Storing arguments in a variadic template function without using boost::any - c++

I have written the following short code in C++11 of a variable template function and store the arguments into a vector of type boost::any. It is working perfectly, but I don't want to use the boost::any library (due to some limitation).
#include <boost/any.hpp>
template <class Var, class... Args>
void cpp_for(Var *variable, uint32_t numParams, Args... args)
{
std::vector<boost::any> arguments{args...};
if(arguments.size() != numParams)
throw std::runtime_error("mismatch");
for(uint32_t i = 0; i < numParams; ++i)
variable[i] = *(boost::unsafe_any_cast<Var>(&arguments[i]));
}
And I call the function like this:
cpp_for(myObj->var, 3, 0x56, 0x23, 0x10);
Or
cpp_for(myObj2->var, 2, myObj2->var2, myObj2->var3);
Is there any way to store the arguments and process them one by one without the need for boost::any?
Edit 1: my arguments are all of the same type.
Edit 2: Since the goal of the code above is assignment, then creating an extra data structure (vector) is useless. Check 'Nir Friedman''s answer for a more efficient solution.

You could use std::common_type, e.g.:
template <class Var, class... Args>
void CPP_FOR(Var *variable, uint32_t numParams, Args... args)
{
std::vector<std::common_type_t<Args...>> arguments{args...};
// do stuff with arguments
}
You can also remove numParams and the runtime check because this will fail at compile time if there is no common type. And if you only want to iterate over the arguments, a vector is maybe overkill... so something like:
template <class Var, class... Args>
void CPP_FOR(Var *variable, Args... args)
{
std::common_type_t<Args...> arguments[]{args...};
for(size_t i = 0; i < sizeof...(Args); ++i)
variable[i] = /* ... */;
}
Note that both of these will fails if sizeof... (Args) is 0, i.e. you are calling with only a Var* - You may want to handle this case separately if necessary.

Assuming that your goal is really just to perform assignments, you don't need a vector at all.
template <class Var, class... Args>
void CPP_FOR(Var *variable, uint32_t numParams, Args... args)
{
if(sizeof...(Args) != numParams)
throw std::runtime_error("mismatch");
int i = 0;
int temp [] = {(variable[i++] = args, 0)...};
}
Live example: http://coliru.stacked-crooked.com/a/710a09332bf2c965
Not only is this zero overhead compared to creating a vector that is hard to optimize away, but it will allow implicit conversions in the most natural way. Other approaches may have surprises.

If you know that there's going to be at least one argument, you can write your function slightly differently to do so.
template <typename Arg, typename... Args>
void cpp_for(Arg arg, Args... args) {
std::vector<Arg> vec { arg, args... };
// ...
}
However, this will fail if the argument list is empty. The easiest solution to this is simply to add a second overload of cpp_for which takes no arguments.
void cpp_for() {
std::vector<SomeDefaultType> vec; // Empty vector
// ...
}
Of course, you only need to do so if it makes sense to call your function with zero arguments.
Bear in mind that this approach will give positively miserable error messages if Args and Arg don't all end up being the same type. This can be remedied with some careful use of static_assert.

Related

C++ variadic template arguments method to pass to a method without variadic arguments

I have the following question, I really can't compile from all the questions and articles researched:
In C++, is it possible to have a method with variadic template arguments that specify types of arguments (as a meta-description type for parameters of in, out, in/out of a certain type, to be passed by value, by address etc.), to loop through these variadic arguments in order to instantiate variables of specified types, and be passed these variables to functions specified by a pointer in a template parameter, but these functions not having variadic parameters?
EDIT 1
I try here to detail, as pseudocode:
template <decltype(*Type::*Method), typename... Parameters>
static bool ExecuteMethod(JSContext *cx, unsigned argc, JS::Value *vp)
{
JS::CallArgs args = CallArgsFromVp(argc, vp);
loop through Parameters
{
Parameters[i]::Type p[i] <-- args[i];
}
ReturnType r = Method(p[0], p[1], p[2] .. p[n]); // the method does not have variadic parameters
...
}
where Method might be like:
int(*GetColor) ( int16 *color);
int(*GetFile) ( FilePath &file );
int(*WriteDocument) ( const FilePath &file, const char *fileFormatName, bool askForParms);
etc.
This comes out of wrapping needs.
The challenge is something missing in C++, reflection as in .net.
It is possible to instance an array of heterogeneous objects by looping through the variadic arguments somehow? Probably.
But how pass them to methods having no variadic arguments? I think it is not possible to assign that array of objects to functions like these three above without explicit wrappers, isn't it?
EDIT 2
I've got a lot of feed-back, but it is clear I was not specific enough.
I did not detailed too much because I've got complains in the past for being too specific. Indeed, I do not have easy implementations and I am a generic guy, not lazy, but I try to make a latter development faster.
Here is the source of the problem: I need to wrap Adobe Illustrator API, which exposes hundreds if not thousands of pointers to functions grouped in structs, called suites.
I try to have a javascript engine using SpiderMonkey.
I use Visual Studio 2015 compiler.
My approach is as follows:
I have several classes to wrap the API in order to add to SpiderMonkey's engine objects for all the suites. Each SpiderMonkey class, could be called as jsData, wraps a data type of Adobe SDK, or a suite, jsSuite.
So far, I have used templates because SpiderMonkey forces me to add each function to its custom objects with a specific signature, like this:
bool jsAIDocumentSuite::WriteDocument(JSContext *cx, unsigned argc, JS::Value *vp)
{
...
}
and adding it to the custom object would be done like this:
const JSFunctionSpec jsAIDocumentSuite::fFunctions[] = {
...
JS_FN("WriteDocument", jsAIDocumentSuite::WriteDocument, 3, 0),
...
}
JS_FN is a SpiderMonkeyMacro.
Actually, this is, so far, less than 10% of the Adobe SDK.
The most are getters and setters with one parameter, passed by value or address or pointer, so I have replaced them by a generic function, like this:
template <typename jsType, typename jsReturnType, typename ReturnPrivateType = jsReturnType::PrivateType, typename jsParamType, typename ParamPrivateType = jsParamType::PrivateType, ReturnPrivateType(*Type::*Method)(ParamPrivateType&)>
static bool GetByRefMethod(JSContext *cx, unsigned argc, JS::Value *vp)
{
JS::CallArgs args = CallArgsFromVp(argc, vp);
try
{
ReturnPrivateType result;
ParamPrivateType ppt;
if (jsType::Suite() && (jsType::Suite()->*Method))
result = (jsType::Suite()->*Method)(ppt);
else
return false; // TODO throw a meaningful error
if ((jsReturnType::IsNoError(result)) && (argc > 0) && (args[0].isObject()))
{
JSObject *obj = &args[0].toObject();
JSObject *value = NULL;
if (!jsParamType::FromAIObject<jsParamType>(cx, &ppt, value))
return false;
if (!value)
return false;
jsProperty::SetProperty(cx, &obj, "value", value, true);
}
JSObject *obj = JS_NewObject(cx, &jsDataClass<jsReturnType>::fClass);
JS_SetPrivate(obj, new ReturnPrivateType(result));
args.rval().setObject(*obj);
}
EXCEPTION_CATCH_CONVERT();
return true;
}
A bit complicated, isn't it?
What is relevant, above, is:
The args variable holds the SpiderMonkey parameters passed in by its engine
Only one argument is passed here, ppt
The return type is one value, so it is easy to be handled
I use macros to inject the method in its variants (several short forms too, not so interesting here):
JS_FN(#GET_METHOD, (js##TYPE::GetByRefMethod<js##TYPE, RETURN_JS_TYPE, RETURN_PRIVATE_TYPE, PARAM_JS_TYPE, PARAM_PRIVATE_TYPE, &TYPE::GET_METHOD>), 1, 0)
I wish to be able to handle variable arguments, according to the statistics more philosophical, but interesting. The idea would be opposite to the C++, probably, and not as expected.
How would I expect it:
I wish to add variadic parameters meta-information, like:
template
static bool Method(JSContext *cx, unsigned argc, JS::Value *vp)
{
JS::CallArgs args = CallArgsFromVp(argc, vp);
try
{
ReturnPrivateType result;
*1st challenge: Loop through the variadic list of meta-parameters and create their corresponding object instances here and initialize the IN ones with values from the *args* collection passed by the SpiderMonkey engine*
if (jsType::Suite() && (jsType::Suite()->*Method))
result = (jsType::Suite()->*Method)(*2nd challenge: pass arguments here: probably by using a variadic macro?*);
else
return false; // TODO throw a meaningful error
if ((jsReturnType::IsNoError(result)) && (argc > 0) && (args[0].isObject()))
{
JSObject *obj = &args[0].toObject();
JSObject *value = NULL;
if (!jsParamType::FromAIObject<jsParamType>(cx, &ppt, value))
return false;
if (!value)
return false;
jsProperty::SetProperty(cx, &obj, "value", value, true);
}
JSObject *obj = JS_NewObject(cx, &jsDataClass<jsReturnType>::fClass);
JS_SetPrivate(obj, new ReturnPrivateType(result));
args.rval().setObject(*obj);
}
EXCEPTION_CATCH_CONVERT();
return true;
}
As you can see, it is not as C++ expected, it is a bit reversed, by trying to avoid writing templates to deduct the parameters, here, I know the parameters first and try to write a code to generate the right parameters by knowing their meta-information first and I have a clear set of types and I promise to write the right code to generate the correct wrappers. I don't need to validate much regarding the data of the parameters, as things are mostly passed without a huge business logic in the process.
EDIT 3
About the parameters meta-information, I could write a few types with statics to specify the data type of the parameter, whether it is a return type, whether it is an IN, an OUT or an IN/OUT parameter, its jsType etc..
They would be the variadic list of the template parameters function above.
I still am having some difficulty understanding exactly what you want to do, but this should let you call a function(without variardic parameters) using a variardic template function, getting the parameters from an array and allowing a conversion operation to apply to each parameter before being passed to the function:
#include <functional>
template<typename T, typename JST> T getParam(const JST& a)
{
//Do whatever conversion necessary
return a;
}
namespace detail
{
template<typename R, typename... Args, int... S> R jsCaller(std::function<R(Args...)> f, seq<S...>, const JS::CallArgs& args)
{
return f(getParam<Args, /*Whatever type should go here */>(args[S])...);
}
}
//Actually use this to call the function and get the result
template<typename R, typename... Args> R jsCall(std::function<R(Args...)> f, const JS::CallArgs& args)
{
return detail::jsCaller(f, GenSequence<sizeof...(Args)>(), args);
}
Where GenSequence extends seq<0, 1, 2, ... , N - 1> and can be implemented as follows:
template<int... N>
struct seq {};
template<int N, int... S>
struct gens : gens<N-1, N-1, S...> {};
template<int... S>
struct gens<0, S...>
{
typedef seq<S...> type;
};
template<int N> using GenSequence<N> = typename gens<N>::type;
This creates a parameter pack of integers, and expands the function call using them- See this question.
You can call your method using jsCall:
Result r = jsCall((Method), args);
Assuming Method can be converted to std::function- if not, you can still do it by making a lambda which conforms to std::function. Does this solve the problem?
[Continued from part 1: https://stackoverflow.com/a/35109026/5386374 ]
There is an issue, however. We had to change the way our code is written to accomodate ExecuteMethod(), which may not always be possible. Is there a way around that, so that it functions exactly the same as your previously specified ExecuteMethod(), and doesn't need to take the variable it modifies as a macro parameter? The answer is... yes!
// Variadic function-like macro to automatically create, use, and destroy functor.
// Uncomment whichever one is appropriate for the compiler used.
// (The difference being that Visual C++ automatically removes the trailing comma if the
// macro has zero variadic arguments, while GCC needs a hint in the form of "##" to tell
// it to do so.)
// Instead of a do...while structure, we can just use a temporary Executor directly.
// MSVC:
// #define ExecuteMethod(M, ...) Executor<decltype(&M), decltype(&M)>{}(M, __VA_ARGS__)
// GCC:
#define ExecuteMethod(M, ...) Executor<decltype(&M), decltype(&M)>{}(M, ##__VA_ARGS__)
// For your example function WriteDocument(), defined as
// int WriteDocument(const FilePath &file, const char *fileFormatName, bool askForParms);
bool c = ExecuteMethod(WriteDocument, file, fileFormatName, askForParams);
This is all well and good, but there is one more change we can make to simplify things without impacting performance. At the moment, this functor can only take function pointers (and maybe lambdas, I'm not familiar with their syntax), not other types of function objects. If this is intended, it means that we can rewrite it to do away with the first template parameter (the entire signature), since the second and third parameters are themselves components of the signature.
// Default functor.
template<typename... Ts>
struct Executor { };
// General case.
template<typename ReturnType, typename... Params>
struct Executor<ReturnType (*)(Params...)> {
private:
// Instead of explicitly taking M as a parameter, create it from
// the other parameters.
using M = ReturnType (*)(Params...);
public:
// Parameter match:
bool operator()(M method, Params... params) {
ReturnType r = method(params...);
// ...
}
// Parameter mismatch:
template<typename... Invalid_Params>
bool operator()(M method, Invalid_Params... ts) {
// Handle parameter type mismatch here.
}
};
// Special case to catch void return type.
template<typename... Params>
struct Executor<void (*)(Params...)> {
private:
// Instead of explicitly taking M as a parameter, create it from
// the other parameters.
using M = void (*)(Params...);
public:
// Parameter match:
bool operator()(M method, Params... params) {
method(params...);
// ...
}
// Parameter mismatch:
template<typename... Invalid_Params>
bool operator()(M method, Invalid_Params... ts) {
// Handle parameter type mismatch here.
}
};
// Variadic function-like macro to automatically create, use, and destroy functor.
// Uncomment whichever one is appropriate for the compiler used.
// (The difference being that Visual C++ automatically removes the trailing comma if the
// macro has zero variadic arguments, while GCC needs a hint in the form of "##" to tell
// it to do so.)
// Instead of a do...while structure, we can just use a temporary Executor directly.
// MSVC:
// #define ExecuteMethod(M, ...) Executor<decltype(&M)>{}(M, __VA_ARGS__)
// GCC:
#define ExecuteMethod(M, ...) Executor<decltype(&M)>{}(M, ##__VA_ARGS__)
// Note: If your compiler doesn't support C++11 "using" type aliases, replace them
// with the following:
// typedef ReturnType (*M)(Params...);
This results in cleaner code, but, as mentioned, limits the functor to only accepting function pointers.
When used like this, the functor expects parameters to be an exact match. It can handle reference-ness and cv-ness correctly, but may have issues with rvalues, I'm not sure. See here.
As to how to use this with your JSContext... I'm honestly not sure. I haven't learned about contexts yet, so someone else would be more helpful for that. I would suggest checking if one of the other answers here would be more useful in your situation, in all honesty.
Note: I'm not sure how easy it would be to modify the functor to work if its function parameter is a functor, lambda, std::function, or anything of the sort.
Note 2: As before, I'm not sure if there would be any negative effects on performance for doing something like this. There's likely a more efficient way, but I don't know what it would be.
I came up with the following C++11 solution, which gives the basic idea. It could very easily be improved, however, so I welcome suggestions. Live test here.
#include <iostream>
#include <tuple>
using namespace std;
// bar : does something with an arbitrary tuple
// (no variadic template arguments)
template <class Tuple>
void bar(Tuple t)
{
// .... do something with the tuple ...
std::cout << std::tuple_size<Tuple>::value;
}
// foo : takes a function pointer and an arbitrary number of other
// arguments
template <class Func, typename... Ts>
void foo(Func f, Ts... args_in)
{
// construct a tuple containing the variadic arguments
std::tuple<Ts...> t = std::make_tuple(args_in...);
// pass this tuple to the function f
f(t);
}
int main()
{
// this is not highly refined; you must provide the types of the
// arguments (any suggestions?)
foo(bar<std::tuple<int, const char *, double>>, 123, "foobar", 43.262);
return 0;
}
Edit: After seeing your "Edit 2", I don't believe this is the proper solution. Leaving it up for reference, though.
I believe I've found a potential solution that catches reference-ness, too. Scroll down to the bottom, to the "Edit 4" section.
If you're asking whether it's possible to dynamically check template argument types, you can. I'll start with a general example of how to use std::true_type and std::false_type to overload based on whether a specified condition is met, then move on to your problem specifically. Consider this:
#include <type_traits>
namespace SameComparison {
// Credit for the contents of this namespace goes to dyp ( https://stackoverflow.com/a/20047561/5386374 )
template<class T, class...> struct are_same : std::true_type{};
template<class T, class U, class... TT> struct are_same<T, U, TT...> :
std::integral_constant<bool, std::is_same<T, U>{} && are_same<T, TT...>{} >{};
} // namespace SameComparison
template<typename T> class SomeClass {
public:
SomeClass() = default;
template<typename... Ts> SomeClass(T arg1, Ts... args);
~SomeClass() = default;
void func(T arg1);
template<typename U> void func(U arg1);
template<typename... Ts> void func(T arg1, Ts... args);
template<typename U, typename... Ts> void func(U arg1, Ts... args);
// ...
private:
template<typename... Ts> SomeClass(std::true_type x, T arg1, Ts... args);
template<typename... Ts> SomeClass(std::false_type x, T arg1, Ts... args);
// ...
};
// Constructors:
// -------------
// Public multi-argument constructor.
// Passes to one of two private constructors, depending on whether all types in paramater pack match T.
template<typename T> template<typename... Ts> SomeClass<T>::SomeClass(T arg1, Ts... args) :
SomeClass(SameComparison::are_same<T, Ts...>{}, arg1, args...) { }
// All arguments match.
template<typename T> template<typename... Ts> SomeClass<T>::SomeClass(std::true_type x, T arg1, Ts... args) { }
// One or more arguments is incorrect type.
template<typename T> template<typename... Ts> SomeClass<T>::SomeClass(std::false_type x, T arg1, Ts... args) {
static_assert(x.value, "Arguments wrong type.");
}
/*
Note that if you don't need to use Ts... in the parameter list, you can combine the previous two into a single constructor:
template<typename T> template<bool N, typename... Ts> SomeClass<T>::SomeClass(std::integral_constant<bool, N> x, T arg1, Ts... args) {
static_assert(x.value, "Arguments wrong type.");
}
x will be true_type (value == true) on type match, or false_type (value == false) on type mismatch. Haven't thoroughly tested this, just ran a similar function through an online compiler to make sure it could determine N.
*/
// Member functions:
// -----------------
// Single argument, type match.
template<typename T> void SomeClass<T>::func(T arg1) {
// code
}
// Single argument, type mismatch.
// Also catches true_type from multi-argument functions after they empty their parameter pack, and silently ignores it.
template<typename T> template<typename U> void SomeClass<T>::func(U arg1) {
if (arg1 != std::true_type{}) {
std::cout << "Argument " << arg1 << " wrong type." << std::endl;
}
}
// Multiple arguments, argument 1 type match.
template<typename T> template<typename... Ts> void SomeClass<T>::func(T arg1, Ts... args) {
func(arg1);
func(args...);
// func(SameComparison::are_same<T, Ts...>{}, vals...);
}
// Multiple arguments, argument 1 type mismatch.
template<typename T> template<typename U, typename... Ts> void SomeClass<T>::func(U arg1, Ts... args) {
// if (arg1 != std::true_type{}) {
// std::cout << "Argument " << arg1 << " wrong type." << std::endl;
// }
func(vals...);
}
First, SameComparison::are_same there is an extension of std::is_same, that applies it to an entire parameter pack. This is the basis of the check, with the rest of the example showing how it can be used. The lines commented out of the last two functions show how it could be applied there, as well.
Now, onto your problem specifically. Since you know what the methods are, you can make similar comparison structs for them.
int (*GetColor) ( int16_t *color);
int(*GetFile) ( FilePath &file );
int(*WriteDocument) ( const FilePath &file, const char *fileFormatName, bool askForParms);
Could have...
namespace ParameterCheck {
template<typename T, typename... Ts> struct parameter_match : public std::false_type {};
// Declare (GetColor, int16_t*) valid.
template<> struct parameter_match<int (*)(int16_t*), int16_t*> : public std::true_type {};
// Declare (GetFile, FilePath&) valid.
// template<> struct parameter_match<int (*)(FilePath&), FilePath&> : public std::true_type {}; // You'd think this would work, but...
template<> struct parameter_match<int (*)(FilePath&), FilePath> : public std::true_type {}; // Nope!
// For some reason, reference-ness isn't part of the templated type. It acts as if it was "template<typename T> void func(T& arg)" instead.
// Declare (WriteDocument, const FilePath&, const char*, bool) valid.
// template<> struct parameter_match<int (*)(const FilePath&, const char*, bool), const FilePath, const char*, bool> : public std::true_type {};
// template<> struct parameter_match<int (*)(const FilePath&, const char*, bool), const FilePath&, const char*, bool> : public std::true_type {};
template<> struct parameter_match<int (*)(const FilePath&, const char*, bool), FilePath, const char*, bool> : public std::true_type {};
// More reference-as-template-parameter wonkiness: Out of these three, only the last works.
} // namespace ParameterCheck
Here, we make a general-case struct that equates to std::false_type, then specialise it so that specific cases are true_type instead. What this does is tell the compiler, "These parameter lists are good, anything else is bad," where each list starts with a function pointer and ends with the arguments to the function. Then, you can do something like this for your caller:
// The actual calling function.
template<typename Func, typename... Ts> void caller2(std::true_type x, Func f, Ts... args) {
std::cout << "Now calling... ";
f(args...);
}
// Parameter mismatch overload.
template<typename Func, typename... Ts> void caller2(std::false_type x, Func f, Ts... args) {
std::cout << "Parameter list mismatch." << std::endl;
}
// Wrapper to check for parameter mismatch.
template<typename Func, typename... Ts> void caller(Func f, Ts... args) {
caller2(ParameterCheck::parameter_match<Func, Ts...>{}, f, args...);
}
As for return type deduction... that depends on where you want to deduce it:
Determine variable type from contents: Use auto when declaring the variable.
Determine return type from passed function return type: If your compiler is C++14-compatible, that's easy. Just use auto. [VStudio 2015 and GCC 4.8.0 (with -std=c++1y) are compatible with auto return type.]
The former can be done like this:
int i = 42;
int func1() { return 23; }
char func2() { return 'c'; }
float func3() { return -0.0f; }
auto a0 = i; // a0 is int.
auto a1 = func1(); // a1 is int.
auto a2 = func2(); // a2 is char.
auto a3 = func3(); // a3 is float.
The latter, however, is more complex.
std::string stringMaker() {
return std::string("Here, have a string!");
}
int intMaker() {
return 5;
}
template<typename F> auto automised(F f) {
return f();
}
// ...
auto a = automised(stringMaker); // a is std::string.
auto b = automised(intMaker); // a is int.
If your compiler isn't compatible with auto or decltype(auto) return type... well, it's a bit more verbose, but we can do this:
namespace ReturnTypeCapture {
// Credit goes to Angew ( https://stackoverflow.com/a/18695701/5386374 )
template<typename T> struct ret_type;
template<typename RT, typename... Ts> struct ret_type<RT (*)(Ts...)> {
using type = RT;
};
} // namespace ReturnTypeCapture
// ...
std::string f1() {
return std::string("Nyahaha.");
}
int f2() {
return -42;
}
char f3() {
return '&';
}
template<typename R, typename F> auto rtCaller2(R r, F f) -> typename R::type {
return f();
}
template<typename F> void rtCaller(F f) {
auto a = rtCaller2(ReturnTypeCapture::ret_type<F>{}, f);
std::cout << a << " (type: " << typeid(a).name() << ")" << std::endl;
}
// ...
rtCaller(f1); // Output (with gcc): "Nyahaha. (type: Ss)"
rtCaller(f2); // Output (with gcc): "-42 (type: i)"
rtCaller(f3); // Output (with gcc): "& (type: c)"
Furthermore, we can simplify it even more, and check the return type without a separate wrapper.
template<typename F> auto rtCaller2(F f) -> typename ReturnTypeCapture::ret_type<F>::type {
return f();
}
template<typename F> void rtCaller(F f) {
auto a = rtCaller2(f);
std::cout << a << " (type: " << typeid(a).name() << ")" << std::endl;
}
// ...
rtCaller(f1); // Output (with gcc): "Nyahaha. (type: Ss)"
rtCaller(f2); // Output (with gcc): "-42 (type: i)"
rtCaller(f3); // Output (with gcc): "& (type: c)"
// Same output.
Having that sticking off the end there is really ugly, though, so can't we do better than that? The answer is... yes! We can use an alias declaration to make a typedef, leaving a cleaner name. And thus, the final result here is:
namespace ReturnTypeCapture {
// Credit goes to Angew ( https://stackoverflow.com/a/18695701/5386374 )
template<typename T> struct ret_type;
template<typename RT, typename... Ts> struct ret_type<RT (*)(Ts...)> {
using type = RT;
};
} // namespace ReturnTypeCapture
template <typename F> using RChecker = typename ReturnTypeCapture::ret_type<F>::type;
std::string f1() { return std::string("Nyahaha."); }
int f2() { return -42; }
char f3() { return '&'; }
template<typename F> auto rtCaller2(F f) -> RChecker<F> {
return f();
}
template<typename F> void rtCaller(F f) {
auto a = rtCaller2(f);
std::cout << a << " (type: " << typeid(a).name() << ")" << std::endl;
}
So now, if we combine parameter checking & return type deduction...
// Parameter match checking.
namespace ParameterCheck {
template<typename T, typename... Ts> struct parameter_match : public std::false_type {};
// Declare (GetColor, int16_t*) valid.
template<> struct parameter_match<int (*)(int16_t*), int16_t*> : public std::true_type {};
// Declare (GetFile, FilePath&) valid.
template<> struct parameter_match<int (*)(FilePath&), FilePath> : public std::true_type {};
// Declare (WriteDocument, const FilePath&, const char*, bool) valid.
template<> struct parameter_match<int (*)(const FilePath&, const char*, bool), FilePath, const char*, bool> : public std::true_type {};
// Declare everything without a parameter list valid.
template<typename T> struct parameter_match<T (*)()> : public std::true_type { };
} // namespace ParameterCheck
// Discount return type deduction:
namespace ReturnTypeCapture {
// Credit goes to Angew ( https://stackoverflow.com/a/18695701/5386374 )
template<typename T> struct ret_type;
template<typename RT, typename... Ts> struct ret_type<RT (*)(Ts...)> {
using type = RT;
};
} // namespace ReturnTypeCapture
// Alias declarations:
template<typename F, typename... Ts> using PChecker = ParameterCheck::parameter_match<F, Ts...>;
template<typename F> using RChecker = typename ReturnTypeCapture::ret_type<F>::type;
// ---------------
int GetColor(int16_t* color);
int GetFile(FilePath& file);
int WriteDocument(const FilePath& file, const char* fileFormatName, bool askForParams);
std::string f1() { return std::string("Nyahaha."); }
int f2() { return -42; }
char f3() { return '&'; }
// ---------------
// Calling function (C++11):
// The actual calling function.
template<typename Func, typename... Ts> auto caller2(std::true_type x, Func f, Ts... args) -> RChecker<Func> {
std::cout << "Now calling... ";
return f(args...);
}
// Parameter mismatch overload.
template<typename Func, typename... Ts> auto caller2(std::false_type x, Func f, Ts... args) -> RChecker<Func> {
std::cout << "Parameter list mismatch." << std::endl;
return static_cast<RChecker<Func> >(0); // Just to make sure we don't break stuff.
}
// Wrapper to check for parameter mismatch.
template<typename Func, typename... Ts> auto caller(Func f, Ts... args) -> RChecker<Func> {
// return caller2(ParameterCheck::parameter_match<Func, Ts...>{}, f, args...);
return caller2(PChecker<Func, Ts...>{}, f, args...);
}
// ---------------
// Calling function (C++14):
// The actual calling function.
template<typename Func, typename... Ts> auto caller2(std::true_type x, Func f, Ts... args) {
std::cout << "Now calling... ";
return f(args...);
}
// Parameter mismatch overload.
template<typename Func, typename... Ts> auto caller2(std::false_type x, Func f, Ts... args) {
std::cout << "Parameter list mismatch." << std::endl;
}
// Wrapper to check for parameter mismatch.
template<typename Func, typename... Ts> auto caller(Func f, Ts... args) {
// return caller2(ParameterCheck::parameter_match<Func, Ts...>{}, f, args...);
return caller2(PChecker<Func, Ts...>{}, f, args...);
}
You should be able to get the functionality you want out of this, I believe. The only caveat is that if you do it this way, you need to explicitly declare functions valid in ParameterCheck, by making a template specialisation for the function & its parameter list, derived from std::true_type instead of std::false_type. I'm not sure if there's a way to get true dynamic parameter list checking, but it's a start.
[I'm not sure if you can just overload caller() or if you explicitly need to use caller2() as well. All my attempts to overload caller() via template parameters ended up crashing the compiler; for some reason, it chose template<typename Func, typename... Ts> void caller(Func f, Ts... args) as a better match for caller(std::true_type, f, args...) than template<typename Func, typename... Ts> caller(std::true_type x, Func f, Ts... args), even with the latter listed before the former, and tried to recursively expand it until it ran out of memory. (Tested on two online gcc compilers: Ideone, and TutorialsPoint's compiler (with -std=c++11). I'm not sure if this is a gcc problem, or if I was a bit off about how template matching works. Unfortunately, the online VStudio compiler is down for maintenance, and the only version of VS I have available to me offline at the moment doesn't support variadic templates, so I can't check which is the case.) Unless someone says otherwise, or says how to fix that particular issue, it's probably best to just use caller() as a wrapper & caller2() to do the heavy lifting.]
Examples of pretty much everything here that would be relevant to your problem: here
Also, note that you can't easily pull individual arguments from a parameter pack. You can use recursion to strip arguments off the front a few at a time, you can use them to initialise member variables in a constructor's initialisation list, you can check how many arguments are in the pack, you can specialise it (as we did for parameter_match), & you can pass the whole pack to a function that takes the right number of arguments, but I believe that's it at the moment. This can make them a bit more awkward than C-style varargs at times, despite being more efficient. However, if your ExecuteMethod()'s argument list consists of a function and its argument list, and nothing else, this isn't an issue. As long as the parameter match succeeds, we can just give the entire pack to the passed function, no questions asked. On that note, we can rewrite ExecuteMethod() into something like...
// Not sure what cx is, leaving it alone.
// Assuming you wanted ExecuteMethod to take parameters in the order (cx, function, function_parameter_list)...
// Parameter list match.
template<typename M, typename... Parameters>
static bool ExecuteMethodWorker(std::true_type x, JSContext* cx, M method, Parameters... params)
{
auto r = method(params...);
// ...
}
// Parameter list mismatch.
template<typename M, typename... Parameters>
static bool ExecuteMethodWorker(std::false_type x, JSContext* cx, M method, Parameters... params)
{
// Handle parameter type mismatch here.
// Omit if not necessary, though it's likely better to use it to log errors, terminate, throw an exception, or something.
}
// Caller.
template<typename M, typename... Parameters>
static bool ExecuteMethod(JSContext* cx, M method, Parameters... params)
{
return ExecuteMethodWorker(PChecker<M, Parameters...>{}, cx, method, params...);
}
Make sure to either prototype or define the worker functions before ExecuteMethod(), so the compiler can resolve the call properly.
(Apologies for any typoes I may have missed anywhere in there, I'm a bit tired.)
Edit: I've located the problem with passing references to a template. It seems that using templates to determine types does indeed remove reference-ness in and of itself, hence notation like template<typename T> void func(T&) for functions that take a reference. Sadly, I'm not yet sure how to fix this issue. I did, however, come up with a new version of PChecker that dynamically reflects types for any function that doesn't use reference types. So far, however, you still need to add references manually, and non-const references probably won't work properly for now.
namespace ParameterCheck {
namespace ParamGetter {
// Based on an answer from GManNickG ( https://stackoverflow.com/a/4693493/5386374 )
// Turn the type list into a single type we can use with std::is_same.
template<typename... Ts> struct variadic_typedef { };
// Generic case, to catch passed parameter types list.
template<typename... Ts> struct variadic_wrapper {
using type = variadic_typedef<Ts...>;
};
// Special case to catch void parameter types list.
template<> struct variadic_wrapper<> {
using type = variadic_typedef<void>;
};
// Generic case to isolate parameter list from function signature.
template<typename RT, typename... Ts> struct variadic_wrapper<RT (*)(Ts...)> {
using type = variadic_typedef<Ts...>;
};
// Special case to isolate void parameter from function signature.
template<typename RT> struct variadic_wrapper<RT (*)()> {
using type = variadic_typedef<void>;
};
} // namespace ParamGetter
template<typename... Ts> using PGetter = typename ParamGetter::variadic_wrapper<Ts...>::type;
// Declare class template.
template<typename... Ts> struct parameter_match;
// Actual class. Becomes either std::true_type or std::false_type.
template<typename F, typename... Ts> struct parameter_match<F, Ts...> : public std::integral_constant<bool, std::is_same<PGetter<F>, PGetter<Ts...> >{}> {};
// Put specialisations for functions with const references here.
} // namespace ParameterCheck
template<typename F, typename... Ts> using PChecker = ParameterCheck::parameter_match<F, Ts...>;
See here.
--
Edit 2: Okay, can't figure out how to grab the passed function's parameter list and use it directly. It might be possible using tuples, perhaps using the rest of GManNickG's code (the convert_in_tuple struct), but I haven't looked into them, and don't really know how to grab the entire type list from a tuple at the same time, or if it's even possible. [If anyone else knows how to fix the reference problem, feel free to comment.]
If you're only using references to minimise passing overhead, and not to actually change data, you should be fine. If your code uses reference parameters to modify the data that the parameter is pointing to, however, I'm not sure how to help you. Sorry.
--
Edit 3: It looks like RChecker might not be as necessary for C++11 function forwarding, we can apparently use decltype([function call]) for that. So...
// caller2(), using decltype. Valid, as args... is a valid parameter list for f.
template<typename Func, typename... Ts> auto caller2(std::true_type x, Func f, Ts... args) -> decltype(f(args...)) {
std::cout << "Now calling... ";
return f(args...);
}
// Parameter mismatch overload.
// decltype(f(args...)) would be problematic, since args... isn't a valid parameter list for f.
template<typename Func, typename... Ts> auto caller2(std::false_type x, Func f, Ts... args) -> RChecker<Func> {
std::cout << "Parameter list mismatch." << std::endl;
return static_cast<RChecker<Func> >(0); // Make sure we don't break stuff.
}
// Wrapper to check for parameter mismatch.
// decltype(caller2(PChecker<Func, Ts...>{}, f, args...)) is valid, but would be more verbose than RChecker<Func>.
template<typename Func, typename... Ts> auto caller(Func f, Ts... args) -> RChecker<Func> {
// return caller2(ParameterCheck::parameter_match<Func, Ts...>{}, f, args...);
return caller2(PChecker<Func, Ts...>{}, f, args...);
}
However, as noted, decltype can have issues when it can't find a function call that matches what it's passed exactly. So, for any case where the parameter mismatch version of caller2() is called, trying to use decltype(f(args...)) to determine return type would likely cause issues. However, I'm not sure if decltype(auto), introduced in C++14, would have that issue.
Also, in C++14-compatible compilers, it's apparently better to use decltype(auto) than just auto for automatic return type determination; auto doesn't preserve const-ness, volatile-ness, or reference-ness, while decltype(auto) does. It can be used either as a trailing return type, or as a normal return type.
// caller2(), using decltype(auto).
template<typename Func, typename... Ts> decltype(auto) caller2(std::true_type x, Func f, Ts... args) {
std::cout << "Now calling... ";
return f(args...);
}
decltype(auto) can also be used when declaring variables. See here for more information.
Edit 4: I believe I may have found a potential solution that preserves the passed function's parameter list properly, using functors. However, it may or may not create unwanted overhead, I'm not sure.
// Default functor.
template<typename... Ts>
struct Executor { };
// General case.
template<typename M, typename ReturnType, typename... Params>
struct Executor<M, ReturnType (*)(Params...)> {
public:
// Parameter match:
bool operator()(M method, Params... params) {
ReturnType r = method(params...);
// ...
}
// Parameter mismatch:
template<typename... Invalid_Params>
bool operator()(M method, Invalid_Params... ts) {
// Handle parameter type mismatch here.
}
};
// Special case to catch void return type.
template<typename M, typename... Params>
struct Executor<M, void (*)(Params...)> {
public:
// Parameter match:
bool operator()(M method, Params... params) {
method(params...);
// ...
}
// Parameter mismatch:
template<typename... Invalid_Params>
bool operator()(M method, Invalid_Params... ts) {
// Handle parameter type mismatch here.
}
};
// Variadic function-like macro to automatically create, use, and destroy functor.
// Uncomment whichever one is appropriate for the compiler used.
// (The difference being that Visual C++ automatically removes the trailing comma if the
// macro has zero variadic arguments, while GCC needs a hint in the form of "##" to tell
// it to do so.)
// Also note that the "do { ... } while (false)" structure is used to swallow the trailing
// semicolon, so it doesn't inadvertently break anything; most compilers will optimise it
// out, leaving just the code inside.
// (Source: https://gcc.gnu.org/onlinedocs/cpp/Swallowing-the-Semicolon.html )
// MSVC:
// #define ExecuteMethod(C, M, ...) \
// do { \
// Executor<decltype(&M), decltype(&M)> temp; \
// C = temp(M, __VA_ARGS__); \
// } while (false)
// GCC:
#define ExecuteMethod(C, M, ...) \
do { \
Executor<decltype(&M), decltype(&M)> temp; \
C = temp(M, ##__VA_ARGS__); \
} while (false)
In this case, you can use it as:
ExecuteMethod(return_value_holder, function_name, function_parameter_list);
Which expands to...
do {
Executor<decltype(&function_name), decltype(&function_name)> temp;
return_value_holder = temp(function_name, function_parameter_list);
} while (false);
With this, there's no need to manually go through the parameter pack and make sure each one matches the passed function's parameters. As the passed function's parameter list is quite literally built into Executor as Params..., we can simply overload the function call operator based on whether the arguments it was passed match Params... or not. If the parameters match the function, it calls the Parmas... overload; if they don't, it calls the Invalid_Params... overload. A bit more awkward than true reflection, IMO, but it seems to match everything properly.
Note that:
I'm not sure whether using functors liberally can cause any performance or memory use overhead. I'm... not all that familiar with them at the moment.
I don't know if it's possible to combine the general case and the "void return type" special case into a single functor. The compiler complained when I tried, but I'm not sure if it's because it isn't possible or because I was doing it wrong.
Considering #2, when modifying this version of ExecuteMethod()'s parameters, you have to modify it and both versions of Executor to match.
Like so, where JSContext* cx is added to the parameter list:
template<typename M, typename ReturnType, typename... Params>
struct Executor<M, ReturnType (*)(Params...)> {
public:
bool operator()(JSContext* cx, M method, Params... params);
};
template<typename M, typename... Params>
struct Executor<M, void (*)(Params...)> {
public:
bool operator()(JSContext* cx, M method, Params... params);
};
#define ExecuteMethod(C, cx, M, ...) \
do { \
Executor<decltype(&M), decltype(&M)> temp; \
C = temp(cx, M, ##__VA_ARGS__); \
} while (false)
This may be the solution, but it requires further testing to see if it has any negative impacts on performance. At the very least, it'll make sure const-ness and reference-ness is preserved by ExecuteMethod(), and it's a lot cleaner than my old ideas.
See here.
There are further improvements that can be made, however. As I'm out of space, see here.
Notes:
int16_t (a.k.a. std::int16_t) is in the header <cstdint>.
std::true_type and std::false_type are in the header <type_traits>.
It's difficult to tell from your description, but this is my closest interpretation to what you asked:
auto foo(int) { cout << "foo int" << endl; }
auto foo(float) { cout << "foo float" << endl; }
//... other foo overloads...
template <class T>
auto uber_function(T t)
{
foo(t);
}
template <class T, class... Args>
auto uber_function(T t, Args... args)
{
foo(t);
uber_function(args...);
}
auto main() -> int
{
uber_function(3, 2.4f);
return 0;
}
Of course this can be improved to take references, to make forwarding. This is just for you to have a starting point. As you weren't more clear, I can't give a more specific answer.

Proxying a std::function to a C function that wants an array of arguments

I'm dealing with a C system that offers a hook of this form:
int (*EXTENSIONFUNCTION)(NATIVEVALUE args[]);
It's possible to register an EXTENSIONFUNCTION and the number of arguments it takes.
My idea was that I'd make a class Extension to wrap up an extension. It would be able to be constructed from a std::function (or any Callable, ideally, but let's just say it contains a std::function for now). And the extension takes Value parameters, which wrap up NATIVEVALUE (but are larger). I'd automatically take care of the parameter count with sizeof...(Ts), for instance. It might look like this:
Extension<lib::Integer, lib::String> foo =
[](lib::Integer i, lib::String s) -> int {
std::cout << i;
std::cout << s;
return 0;
}
Problem is that in order for the C library to register and call it, it wants that array-based interface. :-/
I set out to try and get the compiler to write a little shim, but I don't see a way to do it. I can have a variadic operator() on Extension, and do a runtime loop over the NATIVEVALUE to get an array of Value[]. But what do I do with that? I can't call the std::function with it.
So it seems I need to make an EXTENSIONFUNCTION instance which calls my std::function, as a member of each Extension instance.
But basically I find myself up against a wall where I have a variadic templated class for the extension... and then a sort of "can't get there from here" in terms of taking this NATIVEVALUE args[] and being able to call the std::function with them. If std::function would be willing to be invoked with a std::array of arguments, that would solve it, but of course that isn't how it works.
Is it possible to build a shim of this type? The "ugly" thing I can do is just proxy to another array, like:
Extension<2> foo =
[](lib::Value args[]) -> int {
lib::Integer i (args[0]);
lib::String s (args[1]);
std::cout << i;
std::cout << s;
return 0;
}
But that's not as ergonomic. It seems impossible, without knowing the calling convention and doing some kind of inline assembly stuff to process the parameters and CALL the function (and even that would work for functions only, not Callables in general). But people here have proven the impossible possible before, usually by way of "that's not what you want, what you actually want is..."
UPDATE: I just found this, which seems promising...I'm still trying to digest its relevance:
"unpacking" a tuple to call a matching function pointer
( Note: There are a few cross-cutting issues in what I aim to do. Another point is type inference from lambdas. Answer here seems to be the best bet on that... it appears to work, but I don't know if it's "kosher": Initialize class containing a std::function with a lambda )
If I managed to reduce the problem to its simplest form, you need a way to call an std::function taking its argument from a fixed-sized C-style array without having to create a run-time loop. Then, these functions may solve your problem:
template<std::size_t N, typename T, typename F, std::size_t... Indices>
auto apply_from_array_impl(F&& func, T (&arr)[N], std::index_sequence<Indices...>)
-> decltype(std::forward<F>(func)(arr[Indices]...))
{
return std::forward<F>(func)(arr[Indices]...);
}
template<std::size_t N, typename T, typename F,
typename Indices = std::make_index_sequence<N>>
auto apply_from_array(F&& func, T (&arr)[N])
-> decltype(apply_from_array_impl(std::forward<F>(func), arr, Indices()))
{
return apply_from_array_impl(std::forward<F>(func), arr, Indices());
}
Here is an example demonstrating how it can be used:
auto foo = [](int a, int b, int c)
-> int
{
return a + b + c;
};
int main()
{
Value arr[] = { 1, 2, 3 };
std::cout << apply_from_array(foo, arr); // prints 6
}
Of course, with the signature int (*)(T args[]), args is just a T* and you don't know its size at compile time. However, if you know the compile time size from somewhere else (from the std::function for example), you can still tweak apply_from_array to manually give the compile-time size information:
template<std::size_t N, typename T, typename F, std::size_t... Indices>
auto apply_from_array_impl(F&& func, T* arr, std::index_sequence<Indices...>)
-> decltype(std::forward<F>(func)(arr[Indices]...))
{
return std::forward<F>(func)(arr[Indices]...);
}
template<std::size_t N, typename T, typename F,
typename Indices = std::make_index_sequence<N>>
auto apply_from_array(F&& func, T* arr)
-> decltype(apply_from_array_impl<N>(std::forward<F>(func), arr, Indices()))
{
return apply_from_array_impl<N>(std::forward<F>(func), arr, Indices());
}
And then use the function like this:
int c_function(NATIVEVALUE args[])
{
return apply_from_array<arity>(f, args);
}
In the example above, consider that f is an std::function and that arity is the arity of f that you managed to get, one way or another, at compile time.
NOTE: I used the C++14 std::index_sequence and std::make_index_sequence but if you need your code to work with C++11, you can still use handcrafted equivalents, like indices and make_indices in the old question of mine that you linked.
Aftermath: the question being about real code, it was of course a little bit more complicated than above. The extension mechanism is designed so that everytime an extension function is called, C++ proxys above the C API (lib::Integer, lib::String, etc...) are created on the fly then passed to the user-defined function. This required a new method, applyFunc in Extension:
template<typename Func, std::size_t... Indices>
static auto applyFuncImpl(Func && func,
Engine & engine,
REBVAL * ds,
utility::indices<Indices...>)
-> decltype(auto)
{
return std::forward<Func>(func)(
std::decay_t<typename utility::type_at<Indices, Ts...>::type>{
engine,
*D_ARG(Indices + 1)
}...
);
}
template <
typename Func,
typename Indices = utility::make_indices<sizeof...(Ts)>
>
static auto applyFunc(Func && func, Engine & engine, REBVAL * ds)
-> decltype(auto)
{
return applyFuncImpl(
std::forward<Func>(func),
engine,
ds,
Indices {}
);
}
applyFunc takes the function to call an calls it with instances of the appropriate types (Integer, String, etc...) on the fly from the underlying C API created on the fly with an Engine& and a REBVAL*.

Dynamically Created List of Arguments Passed to Variadic Function

I was testing variadic functions hoping that I could use it to solve a problem in which I need to create an object holding arbitrary number of arguments. It actually works fine but the arguments passed to the function createObject would need to be dynamic. In the example below, only two arguments are passed to the constructor, but in the final program the number and the order in which arguments are passed should be arbitrary (the arguments always have the type Param though).
I can't seem to find a way of doing this. Any help, ideas etc. would be greatly appreciated.
PS: I found a couple of similar questions on Stackoverflow, but they are old and do no provide any accepted answer.
struct Vec3f { float x, y, z; };
struct Vec2f { float x, y; };
template<class T>
struct Param
{
static const std::size_t size = sizeof(T);
Param(const std::string &n) : name(n) {}
std::string name;
};
typedef Param<Vec3f> ParamFloat3;
typedef Param<Vec2f> ParamFloat2;
void parseParameters(std::size_t &stride) {}
template<class T, typename ... Types>
void parseParameters(std::size_t &stride, const Param<T> &first, Types ... args)
{
stride += first.size;
parseParameters(stride, args ...);
}
template<class T, typename ... Types>
void createObject(const Param<T> &first, Types ... args)
{
std::size_t stride = 0;
parseParameters(stride, first, args...);
}
int main(int argc, char **argv)
{
ParamFloat3 test1("T1");
ParamFloat2 test2("T2");
createObject(test1, test2); // would like to make this dynamic
return 0;
}
All kinds of template programming (including variadic templates) are resolved at compile-time. You'll need to pass a container (e.g an std::vector) to your functions.
Edit : If you need to pass parameters of different types (Param<Vec3f> and Param<Vec2f> are actually strictly different, despite coming from the same template), you will need to rely on polymorphism. Give all parameters the same base class, and use virtual functions or dynamic_cast to recover the correct behaviour.
The safest way to achieve that (and avoid object slicing) will be to use a std::vector<std::unique_ptr<Param>> where Param is your base class.
Instead of checking the first argument as Param<T>, you can deduce the entire argument:
template<class Head, class... Tail>
void parseParameters(std::size_t& stride, Head&& head, Tail&&... tail)
{
stride += head.size;
parseParameters(stride, std::forward<Tail>(tail)...);
}
template<class... Args>
void createObject(Args&&... args)
{
std::size_t stride = 0;
parseParameters(stride, std::forward<Args>(args)...);
}
You can also disable different overloads and enable others if you intend to have different functionality depending on the type.

Error deducing variadic function template

I'm having a problem with the type deduction of variadic template functions. Here is what I'm trying to do:
I have a template class which works as an allocator. In order to choose the right allocator, I need some information about the type parameters. The information is collected in a vector.
The functions creating the actual meta data look like this:
template<typename T>
MetaData* create_meta() {
return new DefaultMetaData();
}
template<MyExampleType>
MetaData* create_meta() {
return new MyExampleTypeMetaData();
}
template<MyOtherType>
MetaData* create_meta() {
etc.
}
And the function collecting the meta data looks like this right now:
template<typename T, typename... Args>
void fill_meta_data(std::vector<MetaData*> &meta) {
meta.push_back(create_meta<T>());
fill_meta_data<Args...>(meta);
}
edit: Trying to clearify the problem:
I want to call the fill_meta_data function like this:
fill_meta_data<MyExampleType, MyExampleType, MyOtherType>(meta_data_vector)
And as a result the meta_data_vector to contain Meta Data for MyExampleType, MyExampleType and MyOtherType
The error I'm getting is "template argument deduction/substitution failed: couldn't deduce template parameter 'T'".
I think that the problem occurs when it tries to deduce the argument for the no-arg version, however, I just can't figure out how to define this default (where it should just return).
I already tried template<> (which is not recognized), template<typename... Args> (the compiler says there are two implementations for more than 0 parameters).
Different solutions for the problem would also be welcome :)
Thanks!
EDIT: Thanks to #catscradle's link:
Here is a solution which worked for me:
I had to add the template
template<typename... Args>
typename std::enable_if<sizeof...(Args) == 0>::type
fill_meta_data(std::vector<MetaData*> &meta) {}
which is only enabled when the size of the Args parameters is zero.
Thanks everybody!
There's a few syntax errors in your code, but there shouldn't be a problem once you sort them out.
Your function specializations are wrong. Instead of:
template<typename T>
MetaData* create_meta() {
return new DefaultMetaData();
}
template<MyExampleType>
MetaData* create_meta() {
return new MyExampleTypeMetaData();
}
Try:
template<typename T>
MetaData* create_meta() {
return new DefaultMetaData();
}
template <>
MetaData* create_meta<MyExampleType>() {
return new MyExampleTypeMetaData();
}
The other issue is that your recursion doesn't have a final function. Some find it helpful to draw out recursion so it makes more sense. If we draw out your recursion with some types, we might get this:
fill_meta_data<short, int, long> // T = short, Args... = int, long
fill_meta_data<int, long> // T = int, Args... = long
fill_meta_data<long> // T = long, Args... =
fill_meta_data<> // T = ???, Args... =
You can see that the final step is undefined because T has no meaning, but it needs an input. So, to "close off" your recursive template function you'll just need a regular function overload with no arguments that does nothing:
void fill_meta_data(std::vector<MetaData*> &meta) {
}
template<typename T, typename... Args>
void fill_meta_data(std::vector<MetaData*> &meta) {
meta.push_back(create_meta<T>());
fill_meta_data<Args...>(meta);
}

looping over all arguments of a function in C++

I want to do identical processing to a bunch of arguments of a function. Is there a way to loop over all arguments ? I am doing it the way represented in following code, but want to see if there is a compact way to do this.,
void methodA(int a1, int a2, int b1, double b2){
//.. some code
methodB(a1, f(a1));
methodB(a2, f(a2));
methodB(b1, f(b1));
methodB(b2, f(b2));
// more code follows ...
}
int f(int a){
// some function.
return a*10;
}
double f(double b){
return b/2.0;
}
You could use variadic templates:
template <typename T, typename ...Args>
void methodAHelper(T && t, Args &&... args)
{
methodB(t, f(t));
methodAHelper(std::forward<Args>(args)...);
}
void methodAHelper() { }
template <typename ...Args>
void methodA(Args &&... args)
{
// some code
methodAHelper(std::forward<Args>(args)...);
// some other code
}
You can possibly get rid of the && and the forwarding if you know that your methodB call doesn't know about rvalue references, that would make the code a bit simpler (you'd have const Args &... instead), for example:
methodAHelper(const T & t, const Args &... args)
{
methodB(t, f(t));
methodAHelper(args...);
}
You might also consider changing methodB: Since the second argument is a function of the first argument, you might be able to only pass the first argument and perform the call to f() inside the methodB(). That reduces coupling and interdependence; for example, the entire declaration of f would only need to be known to the implementation of methodB. But that's depends on your actual situation.
Alternatively, if there is only one overload of methodB whose first argument is of type T, then you could just pass a std::vector<T> to methodA and iterate over it:
void methodA(const std::vector<T> & v)
{
// some code
for (auto it = v.cbegin(), end = v.cend(); it != end; ++it)
methodB(*it, f(*it));
// some more code
}
int main() { methodA(std::vector<int>{1,2,3,4}); }
Yes there is, the concept you're looking for is called a variadic function.
Depending on what you are trying to do. The simplest thing might to revisit your function and see if it can take an array or std::vector as an argument. Might be much simpler that going the variadic route