before it's worth multi-threading.)
Each writer thread gets a chunk of M with no sorting/partitioning.
The idea is that conflicts are very rare because N is large compared to the number of stores that can be in flight at once. Since setting a bit is idempotent, so we can handle conflicts (where two threads want to set different bits in the same byte) by checking the value in memory to make sure it really does have the bit set that we want after a RMW operation like or [N + rdi], al (with no lock prefix).
E.g. thread 1 tried to store 0x1 and stepped on thread 2's store of 0x2. Thread 2 must notice and retry the read-modify-write (probably with lock or to keep it simple and make multiple retries not possible) to end up with 0x3 in the conflict byte.
We need an mfence instruction before the read-back. Otherwise store-forwarding will give us the value we we just wrote before other threads see our store. In other words, a thread can observe its own stores earlier than they appear in the global order. x86 does have a Total Order for stores, but not for loads. Thus, we need mfence to prevent StoreLoad reordering. (Intel's "Loads Are not Reordered with Older Stores to the Same Location" guarantee is not as useful as it sounds: store/reload isn't a memory barrier; they're just talking about out-of-order execution preserving program-order semantics.)
mfence is expensive, but the trick that makes this better than just using lock or [N+rdi], al is that we can batch operations. e.g. do 32 or instructions and then 32 read-back. It's a tradeoff between mfence overhead per operation vs. increased chance of false-sharing (reading back cache lines that had already been invalidated by another CPU claiming them).
Instead of an actual mfence instruction, we can do the last or of a group as a lock or. This is better for throughput on both AMD and Intel. For example, according to Agner Fog's tables, mfence has one per 33c throughput on Haswell/Skylake, where lock add (same performance as or) has 18c or 19c throughput. Or for Ryzen, ~70c (mfence) vs. ~17c (lock add).
If we keep the amount of operations per fence very low, the array index (m[i]/8) + mask (1<<(m[i] & 7)) can be kept in registers for all the operations. This probably isn't worth it; fences are too expensive to do as often as every 6 or operations. Using the bts and bt bit-string instructions would mean we could keep more indices in registers (because no shift-result is needed), but probably not worth it because they're slow.
Using vector registers to hold indices might be a good idea, to avoid having to reload them from memory after the barrier. We want the load addresses to be ready as soon as the read-back load uops can execute (because they're waiting for the last store before the barrier to commit to L1D and become globally visible).
Using single-byte read-modify-write makes actual conflicts as unlikely as possible. Each write of a byte only does a non-atomic RMW on 7 neighbouring bytes. Performance still suffers from false-sharing when two threads modify bytes in the same 64B cache-line, but at least we avoid having to actually redo as many or operations. 32-bit element size would make some things more efficient (like using xor eax,eax / bts eax, reg to generate 1<<(m[i] & 31) with only 2 uops, or 1 for BMI2 shlx eax, r10d, reg (where r10d=1).)
Avoid the bit-string instructions like bts [N], eax: it has worse throughput than doing the indexing and mask calculation for or [N + rax], dl. This is the perfect use-case for it (except that we don't care about the old value of the bit in memory, we just want to set it), but still its CISC baggage is too much.
In C, a function might look something like
/// UGLY HACKS AHEAD, for testing only.
// #include <immintrin.h>
#include <stddef.h>
#include <stdint.h>
void set_bits( volatile uint8_t * restrict N, const unsigned *restrict M, size_t len)
{
const int batchsize = 32;
// FIXME: loop bounds should be len-batchsize or something.
for (int i = 0 ; i < len ; i+=batchsize ) {
for (int j = 0 ; j<batchsize-1 ; j++ ) {
unsigned idx = M[i+j];
unsigned mask = 1U << (idx&7);
idx >>= 3;
N[idx] |= mask;
}
// do the last operation of the batch with a lock prefix as a memory barrier.
// seq_cst RMW is probably a full barrier on non-x86 architectures, too.
unsigned idx = M[i+batchsize-1];
unsigned mask = 1U << (idx&7);
idx >>= 3;
__atomic_fetch_or(&N[idx], mask, __ATOMIC_SEQ_CST);
// _mm_mfence();
// TODO: cache `M[]` in vector registers
for (int j = 0 ; j<batchsize ; j++ ) {
unsigned idx = M[i+j];
unsigned mask = 1U << (idx&7);
idx >>= 3;
if (! (N[idx] & mask)) {
__atomic_fetch_or(&N[idx], mask, __ATOMIC_RELAXED);
}
}
}
}
This compiles to approximately what we want with gcc and clang. The asm (Godbolt) could be more efficient in several ways, but might be interesting to try this. This is not safe: I just hacked this together in C to get the asm I wanted for this stand-alone function, without inlining into a caller or anything. __atomic_fetch_or is not a proper compiler barrier for non-atomic variables the way asm("":::"memory") is. (At least the C11 stdatomic version isn't.) I should probably have used the legacy __sync_fetch_and_or, which is a full barrier for all memory operations.
It uses GNU C atomic builtins to do atomic RMW operations where desired on variables that aren't atomic_uint8_t. Running this function from multiple threads at once would be C11 UB, but we only need it to work on x86. I used volatile to get the asynchronous-modification-allowed part of atomic without forcing N[idx] |= mask; to be atomic. The idea is to make sure that the read-back checks don't optimize away.
I use __atomic_fetch_or as a memory barrier because I know it will be on x86. With seq_cst, it probably will be on other ISAs, too, but this is all a big hack.
There are a couple of operations involved in sets (A,B = set, X = element in a set):
Set operation Instruction
---------------------------------------------
Intersection of A,B A and B
Union of A,B A or B
Difference of A,B A xor B
A is subset of B A and B = B
A is superset of B A and B = A
A <> B A xor B <> 0
A = B A xor B = 0
X in A BT [A],X
Add X to A BTS [A],X
Subtract X from A BTC [A],X
Given the fact that you can use the boolean operators to replace set operations you can use VPXOR, VPAND etc.
To set, reset or test individual bits you simply use
mov eax,BitPosition
BT [rcx],rax
You can set if a set is (equal to) empty (or something else) using the following code
vpxor ymm0,ymm0,ymm0 //ymm0 = 0
//replace the previous instruction with something else if you don't want
//to compare to zero.
vpcmpeqqq ymm1,ymm0,[mem] //compare mem qwords to 0 per qword
vpslldq ymm2,ymm1,8 //line up qw0 and 1 + qw2 + 3
vpand ymm2,ymm1,ymm2 //combine qw0/1 and qw2/3
vpsrldq ymm1,ymm2,16 //line up qw0/1 and qw2/3
vpand ymm1,ymm1,ymm2 //combine qw0123, all in the lower 64 bits.
//if the set is empty, all bits in ymm1 will be 1.
//if its not, all bits in ymm1 will be 0.
(I'm sure this code can be improved using the blend/gather etc instructions)
From here you can just extend to bigger sets or other operations.
Note that bt, btc, bts with a memory operand is not limited to 64 bits.
The following will work just fine.
mov eax,1023
bts [rcx],rax //set 1024st element (first element is 0).
Related
I have a piece of code in my full code:
const unsigned int GL=8000000;
const int cuba=8;
const int cubn=cuba+cuba;
const int cub3=cubn*cubn*cubn;
int Length[cub3];
int Begin[cub3];
int Counter[cub3];
int MIndex[GL];
struct Particle{
int ix,jy,kz;
int ip;
};
Particle particles[GL];
int GetIndex(const Particle & p){return (p.ix+cuba+cubn*(p.jy+cuba+cubn*(p.kz+cuba)));}
...
#pragma omp parallel for
for(int i=0; i<cub3; ++i) Length[i]=Counter[i]=0;
#pragma omp parallel for
for(int i=0; i<N; ++i)
{
int ic=GetIndex(particles[i]);
#pragma omp atomic update
Length[ic]++;
}
Begin[0]=0;
#pragma omp single
for(int i=1; i<cub3; ++i) Begin[i]=Begin[i-1]+Length[i-1];
#pragma omp parallel for
for(int i=0; i<N; ++i)
{
if(particles[i].ip==3)
{
int ic=GetIndex(particles[i]);
if(ic>cub3 || ic<0) printf("ic=%d out of range!\n",ic);
int cnt=0;
#pragma omp atomic capture
cnt=Counter[ic]++;
MIndex[Begin[ic]+cnt]=i;
}
}
If to remove
#pragma omp parallel for
the code works properly and the output results are always the same.
But with this pragma there is some undefined behaviour/race condition in the code, because each time it gives different output results.
How to fix this issue?
Update: The task is the following. Have lots of particles with some random coordinates. Need to output to the array MIndex the indices in the array particles of the particles, which are in each cell (cartesian cube, for example, 1×1×1 cm) of the coordinate system. So, in the beginning of MIndex there should be the indices in the array particles of the particles in the 1st cell of the coordinate system, then - in the 2nd, then - in the 3rd and so on. The order of indices within given cell in the area MIndex is not important, may be arbitrary. If it is possible, need to make this in parallel, may be using atomic operations.
There is a straight way: to traverse across all the coordinate cells in parallel and in each cell check the coordinates of all the particles. But for large number of cells and particles this seems to be slow. Is there a faster approach? Is it possible to travel across the particles array only once in parallel and fill MIndex array using atomic operations, something like written in the code piece above?
You probably can't get a compiler to auto-parallelize scalar code for you if you want an algorithm that can work efficiently (without needing atomic RMWs on shared counters which would be a disaster, see below). But you might be able to use OpenMP as a way to start threads and get thread IDs.
Keep per-thread count arrays from the initial histogram, use in 2nd pass
(Update: this might not work: I didn't notice the if(particles[i].ip==3) in the source before. I was assuming that Count[ic] will go as high as Length[ic] in the serial version. If that's not the case, this strategy might leave gaps or something.
But as Laci points out, perhaps you want that check when calculating Length in the first place, then it would be fine.)
Manually multi-thread the first histogram (into Length[]), with each thread working on a known range of i values. Keep those per-thread lengths around, even as you sum across them and prefix-sum to build Begin[].
So Length[thread][ic] is the number of particles in that cube, out of the range of i values that this thread worked on. (And will loop over again in the 2nd loop: the key is that we divide the particles between threads the same way twice. Ideally with the same thread working on the same range, so things may still be hot in L1d cache.)
Pre-process that into a per-thread Begin[][] array, so each thread knows where in MIndex to put data from each bucket.
// pseudo-code, fairly close to actual C
for(ic < cub3) {
// perhaps do this "vertical" sum into a temporary array
// or prefix-sum within Length before combining across threads?
int pos = sum(Length[0..nthreads-1][ic-1]) + Begin[0][ic-1];
Begin[0][ic] = pos;
for (int t = 1 ; t<nthreads ; t++) {
pos += Length[t][ic]; // prefix-sum across threads for this cube bucket
Begin[t][ic] = pos;
}
}
This has a pretty terrible cache access pattern, especially with cuba=8 making Length[t][0] and Length[t+1][0] 4096 bytes apart from each other. (So 4k aliasing is a possible problem, as are cache conflict misses).
Perhaps each thread can prefix-sum its own slice of Length into that slice of Begin, 1. for cache access pattern (and locality since it just wrote those Lengths), and 2. to get some parallelism for that work.
Then in the final loop with MIndex, each thread can do int pos = --Length[t][ic] to derive a unique ID from the Length. (Like you were doing with Count[], but without introducing another per-thread array to zero.)
Each element of Length will return to zero, because the same thread is looking at the same points it just counted. With correctly-calculated Begin[t][ic] positions, MIndex[...] = i stores won't conflict. False sharing is still possible, but it's a large enough array that points will tend to be scattered around.
Don't overdo it with number of threads, especially if cuba is greater than 8. The amount of Length / Begin pre-processing work scales with number of threads, so it may be better to just leave some CPUs free for unrelated threads or tasks to get some throughput done. OTOH, with cuba=8 meaning each per-thread array is only 4096 bytes (too small to parallelize the zeroing of, BTW), it's really not that much.
(Previous answer before your edit made it clearer what was going on.)
Is this basically a histogram? If each thread has its own array of counts, you can sum them together at the end (you might need to do that manually, not have OpenMP do it for you). But it seems you also need this count to be unique within each voxel, to have MIndex updated properly? That might be a showstopper, like requiring adjusting every MIndex entry, if it's even possible.
After your update, you are doing a histogram into Length[], so that part can be sped up.
Atomic RMWs would be necessary for your code as-is, performance disaster
Atomic increments of shared counters would be slower, and on x86 might destroy the memory-level parallelism too badly. On x86, every atomic RMW is also a full memory barrier, draining the store buffer before it happens, and blocking later loads from starting until after it happens.
As opposed to a single thread which can have cache misses to multiple Counter, Begin and MIndex elements outstanding, using non-atomic accesses. (Thanks to out-of-order exec, the next iteration's load / inc / store for Counter[ic]++ can be doing the load while there are cache misses outstanding for Begin[ic] and/or for Mindex[] stores.)
ISAs that allow relaxed-atomic increment might be able to do this efficiently, like AArch64. (Again, OpenMP might not be able to do that for you.)
Even on x86, with enough (logical) cores, you might still get some speedup, especially if the Counter accesses are scattered enough they cores aren't constantly fighting over the same cache lines. You'd still get a lot of cache lines bouncing between cores, though, instead of staying hot in L1d or L2. (False sharing is a problem,
Perhaps software prefetch can help, like prefetchw (write-prefetching) the counter for 5 or 10 i iterations later.
It wouldn't be deterministic which point went in which order, even with memory_order_seq_cst increments, though. Whichever thread increments Counter[ic] first is the one that associates that cnt with that i.
Alternative access patterns
Perhaps have each thread scan all points, but only process a subset of them, with disjoint subsets. So the set of Counter[] elements that any given thread touches is only touched by that thread, so the increments can be non-atomic.
Filtering by p.kz ranges maybe makes the most sense since that's the largest multiplier in the indexing, so each thread "owns" a contiguous range of Counter[].
But if your points aren't uniformly distributed, you'd need to know how to break things up to approximately equally divide the work. And you can't just divide it more finely (like OMP schedule dynamic), since each thread is going to scan through all the points: that would multiply the amount of filtering work.
Maybe a couple fixed partitions would be a good tradeoff to gain some parallelism without introducing a lot of extra work.
Re: your edit
You already loop over the whole array of points doing Length[ic]++;? Seems redundant to do the same histogramming work again with Counter[ic]++;, but not obvious how to avoid it.
The count arrays are small, but if you don't need both when you're done, you could maybe just decrement Length to assign unique indices to each point in a voxel. At least the first histogram could benefit from parallelizing with different count arrays for each thread, and just vertically adding at the end. Should scale perfectly with threads since the count array is small enough for L1d cache.
BTW, for() Length[i]=Counter[i]=0; is too small to be worth parallelizing. For cuba=8, it's 8*8*16 * sizeof(int) = 4096 bytes, just one page, so it's just two small memsets.
(Of course if each thread has their own separate Length array, they each need to zero it). That's small enough to even consider unrolling with maybe 2 count arrays per thread to hide store/reload serial dependencies if a long sequence of points are all in the same bucket. Combining count arrays at the end is a job for #pragma omp simd or just normal auto-vectorization with gcc -O3 -march=native since it's integer work.
For the final loop, you could split your points array in half (assign half to each thread), and have one thread get unique IDs by counting down from --Length[i], and another counting up from 0 in Counter[i]++. With different threads looking at different points, this could give you a factor of 2 speedup. (Modulo contention for MIndex stores.)
To do more than just count up and down, you'd need info you don't have from just the overall Length array... but which you did have temporarily. See the section at the top
You are right to make the update Counter[ic]++ atomic, but there is an additional problem on the next line: MIndex[Begin[ic]+cnt]=i; Different iterations can write into the same location here, unless you have mathematical proof that this is never the case from the structure of MIndex. So you have to make that line atomic too. And then there is almost no parallel work left in your loop, so your speed up if probably going to be abysmal.
EDIT the second line however is not of the right form for an atomic operation, so you have to make it critical. Which is going to make performance even worse.
Also, #Laci is correct that since this is an overwrite statement, the order of parallel scheduling is going to influence the outcome. So either live with that fact, or accept that this can not be parallelized.
I try to develop a concurrent prime sieve implementation using C++ atomics. However, when core_count is increased, more and more small primes are missing from the output.
My guess is that the producer threads overwrite each others' results, before being read by the consumer. Even though the construction should protect against it by using the magic number 0 to indicate it's ready to accept the next prime. It seems the compare_exchange_weak is not really atomic in this case.
Things I've tried:
Replacing compare_exchange_weak with compare_exchange_strong
Changing the memory_order to anything else.
Swapping around the 'crossing-out' and the write.
I have tested it with Microsoft Visual Studio 2019, Clang 12.0.1 and GCC 11.1.0, but to no avail.
Any ideas on this are welcome, including some best practices I might have missed.
#include <algorithm>
#include <atomic>
#include <future>
#include <iostream>
#include <iterator>
#include <thread>
#include <vector>
int main() {
using namespace std;
constexpr memory_order order = memory_order_relaxed;
atomic<int> output{0};
vector<atomic_bool> sieve(10000);
for (auto& each : sieve) atomic_init(&each, false);
atomic<unsigned> finished_worker_count{0};
auto const worker = [&output, &sieve, &finished_worker_count]() {
for (auto current = next(sieve.begin(), 2); current != sieve.end();) {
current = find_if(current, sieve.end(), [](atomic_bool& value) {
bool untrue = false;
return value.compare_exchange_strong(untrue, true, order);
});
if (current == sieve.end()) break;
int const claimed = static_cast<int>(distance(sieve.begin(), current));
int zero = 0;
while (!output.compare_exchange_weak(zero, claimed, order))
;
for (auto product = 2 * claimed; product < static_cast<int>(sieve.size());
product += claimed)
sieve[product].store(true, order);
}
finished_worker_count.fetch_add(1, order);
};
const auto core_count = thread::hardware_concurrency();
vector<future<void>> futures;
futures.reserve(core_count);
generate_n(back_inserter(futures), core_count,
[&worker]() { return async(worker); });
vector<int> result;
while (finished_worker_count < core_count) {
auto current = output.exchange(0, order);
if (current > 0) result.push_back(current);
}
sort(result.begin(), result.end());
for (auto each : result) cout << each << " ";
cout << '\n';
return 0;
}
compare_exchange_weak will update (change) the "expected" value (the local variable zero) if the update cannot be made. This will allow overwriting one prime number with another if the main thread doesn't quickly handle the first prime.
You'll want to reset zero back to zero before rechecking:
while (!output.compare_exchange_weak(zero, claimed, order))
zero = 0;
Even with correctness bugs fixed, I think this approach is going to be low performance with multiple threads writing to the same cache lines.
As 1201ProgramAlarm's points out in their answer, CAS but I wouldn't expect good performance! Having multiple threads storing to the same cache lines will create big stalls. I'd normally write that as follows so you only need to write the zero = 0 once, but it still happens before every CAS.
do{
zero = 0;
}while(!output.compare_exchange_weak(zero, claimed, order));
Caleth pointed out in comments that it's also Undefined Behaviour for a predictate to modify the element (like in your find_if). That's almost certainly not a problem in practice in this case; find_if is just written in C++ in a header (in mainstream implementations) and likely in a way that there isn't actually any UB in the resulting program.
And it would be straightforward to replace the find_if with a loop. In fact probably making the code more readable, since you can just use array indexing the whole time instead of iterators; let the compiler optimize that to a pointer and then pointer-subtraction if it wants.
Scan read-only until you find a candidate to try to claim, don't try to atomic-RMW every true element until you get to a false one. Especially on x86-64, lock cmpxchg is way slower than read-only access to a few contiguous bytes. It's a full memory barrier; there's no way to do an atomic RMW on x86 that isn't seq_cst.
You might still lose the race, so you do still need to try to claim it with an RMW and keep looping on failure. And CAS is a good choice for that.
Correctness seems plausible with this strategy, but I'd avoid it for performance reasons.
Multiple threads storing to the array will cause contention
Expect cache lines to be bouncing around between cores, with most RFOs (MESI Read For Ownership) having to wait to get the data for a cache line from another core that had it in Modified state. A core can't modify a cache line until after it gets exclusive ownership of that cache line. (Usually 64 bytes on modern systems.)
Your sieve size is only 10k bools, so 10 kB, comfortably fitting into L1d cache on modern CPUs. So a single-threaded implementation would get all L1d cache hits when looping over it (in the same thread that just initialized it all to zero).
But with other threads writing the array, at best you'll get hits in L3 cache. But since the sieve size is small, other threads won't be evicting their copies from their own L1d caches, so the RFO (read for ownership) from a core that wants to write will typically find that some other core has it Modified, so the L3 cache (or other tag directory) will have to send on a request to that core to write back or transfer directly. (Intel CPUs from Nehalem onwards use Inclusive L3 cache where the tags also keep track of which cores have the data. They changed that for server chips with Skylake and later, but client CPUs still I think have inclusive L3 cache where the tags also work as a snoop filter / coherence directory.)
With 1 whole byte per bool, and not even factoring out multiples of 2 from your sieve, crossing off multiples of a prime is very high bandwidth. For primes between 32 and 64, you touch every cache line 1 to 2 times. (And you only start at prime*2, not prime*prime, so even for large strides, you still start very near the bottom of the array and touch most of it.)
A single-threaded sieve can use most of L3 cache bandwidth, or saturate DRAM, on a large sieve, even using a bitmap instead of 1 bool per byte. (I made some benchmarks of a hand-written x86 asm version that used a bitmap version in comments on a Codereview Q&A; https://godbolt.org/z/nh39TWxxb has perf stat results in comments on a Skylake i7-6700k with DDR4-2666. My implementation also has some algorithmic improvements, like not storing the even numbers, and starting the crossing off at i*i).
Although to be fair, L3 bandwidth scales with number of cores, especially if different pairs are bouncing data between each other, like A reading lines recently written by B, and B reading lines recently written by C. Unlike with DRAM where the shared bus is the bottleneck, unless per-core bandwidth limits are lower. (Modern server chips need multiple cores to saturate their DRAM controllers, but modern client chips can nearly max out DRAM with one thread active).
You'd have to benchmark to see whether all thread piled up in a bad way or not, like if they tend to end up close together, or if one with a larger stride can pull ahead and get some distance for write-prefetches not to create extra contention.
The cache-miss delays in committing the store to cache can be hidden some by the store buffer and out-of-order exec (especially since it's relaxed, not seq_cst), but it's still not good.
(Using a bitmap with 8 bools per byte would require atomic RMWs for this threading strategy, which would be a performance disaster. If you're going to thread this way, 1 bool per byte is by far the least bad.)
At least if you aren't reading part of the array that's still being written, you might not be getting memory-order mis-speculation on x86. (x86's memory model disallows LoadStore and LoadLoad reordering, but real implementations speculatively load early, and have to roll back if the value they loaded has been invalidated by the time the load is architecturally allowed to happen.)
Better strategy: each thread owns a chunk of the sieve
Probably much better would be segmenting regions and handing out lists of primes to cross off, with each thread marking off multiples of primes in its own region of the output array. So each cache line of the sieve is only touched by one thread, and each thread only touches a subset of the sieve array. (A good chunk size would be half to 3/4 of the L1d or L2 cache size of a core.)
You might start with a small single-threaded sieve, or a fixed list of the first 10 or 20 primes to get the threads started, and have the thread that owns the starting chunk generate more primes. Perhaps appending them to an array of primes, and updating a valid-index (with a release store so readers can keep reading in that array up to that point, then spin-wait or use C++20 .wait() for a value other than what they last saw. But .wait would need a .notify in the writer, like maybe every 10 primes?)
If you want to move on in a larger sieve, divide up the next chunk of the full array between threads and have them each cross off the known primes from the first part of the array. No thread has to wait for any other, the first set of work already contains all the primes that need to be crossed off from an equal-sized chunk of the sieve.
Probably you don't want an actually array of atomic_int; probably all threads should be scanning the sieve to find not-crossed-off positions. Especially if you can do that efficiently with SIMD, or with bit-scan like tzcnt if you use packed bitmaps for this.
(I assume there are some clever algorithmic ideas for segmented sieves; this is just what I came up with off the top of my head.)
Say I have a toy loop like this
float x[N];
float y[N];
for (int i = 1; i < N-1; i++)
y[i] = a*(x[i-1] - x[i] + x[i+1])
And I assume my cache line is 64 Byte (i.e. big enough). Then I will have (per frame) basically 2 accesses to the RAM and 3 FLOP:
1 (cached) read access: loading all 3 x[i-1], x[i], x[i+1]
1 write access: storing y[i]
3 FLOP (1 mul, 1 add, 1 sub)
The operational intensity is ergo
OI = 3 FLOP/(2 * 4 BYTE)
Now what happens if I do something like this
float x[N];
for (int i = 1; i < N-1; i++)
x[i] = a*(x[i-1] - x[i] + x[i+1])
Note that there is no y anymore. Does it mean now that I have a single RAM access
1 (cached) read/write: loading x[i-1], x[i], x[i+1], storing x[i]
or still 2 RAM accesses
1 (cached) read: loading x[i-1], x[i], x[i+1]
1 (cached) write: storing x[i]
Because the operational intensity OI would be different in either case. Can anyone tell something about this? Or maybe clarify some things. Thanks
Disclaimer: I've never heard of the roofline performance model until today. As far as I can tell, it attempts to calculate a theoretical bound on the "arithmetic intensity" of an algorithm, which is the number of FLOPS per byte of data accessed. Such a measure may be useful for comparing similar algorithms as the size of N grows large, but is not very helpful for predicting real-world performance.
As a general rule of thumb, modern processors can execute instructions much more quickly than they can fetch/store data (this becomes drastically more pronounced as the data starts to grow larger than the size of the caches). So contrary to what one might expect, a loop with higher arithmetic intensity may run much faster than a loop with lower arithmetic intensity; what matters most as N scales is the total amount of data touched (this will hold true as long as memory remains significantly slower than the processor, as is true in common desktop and server systems today).
In short, x86 CPUs are unfortunately too complex to be accurately described with such a simple model. An access to memory goes through several layers of caching (typically L1, L2, and L3) before hitting RAM. Maybe all your data fits in L1 -- the second time you run your loop(s) there could be no RAM accesses at all.
And there's not just the data cache. Don't forget that code is in memory too and has to be loaded into the instruction cache. Each read/write is also done from/to a virtual address, which is supported by the hardware TLB (that can in extreme cases trigger a page fault and, say, cause the OS to write a page to disk in the middle of your loop). All of this is assuming your program is hogging the hardware all to itself (in non-realtime OSes this is simply not the case, as other processes and threads are competing for the same limited resources).
Finally, the execution itself is not (directly) done with memory reads and writes, but rather the data is loaded into registers first (then the result is stored).
How the compiler allocates registers, if it attempts loop unrolling, auto-vectorization, the instruction scheduling model (interleaving instructions to avoid data dependencies between instructions) etc. will also all affect the actual throughput of the algorithm.
So, finally, depending on the code produced, the CPU model, the amount of data processed, and the state of various caches, the latency of the algorithm will vary by orders of magnitude. Thus, the operational intensity of a loop cannot be determined by inspecting the code (or even the assembly produced) alone, since there are many other (non-linear) factors in play.
To address your actual question, though, as far as I can see by the definition outlined here, the second loop would count as a single additional 4-byte access per iteration on average, so its OI would be θ(3N FLOPS / 4N bytes). Intuitively, this makes sense because the cache already has the data loaded, and the write can change the cache directly instead of going back to main memory (the data does eventually have to be written back, however, but that requirement is unchanged from the first loop).
Say we have two arrays a and b of a fundamental type (say, a float) and we need to calculate a[i] + b[i] for every valid index i, as well as store the result. What is the best way to iterate over the arrays to maximize cache hits? Is it front-to-back, back-to-front or something else?
For this kind of operation you should use the auto-vectorization of your compiler. Iterate small i to large i. Also, the answer depends on what you mean by "store the result" and the number n of items items you are going to iterate over.
If you mean c[i] = a[i] + b[i] and n is not too small then your compiler's auto-vectorizer will optimize this best without any more changes. Even MSVC will get that one correct (at least for SSE). Your compiler will have to do some adjustments for n not a multiple of 4 (or 8 for AVX) and alignment but this cost will be amortized across n and this overhead will have a negligible effect except for small n. If n is small then you might want to consider alignment. How small is small has to be determined but I would guess it's much less than 100.
If you mean sum + = a[i] + b[i], a reduction, then you do need to think about this. This has a dependency chain so you need to unroll your loop 3-10 times. Additionally, you need to use a relaxed floating point model since floating point arithmetic is not associative and the auto-vectorization won't kick in without it so add -ffast-math to GCC (/fp:fast to MSVC). If you unroll the loop and use a a relaxed floating point model then GCC, ICC, Clang, and MSVC should auto-vectorize your reduction efficiently.
In order to utilize the cache pre-fetch capability you need to read the arrays from front to back sequentially.
Furthermore, the arrays should be SSE aligned (16 byte). Even more important is that the items (e.g. floats) will be aligned on their size (4 bytes for floats). This is important so data will not cross cache lines (slower read).
After the arrays are aligned, you can use SSE/AVX to read, add and store the results doing 4 or 8 operations in a single instruction.
Edit:
You can read more on cache prefetching here and in depth description in the Intel SW Developer Manual.
I am in need of a 2bit array, I am not concerned with saving memory at all, but I am concerned with minimizing cache misses and maximizing cache efficiency. Using an array of bools will use 4 times more memory, which means for every usable chunk of data in the cache, there will be 3 that are not used. So technically, I can get 3 times better cache consistency if I use bitfields.
The plan is to implement it as an array of bytes, divided into 4 equal bitfields, and use the div function to be able to get the integral quotient and remainder, possibly in a single clock, and use those to access the right index and right bitfield.
The array I needs is about 10000 elements long, so it will make for a significantly denser packed data, using 2 actual bits will allow for the entire array to fit in L1 cache, while using a byte array this will not be possible.
So my question is whether someone can tell me if this is a good idea in a performance oriented task, so I know if it is worth to go forth and implement a 2bit array? And surely, the best way to know is profiling, but any information in advance may be useful and will be appreciated.
With 10000 elements, on a modern processor, it should fit nicely in memory as bytes (10KB), so I wouldn't worry too much about it, unless you want this to run on some very tiny microprocessor with a cache that is much smaller than the typical 16-32KB L1 caches that modern CPU's have.
Of course, you may well want to TEST the performance with different solutions, if you think this is an important part of your code from a performance perspective [as measured from your profiling that you've already done before you start optimising, right?].
It's not clear to me that this will result in a performance
gain. Accessing each field will require several instructions
((data[i / 4] >> 2 * (i % 4)) & 0x03), and a lot of modern
processors have an L3 cache which would hold the entire array
with one byte per entry. Whether the extra cost in execution
time will be greater or less than the difference in caching is
hard to say; you'll have to profile to know exactly.
If you can organize your algorithms to work a byte (or even a
word) at a time, the cost of access may be much less. Iterating
over the entire array, for example:
for ( int i = 0; i < 10000; i += 4 ) {
unsigned char w1 = data[ i / 4 ];
for ( int j = 0; j < 4; ++ j ) {
unsigned char w2 = w1 & 0x03;
// w2 is entry i + j...
w1 >>= 2;
}
}
could make a significant difference. Most compilers will be
able to keep w1 and w2 in registers, meaning you'll only
have 1/4 as many memory accesses. Packing withunsigned int`
would probably be even faster.