Returning object loses properties [closed] - c++

Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 5 years ago.
Improve this question
This is basically my main function :
void GameObject::deserialize(QList<GameObject*> *list)
{
QFile _file(_filename);
if (!_file.open(QIODevice::ReadOnly | QFile::Text))
{
qDebug() << "Couldn't open file to read";
return;
}
QTextStream in(&_file);
while (!in.atEnd())
{
QString currentline = in.readLine();
if (currentline.startsWith("GameObject {"))
{
list->append(getGameObject(&in, currentline));
}
}
_file.close();
}
It opens a file, and parses it for GameObjects.
The getGameObject (cleaned up) function is this one :
GameObject *GameObject::getGameObject(QTextStream *in, QString current_line)
{
GameObject *go = new GameObject();
QList<GameObjectVariable*> govl;
bool ok;
while (!in->atEnd() && !current_line.startsWith("} end GameObject"))
{
current_line = in->readLine();
if (current_line.startsWith("GameObjectVariable")) {
GameObjectVariable *gov = this->getGameObjectVariable(in, current_line);
govl.append(gov);
go->setVariableList(&govl);
qDebug() << QString("AR : Type As String of the returned object : ") + gov->getTypeAsAString();
qDebug() << QString("AR : Type as number : ") + QString::number(gov->getType());
if (gov->getType() == NUMBER_LIST) {
qDebug() << "Number List";
qDebug() << QString("Value as a string of the number list : ") + ((GameObjectVariableNumberList*)gov)->getValueAsAString();
}
else if (gov->getType() == STRING_LIST) {
qDebug() << "String List";
qDebug() << QString("Value as a string of the string list : ") + ((GameObjectVariableStringList*)gov)->getValueAsAString();
}
else if (gov->getType() == GAMEOBJECT) {
qDebug() << "GameOBject";
qDebug() << QString("Value as a string of the gameobject : ") + ((GameObjectVariableGameObject*)gov)->getValueAsAString();
}
}
}
return go;
}
This one basically is a big mess of ifs, but it works, up to a point. The goal of this function is to read line by line, and return a gameobject filled with the read info. This is a weird format we use for the project though.
The last bunch of lines are Debug lines I've put in to try to understand where the problem was.
This is the other (cleaned up) function that's related :
GameObjectVariable* GameObject::getGameObjectVariable(QTextStream *in, QString current_line)
{
GameObjectVariable *gov;
bool ok;
int type;
QList<QString> ls;
QList<int> ln;
QList<GameObject*> lgo;
while (!in->atEnd() && !current_line.startsWith("} end GameObjectVariable")) {
current_line = in->readLine();
if (current_line.startsWith("type: "))
{
type = current_line.right(current_line.size() - 5).toInt(&ok, 10);
}
else if (current_line.startsWith("value: ")) {
if (current_line.startsWith("value: {"))
{
while (!in->atEnd() && !current_line.startsWith("} end value"))
{
current_line = in->readLine();
if (!current_line.startsWith("} end value"))
{
if (type == GAMEOBJECT_LIST)
{
lgo.append(getGameObject(in, current_line));
}
else if (type == STRING_LIST)
{
ls.append(current_line);
}
else if (type == NUMBER_LIST)
{
ln.append(current_line.toInt(&ok, 10));
}
}
}
if (type == GAMEOBJECT_LIST)
((GameObjectVariableGameObjectList*) gov)->setValue(&lgo);
else if (type == STRING_LIST)
((GameObjectVariableStringList*) gov)->setValue(&ls);
else if (type == NUMBER_LIST)
((GameObjectVariableNumberList*) gov)->setValue(&ln);
}
}
}
qDebug() << QString("BR : Get the type as string : ") + gov->getTypeAsAString();
qDebug() << QString("BR : Get the type as number : ") + QString::number(gov->getType());
qDebug() << QString("BR : get the value as string of the object : ") + gov->getValueAsAString();
return gov;
}
This function reads the lines in the GameObjectVariable 'tag'. The type is a defined int that is macroed to the text type we use for the other if forest.
Now this again works fine, except for when we have a list of values (the part that starts with else if (current_line.startsWith("value: {"))).
The debug lines at the end of the function (the "BR :" ones) show the object properly filled, but the ones at the end of the getGameObject calling function (starting with "AR :") crash, because apparently the value is null.
GameObjectVariable object is this one (again, cleaned up) :
class GameObjectVariable
{
public:
GameObjectVariable(QString name, QList<int> idListEdit = QList<int>(), QList<int> idListView = QList<int>());
// GETTERS
QString getName() {return this->name;}
int getType() {return this->type;}
void *getValue() {return this->value;}
// SETTERS
void setName(QString name) {this->name = name;}
void setValue(void* value) {this->value = value;}
QString getTypeAsAString();
virtual QString getValueAsAString() = 0;
private:
QString name;
protected:
void *value;
int type;
};
getValueAsAString is set as virtual because every type mentioned in the code above (like GameObjectVariableStringList overwrite this one with a return of their value with the correct type)
Finally, here is an example of file we try to deserialize :
GameObject {
name: Number 1
type: Test
GameObjectVariableStringList: {
type: 3
name: List String
value: {
String 1
String 2
} end value
} end GameObjectVariable
(type: 3 corresponds to STRING_LIST)
The main problem is bolded.

The problem
getGameObjectVariable()'s local variable GameObjectVariable *gov is an uninitialised pointer, which you suddenly cast to some other type and then start trying to call methods on.
How did you expect that to end? You are telling the compiler this: Poke at random memory as if it holds an allocated, initialised object. Also, this object might have any of 3 different types.
Seriously: What did you think was happening in that function, that it was somehow producing a usable object? I'm genuinely curious.
Anyway, for at least three reasons, this is malformed code that exhibits completely undefined behaviour:
The pointer is uninitialised, so like any uninitialised variable, reading/dereferencing it is UB.
No object is alive at the (invalid) address to which it points, but you call methods on it as if an object lives there; that is UB.
Said methods then presumably start writing stuff to whatever arbitrary address you happened to end up at, with no permission, which is lethal UB.
(Also, even if there was valid memory to access and a valid object at it, casting the pointer to another type then using it is only valid if an instance of that other type was specifically allocated at that address - or some more-derived one, but then the C-style cast is (A) bad style and (B) potentially very dangerous if e.g. multiple and/or virtual inheritance are in play.)
Due to all this UB, anything can happen, or nothing might happen, or exactly what you want just might happen - but the code is fundamentally broken.
For example, as seems to have occurred here, the compiler might coincidentally act like there is a valid object while within the same function, but then you return that garbage pointer to getGameObject(), and it suddenly reveals that you fed it rubbish.
UB gives the compiler, and particularly its optimising layers, free reign to do whatever they want, chiefly because they are allowed to assume UB does not happen. So, e.g. they can assume there must be a valid object pointed to by gov, even if there blatantly isn't. That assumption gets lost after you return, though, for whatever reason.
Who knows? The precise reasons for the observed behaviour are pretty uninteresting to speculate about. You can produce assembly output if you really want to know why what happened happened.
The (immediate) solution
But the key point is this: You need to replace this particular mess with proper, valid code - and fast. So, you need to assign a valid value to the pointer, by assigning it the address of a newly allocated object of whichever type is required. Only then do you have an address to which you are allowed access, with a living object at it, of the right type. It's then OK to create a cast pointer of the real derived type to call derived methods, but return a pointer-to-base for others to use.
Conditionally calling methods, etc.
Also, those conditional casts and calls to setValue() look suspicious. Why not just make that a virtual method and let the compiler resolve the right variation? Generally, if you have some conditional construct deciding which method to call based on the real type... You should just use virtual functions. Most concern about their overhead is FUD, and most attempts to avoid that overhead are no more efficient to execute and much worse to read.
For instance, do you expect all users of any GameObjectVariable to repeat the same hoop-jumping exercise of checking what type it is and casting to the equivalent type of pointer to call the right (derived, hiding-not-overriding) version of setValue()? Hello, boilerplate spaghetti code, for no reason.
I think this points at more general bad patterns in your design. Rather than having huge functions that repeatedly have to check the type and do different things, with different lists depending on the type, etc. - why not simply check the type specified by the input line, and construct a new object of that type with, for example, the rest of the line as an argument, letting it create and populate whatever type of list and any other specific attributes it needs? Then you'll have tidy methods that do single things, not labyrinths that must constantly remind themselves what kind of object they're working with.
Avoid new
Note that I said said to assign the pointer from "a newly allocated object", not a newly allocated object... Most people should not ever need to use raw new or delete in C++, so you should return a unique_ptr, ideally from std::make_unique<Foo>(args).
There is a fair exception if, as hyde points out in the comments, your new object is of a type that should have its lifetime managed by a parent object to which it is then added. Then new is OK - assuming there's no better way to phrase it, like I dunno, make_floating_reference<Foo>(args). But, as hyde also said, that isn't the case for your GameObjectVariable, so a smart pointer is the way to go for that.
(Normally I would say you probably don't need dynamic allocation at all, but since you appear to need polymorphism and the objects clearly don't comprise a known set on the stack to which you could push non-owning pointers/reference-wrappers into the container, it seems that you do.)

Related

how to correctly pass data structures between custom llvm passes

I have a Function pass, called firstPass, which does some analysis and populates:
A a;
where
typedef std::map< std::string, B* > A;
class firstPass : public FunctionPass {
A a;
}
typedef std::vector< C* > D;
class B {
D d;
}
class C {
// some class packing information about basic blocks;
}
Hence I have a map of vectors traversed by std::string.
I wrote associated destructors for these classes. This pass works successfully on its own.
I have another Function pass, called secondPass, needing this structure of type A to make some transformations. I used
bool secondPass::doInitialization(Module &M) {
errs() << "now running secondPass\n";
a = getAnalysis<firstPass>().getA();
return false;
}
void secondPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<firstPass>();
AU.setPreservesAll();
}
The whole code compiles fine, but I get a segmentation fault when printing this structure at the end of my first pass only if I call my second pass (since B* is null).
To be clear:
opt -load ./libCustomLLVMPasses.so -passA < someCode.bc
prints in doFinalization() and exits successfully
opt -load ./libCustomLLVMPasses.so -passA -passB < someCode.bc
gives a segmentation fault.
How should I wrap this data structure and pass it to the second pass without issues? I tried std::unique_ptr instead of raw ones but I couldn't make it work. I'm not sure if this is the correct approach anyway, so any help will be appreciated.
EDIT:
I solved the problem of seg. fault. It was basically me calling getAnalysis in doInitialization(). I wrote a ModulePass to combine my firstPass and secondPass whose runOnModule is shown below.
bool MPass::runOnModule(Module &M) {
for(Function& F : M) {
errs() << "F: " << F.getName() << "\n";
if(!F.getName().equals("main") && !F.isDeclaration())
getAnalysis<firstPass>(F);
}
StringRef main = StringRef("main");
A& a = getAnalysis<firstPass>(*(M.getFunction(main))).getA();
return false;
}
This also gave me to control the order of the functions processed.
Now I can get the output of a pass but cannot use it as an input to another pass. I think this shows that the passes in llvm are self-contained.
I'm not going to comment on the quality of the data structures based on their C++ merit (it's hard to comment on that just by this minimal example).
Moreover, I wouldn't use the doInitialization method, if the actual initialization is that simple, but this is a side comment too. (The doc does not mention anything explicitly about it, but if it is ran once per Module while the runOn method is ran on every Function of that module, it might be an issue).
I suspect that the main issue seems to stem from the fact A a in your firstPass is bound to the lifetime of the pass object, which is over once the pass is done. The simplest change would be to allocate that object on the heap (e.g. new) and return a pointer to it when calling getAnalysis<firstPass>().getA();.
Please note that using this approach might require manual cleanup if you decide to use a raw pointer.

javax.xml.ws.WebServiceException: javax.xml.ws.WebServiceException: Failed to instantiate handler [duplicate]

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.
What are Null Pointer Exceptions (java.lang.NullPointerException) and what causes them?
What methods/tools can be used to determine the cause so that you stop the exception from causing the program to terminate prematurely?
There are two overarching types of variables in Java:
Primitives: variables that contain data. If you want to manipulate the data in a primitive variable you can manipulate that variable directly. By convention primitive types start with a lowercase letter. For example variables of type int or char are primitives.
References: variables that contain the memory address of an Object i.e. variables that refer to an Object. If you want to manipulate the Object that a reference variable refers to you must dereference it. Dereferencing usually entails using . to access a method or field, or using [ to index an array. By convention reference types are usually denoted with a type that starts in uppercase. For example variables of type Object are references.
Consider the following code where you declare a variable of primitive type int and don't initialize it:
int x;
int y = x + x;
These two lines will crash the program because no value is specified for x and we are trying to use x's value to specify y. All primitives have to be initialized to a usable value before they are manipulated.
Now here is where things get interesting. Reference variables can be set to null which means "I am referencing nothing". You can get a null value in a reference variable if you explicitly set it that way, or a reference variable is uninitialized and the compiler does not catch it (Java will automatically set the variable to null).
If a reference variable is set to null either explicitly by you or through Java automatically, and you attempt to dereference it you get a NullPointerException.
The NullPointerException (NPE) typically occurs when you declare a variable but did not create an object and assign it to the variable before trying to use the contents of the variable. So you have a reference to something that does not actually exist.
Take the following code:
Integer num;
num = new Integer(10);
The first line declares a variable named num, but it does not actually contain a reference value yet. Since you have not yet said what to point to, Java sets it to null.
In the second line, the new keyword is used to instantiate (or create) an object of type Integer, and the reference variable num is assigned to that Integer object.
If you attempt to dereference num before creating the object you get a NullPointerException. In the most trivial cases, the compiler will catch the problem and let you know that "num may not have been initialized," but sometimes you may write code that does not directly create the object.
For instance, you may have a method as follows:
public void doSomething(SomeObject obj) {
// Do something to obj, assumes obj is not null
obj.myMethod();
}
In which case, you are not creating the object obj, but rather assuming that it was created before the doSomething() method was called. Note, it is possible to call the method like this:
doSomething(null);
In which case, obj is null, and the statement obj.myMethod() will throw a NullPointerException.
If the method is intended to do something to the passed-in object as the above method does, it is appropriate to throw the NullPointerException because it's a programmer error and the programmer will need that information for debugging purposes.
In addition to NullPointerExceptions thrown as a result of the method's logic, you can also check the method arguments for null values and throw NPEs explicitly by adding something like the following near the beginning of a method:
// Throws an NPE with a custom error message if obj is null
Objects.requireNonNull(obj, "obj must not be null");
Note that it's helpful to say in your error message clearly which object cannot be null. The advantage of validating this is that 1) you can return your own clearer error messages and 2) for the rest of the method you know that unless obj is reassigned, it is not null and can be dereferenced safely.
Alternatively, there may be cases where the purpose of the method is not solely to operate on the passed in object, and therefore a null parameter may be acceptable. In this case, you would need to check for a null parameter and behave differently. You should also explain this in the documentation. For example, doSomething() could be written as:
/**
* #param obj An optional foo for ____. May be null, in which case
* the result will be ____.
*/
public void doSomething(SomeObject obj) {
if(obj == null) {
// Do something
} else {
// Do something else
}
}
Finally, How to pinpoint the exception & cause using Stack Trace
What methods/tools can be used to determine the cause so that you stop
the exception from causing the program to terminate prematurely?
Sonar with find bugs can detect NPE.
Can sonar catch null pointer exceptions caused by JVM Dynamically
Now Java 14 has added a new language feature to show the root cause of NullPointerException. This language feature has been part of SAP commercial JVM since 2006.
In Java 14, the following is a sample NullPointerException Exception message:
in thread "main" java.lang.NullPointerException: Cannot invoke "java.util.List.size()" because "list" is null
List of situations that cause a NullPointerException to occur
Here are all the situations in which a NullPointerException occurs, that are directly* mentioned by the Java Language Specification:
Accessing (i.e. getting or setting) an instance field of a null reference. (static fields don't count!)
Calling an instance method of a null reference. (static methods don't count!)
throw null;
Accessing elements of a null array.
Synchronising on null - synchronized (someNullReference) { ... }
Any integer/floating point operator can throw a NullPointerException if one of its operands is a boxed null reference
An unboxing conversion throws a NullPointerException if the boxed value is null.
Calling super on a null reference throws a NullPointerException. If you are confused, this is talking about qualified superclass constructor invocations:
class Outer {
class Inner {}
}
class ChildOfInner extends Outer.Inner {
ChildOfInner(Outer o) {
o.super(); // if o is null, NPE gets thrown
}
}
Using a for (element : iterable) loop to loop through a null collection/array.
switch (foo) { ... } (whether its an expression or statement) can throw a NullPointerException when foo is null.
foo.new SomeInnerClass() throws a NullPointerException when foo is null.
Method references of the form name1::name2 or primaryExpression::name throws a NullPointerException when evaluated when name1 or primaryExpression evaluates to null.
a note from the JLS here says that, someInstance.someStaticMethod() doesn't throw an NPE, because someStaticMethod is static, but someInstance::someStaticMethod still throw an NPE!
* Note that the JLS probably also says a lot about NPEs indirectly.
NullPointerExceptions are exceptions that occur when you try to use a reference that points to no location in memory (null) as though it were referencing an object. Calling a method on a null reference or trying to access a field of a null reference will trigger a NullPointerException. These are the most common, but other ways are listed on the NullPointerException javadoc page.
Probably the quickest example code I could come up with to illustrate a NullPointerException would be:
public class Example {
public static void main(String[] args) {
Object obj = null;
obj.hashCode();
}
}
On the first line inside main, I'm explicitly setting the Object reference obj equal to null. This means I have a reference, but it isn't pointing to any object. After that, I try to treat the reference as though it points to an object by calling a method on it. This results in a NullPointerException because there is no code to execute in the location that the reference is pointing.
(This is a technicality, but I think it bears mentioning: A reference that points to null isn't the same as a C pointer that points to an invalid memory location. A null pointer is literally not pointing anywhere, which is subtly different than pointing to a location that happens to be invalid.)
What is a NullPointerException?
A good place to start is the JavaDocs. They have this covered:
Thrown when an application attempts to use null in a case where an
object is required. These include:
Calling the instance method of a null object.
Accessing or modifying the field of a null object.
Taking the length of null as if it were an array.
Accessing or modifying the slots of null as if it were an array.
Throwing null as if it were a Throwable value.
Applications should throw instances of this class to indicate other
illegal uses of the null object.
It is also the case that if you attempt to use a null reference with synchronized, that will also throw this exception, per the JLS:
SynchronizedStatement:
synchronized ( Expression ) Block
Otherwise, if the value of the Expression is null, a NullPointerException is thrown.
How do I fix it?
So you have a NullPointerException. How do you fix it? Let's take a simple example which throws a NullPointerException:
public class Printer {
private String name;
public void setName(String name) {
this.name = name;
}
public void print() {
printString(name);
}
private void printString(String s) {
System.out.println(s + " (" + s.length() + ")");
}
public static void main(String[] args) {
Printer printer = new Printer();
printer.print();
}
}
Identify the null values
The first step is identifying exactly which values are causing the exception. For this, we need to do some debugging. It's important to learn to read a stacktrace. This will show you where the exception was thrown:
Exception in thread "main" java.lang.NullPointerException
at Printer.printString(Printer.java:13)
at Printer.print(Printer.java:9)
at Printer.main(Printer.java:19)
Here, we see that the exception is thrown on line 13 (in the printString method). Look at the line and check which values are null by
adding logging statements or using a debugger. We find out that s is null, and calling the length method on it throws the exception. We can see that the program stops throwing the exception when s.length() is removed from the method.
Trace where these values come from
Next check where this value comes from. By following the callers of the method, we see that s is passed in with printString(name) in the print() method, and this.name is null.
Trace where these values should be set
Where is this.name set? In the setName(String) method. With some more debugging, we can see that this method isn't called at all. If the method was called, make sure to check the order that these methods are called, and the set method isn't called after the print method.
This is enough to give us a solution: add a call to printer.setName() before calling printer.print().
Other fixes
The variable can have a default value (and setName can prevent it being set to null):
private String name = "";
Either the print or printString method can check for null, for example:
printString((name == null) ? "" : name);
Or you can design the class so that name always has a non-null value:
public class Printer {
private final String name;
public Printer(String name) {
this.name = Objects.requireNonNull(name);
}
public void print() {
printString(name);
}
private void printString(String s) {
System.out.println(s + " (" + s.length() + ")");
}
public static void main(String[] args) {
Printer printer = new Printer("123");
printer.print();
}
}
See also:
Avoiding “!= null” statements in Java?
I still can't find the problem
If you tried to debug the problem and still don't have a solution, you can post a question for more help, but make sure to include what you've tried so far. At a minimum, include the stacktrace in the question, and mark the important line numbers in the code. Also, try simplifying the code first (see SSCCE).
Question: What causes a NullPointerException (NPE)?
As you should know, Java types are divided into primitive types (boolean, int, etc.) and reference types. Reference types in Java allow you to use the special value null which is the Java way of saying "no object".
A NullPointerException is thrown at runtime whenever your program attempts to use a null as if it was a real reference. For example, if you write this:
public class Test {
public static void main(String[] args) {
String foo = null;
int length = foo.length(); // HERE
}
}
the statement labeled "HERE" is going to attempt to run the length() method on a null reference, and this will throw a NullPointerException.
There are many ways that you could use a null value that will result in a NullPointerException. In fact, the only things that you can do with a null without causing an NPE are:
assign it to a reference variable or read it from a reference variable,
assign it to an array element or read it from an array element (provided that array reference itself is non-null!),
pass it as a parameter or return it as a result, or
test it using the == or != operators, or instanceof.
Question: How do I read the NPE stacktrace?
Suppose that I compile and run the program above:
$ javac Test.java
$ java Test
Exception in thread "main" java.lang.NullPointerException
at Test.main(Test.java:4)
$
First observation: the compilation succeeds! The problem in the program is NOT a compilation error. It is a runtime error. (Some IDEs may warn your program will always throw an exception ... but the standard javac compiler doesn't.)
Second observation: when I run the program, it outputs two lines of "gobbledy-gook". WRONG!! That's not gobbledy-gook. It is a stacktrace ... and it provides vital information that will help you track down the error in your code if you take the time to read it carefully.
So let's look at what it says:
Exception in thread "main" java.lang.NullPointerException
The first line of the stack trace tells you a number of things:
It tells you the name of the Java thread in which the exception was thrown. For a simple program with one thread (like this one), it will be "main". Let's move on ...
It tells you the full name of the exception that was thrown; i.e. java.lang.NullPointerException.
If the exception has an associated error message, that will be output after the exception name. NullPointerException is unusual in this respect, because it rarely has an error message.
The second line is the most important one in diagnosing an NPE.
at Test.main(Test.java:4)
This tells us a number of things:
"at Test.main" says that we were in the main method of the Test class.
"Test.java:4" gives the source filename of the class, AND it tells us that the statement where this occurred is in line 4 of the file.
If you count the lines in the file above, line 4 is the one that I labeled with the "HERE" comment.
Note that in a more complicated example, there will be lots of lines in the NPE stack trace. But you can be sure that the second line (the first "at" line) will tell you where the NPE was thrown1.
In short, the stack trace will tell us unambiguously which statement of the program has thrown the NPE.
See also: What is a stack trace, and how can I use it to debug my application errors?
1 - Not quite true. There are things called nested exceptions...
Question: How do I track down the cause of the NPE exception in my code?
This is the hard part. The short answer is to apply logical inference to the evidence provided by the stack trace, the source code, and the relevant API documentation.
Let's illustrate with the simple example (above) first. We start by looking at the line that the stack trace has told us is where the NPE happened:
int length = foo.length(); // HERE
How can that throw an NPE?
In fact, there is only one way: it can only happen if foo has the value null. We then try to run the length() method on null and... BANG!
But (I hear you say) what if the NPE was thrown inside the length() method call?
Well, if that happened, the stack trace would look different. The first "at" line would say that the exception was thrown in some line in the java.lang.String class and line 4 of Test.java would be the second "at" line.
So where did that null come from? In this case, it is obvious, and it is obvious what we need to do to fix it. (Assign a non-null value to foo.)
OK, so let's try a slightly more tricky example. This will require some logical deduction.
public class Test {
private static String[] foo = new String[2];
private static int test(String[] bar, int pos) {
return bar[pos].length();
}
public static void main(String[] args) {
int length = test(foo, 1);
}
}
$ javac Test.java
$ java Test
Exception in thread "main" java.lang.NullPointerException
at Test.test(Test.java:6)
at Test.main(Test.java:10)
$
So now we have two "at" lines. The first one is for this line:
return args[pos].length();
and the second one is for this line:
int length = test(foo, 1);
Looking at the first line, how could that throw an NPE? There are two ways:
If the value of bar is null then bar[pos] will throw an NPE.
If the value of bar[pos] is null then calling length() on it will throw an NPE.
Next, we need to figure out which of those scenarios explains what is actually happening. We will start by exploring the first one:
Where does bar come from? It is a parameter to the test method call, and if we look at how test was called, we can see that it comes from the foo static variable. In addition, we can see clearly that we initialized foo to a non-null value. That is sufficient to tentatively dismiss this explanation. (In theory, something else could change foo to null ... but that is not happening here.)
So what about our second scenario? Well, we can see that pos is 1, so that means that foo[1] must be null. Is this possible?
Indeed it is! And that is the problem. When we initialize like this:
private static String[] foo = new String[2];
we allocate a String[] with two elements that are initialized to null. After that, we have not changed the contents of foo ... so foo[1] will still be null.
What about on Android?
On Android, tracking down the immediate cause of an NPE is a bit simpler. The exception message will typically tell you the (compile time) type of the null reference you are using and the method you were attempting to call when the NPE was thrown. This simplifies the process of pinpointing the immediate cause.
But on the flipside, Android has some common platform-specific causes for NPEs. A very common is when getViewById unexpectedly returns a null. My advice would be to search for Q&As about the cause of the unexpected null return value.
It's like you are trying to access an object which is null. Consider below example:
TypeA objA;
At this time you have just declared this object but not initialized or instantiated. And whenever you try to access any property or method in it, it will throw NullPointerException which makes sense.
See this below example as well:
String a = null;
System.out.println(a.toString()); // NullPointerException will be thrown
A null pointer exception is thrown when an application attempts to use null in a case where an object is required. These include:
Calling the instance method of a null object.
Accessing or modifying the field of a null object.
Taking the length of null as if it were an array.
Accessing or modifying the slots of null as if it were an array.
Throwing null as if it were a Throwable value.
Applications should throw instances of this class to indicate other illegal uses of the null object.
Reference: http://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html
A null pointer is one that points to nowhere. When you dereference a pointer p, you say "give me the data at the location stored in "p". When p is a null pointer, the location stored in p is nowhere, you're saying "give me the data at the location 'nowhere'". Obviously, it can't do this, so it throws a null pointer exception.
In general, it's because something hasn't been initialized properly.
A lot of explanations are already present to explain how it happens and how to fix it, but you should also follow best practices to avoid NullPointerExceptions at all.
See also:
A good list of best practices
I would add, very important, make a good use of the final modifier.
Using the "final" modifier whenever applicable in Java
Summary:
Use the final modifier to enforce good initialization.
Avoid returning null in methods, for example returning empty collections when applicable.
Use annotations #NotNull and #Nullable
Fail fast and use asserts to avoid propagation of null objects through the whole application when they shouldn't be null.
Use equals with a known object first: if("knownObject".equals(unknownObject)
Prefer valueOf() over toString().
Use null safe StringUtils methods StringUtils.isEmpty(null).
Use Java 8 Optional as return value in methods, Optional class provide a solution for representing optional values instead of null references.
A null pointer exception is an indicator that you are using an object without initializing it.
For example, below is a student class which will use it in our code.
public class Student {
private int id;
public int getId() {
return this.id;
}
public setId(int newId) {
this.id = newId;
}
}
The below code gives you a null pointer exception.
public class School {
Student student;
public School() {
try {
student.getId();
}
catch(Exception e) {
System.out.println("Null pointer exception");
}
}
}
Because you are using student, but you forgot to initialize it like in the
correct code shown below:
public class School {
Student student;
public School() {
try {
student = new Student();
student.setId(12);
student.getId();
}
catch(Exception e) {
System.out.println("Null pointer exception");
}
}
}
In Java, everything (excluding primitive types) is in the form of a class.
If you want to use any object then you have two phases:
Declare
Initialization
Example:
Declaration: Object object;
Initialization: object = new Object();
Same for the array concept:
Declaration: Item item[] = new Item[5];
Initialization: item[0] = new Item();
If you are not giving the initialization section then the NullPointerException arise.
In Java all the variables you declare are actually "references" to the objects (or primitives) and not the objects themselves.
When you attempt to execute one object method, the reference asks the living object to execute that method. But if the reference is referencing NULL (nothing, zero, void, nada) then there is no way the method gets executed. Then the runtime let you know this by throwing a NullPointerException.
Your reference is "pointing" to null, thus "Null -> Pointer".
The object lives in the VM memory space and the only way to access it is using this references. Take this example:
public class Some {
private int id;
public int getId(){
return this.id;
}
public setId( int newId ) {
this.id = newId;
}
}
And on another place in your code:
Some reference = new Some(); // Point to a new object of type Some()
Some otherReference = null; // Initiallly this points to NULL
reference.setId( 1 ); // Execute setId method, now private var id is 1
System.out.println( reference.getId() ); // Prints 1 to the console
otherReference = reference // Now they both point to the only object.
reference = null; // "reference" now point to null.
// But "otherReference" still point to the "real" object so this print 1 too...
System.out.println( otherReference.getId() );
// Guess what will happen
System.out.println( reference.getId() ); // :S Throws NullPointerException because "reference" is pointing to NULL remember...
This an important thing to know - when there are no more references to an object (in the example above when reference and otherReference both point to null) then the object is "unreachable". There is no way we can work with it, so this object is ready to be garbage collected, and at some point, the VM will free the memory used by this object and will allocate another.
Another occurrence of a NullPointerException occurs when one declares an object array, then immediately tries to dereference elements inside of it.
String[] phrases = new String[10];
String keyPhrase = "Bird";
for(String phrase : phrases) {
System.out.println(phrase.equals(keyPhrase));
}
This particular NPE can be avoided if the comparison order is reversed; namely, use .equals on a guaranteed non-null object.
All elements inside of an array are initialized to their common initial value; for any type of object array, that means that all elements are null.
You must initialize the elements in the array before accessing or dereferencing them.
String[] phrases = new String[] {"The bird", "A bird", "My bird", "Bird"};
String keyPhrase = "Bird";
for(String phrase : phrases) {
System.out.println(phrase.equals(keyPhrase));
}

Conditions on a constructors arguments [duplicate]

This question already has answers here:
How to handle failure in constructor in C++?
(8 answers)
Closed 7 years ago.
Is it possible to check the arguments of a constructor for certain constraints and if they're not met the object is not created and return a value to tell it failed to be created .
for instance .
Class Device
{
string id;
Device(string ID)
{
If (ID.Length != 7)
{
//Do not create Object
}
id == ID;
}
}
Here I only want 7 char long id String , not less not more ! if its not 7 char I don't want the Object created is it possible to do this ?
I couldn't think of any solution to this other than external function check which is something I want to stay away from !
The usual way would be to check the condition, and if it's not met, throw an exception.
Another possibility would be to accept an array of 7 characters, so the code won't compile if something else is passed. This tends to be trickier to get to work well in general though (e.g., it usually won't work if somebody passes an object of the wrong type, even something like a string that actually does contain 7 characters).
A sort of intermediate point would be to create a type specifically to hold your string of 7 characters, and throw an exception in its ctor if the length is wrong. This can give a little more granularity so it's easier to know what's wrong when the exception is thrown, as well as assuring that creating the Device object will succeed if you pass it a valid DeviceName (or whatever name you prefer) object.
You can throw an exception.
https://stackoverflow.com/a/7894215/2887128
Class Device
{
string id;
Device(string ID)
{
If (ID.Length != 7)
{
throw invalidObjectParametersException;
}
id == ID;
}
}
You could also adjust your design and wrap construction in some sort of factory.
One option I can think of is to throw an error if the condition is not met and catch that error in the function that creates the object.
Yes, you can implement a valid method, which will return if the created object is valid. In order to do that, without creating your real object, you would have to create an internal struct, which would become a private member of the owner class:
Class Device
{
struct DeviceImplementation {
string id;
Device owner;
DeviceImplementation (Device *owner, const string &id):
owner(owner),
id(id)
{
}
};
std::unique_ptr<DeviceImplementation> implementation;
public:
Device(const string &ID)
{
If (ID.Length != 7)
{
//Do not create Object
} else
implementation=std::unique_ptr<DeviceImplementation>(new DeviceImplementation(this, ID));
}
bool isValid() const {return implementation!=nullptr;}
}
No, a constructor can only return an object (or raise an exception).
If you want the chance to verify parameters or context, you should make:
a) the constructor private (so it cannot be called from outside the class anymore)
b) provide a static public method that returns an object (or, for example, NULL if it failed), and inside this method do your tests, and if they are successful call the private constructor and return the created object.
Of course, the outside code needs to able to handle a NULL return (or whatever you chose to do to signal that it failed).
This is a simple and common solution, but you can make up others with similar ideas.

Receiving assert failure on Reference Call

(Disclaimer: I have removed the Qt tag in case the problem is in my syntax / understanding of the references involved here)
I have a foreach loop with an object Member. When I enumerate through the list and try to access a member field, the debugger stops and I get a message:
Stopped: 'signal-received' -
The assert failure is:
inline QString::QString(const QString &other) : d(other.d)
{ Q_ASSERT(&other != this); d->ref.ref(); }
I have checked if the member is NULL, and it isn't. I have tried re-working the code, but I keep failing on this simple call.
Some thing's I missed out. MemberList is a singleton (definitely initialized and returns a valid pointer) that is created as the application launches and populates the MemberList with Members from a file. When this is created, there are definitely values, as I print them to qDebug(). This page is literally the next page. I am unsure as to how the List items can be destroyed.
The code is as follows:
int i = 0;
QList<Member*> members = ml->getMembers();
foreach (Member* mem, members)
{
QString memID = mem->getMemberID(); // Crash happens here
QListWidgetItem *lstItem = new QListWidgetItem(memID, lsvMembers);
lsvMembers->insertItem(i, lstItem);
i++;
}
The Member classes get is as follows:
QString getMemberID() const;
and the actual function is:
QString Member::getMemberID() const
{
return MemberID;
}
The ml variable is received as follows:
QList<Member*> MemberList::getMembers()
{
return MemberList::getInstance()->memberList;
}
Where memberList is a private variable.
Final answer:
I decided to rework the singleton completely and found that I was not instantiating a new Member, rather reusing the previous object over and over. This caused the double reference. S'pose thats pointers for you. Special thanks to Troubadour for the effort!
If mem is not null it could still be the case that the pointer is dangling i.e. the Member it was pointing to has been deleted.
If Member inherits from QObject then you could temporarily change your QList<Member*> that is stored in ml (assuming that's what's stored in ml) into a QList< QPointer<Member> >. If you then get a null QPointer in the list after calling getMembers or at any point during the loop then the object must have been destroyed at some point.
Edit
As regards the singleton, are you sure it's initiliased properly? In other words does MemberList::getInstance() return a valid pointer or just a random uninitialised one?
Edit2
Since we've exhausted most possibilities I guess it must be in the singleton somewhere. All I can suggest is to keep querying the first item in the list to find out exactly where it goes bad.

Null checking the null object pattern

The main goal of the Null Object Pattern is to ensure that a usable object is provided to the client. So we want to replace the following code...
void Class::SetPrivateMemberA() {
m_A = GetObject();
}
void Class::UseA() {
if (m_A != null) {
m_A.Method();
} else {
// assert or log the error
}
}
...with this implementation:
void Class::SetPrivateMemberA() {
m_A = GetObject();
}
void Class::UseA() {
m_A.Method();
}
The problem I am thinking of is that GetObject() still returns an object, a NULL Object or otherwise. I like the idea of not checking for null repeatedly and trusting that the object sent back is usable, but why wouldn't I just do that in the first implementation?
Is the advantage of the Null Object pattern just a slight increase in trust to clean up code? With the second implementation, is it not still a good practice to check that it is not null before calling A.Method()?
You're correct that, if you're sure you're never returning nulls, just skip the null check before calling the method in your first implementation. Likewise, if you do need to do something special in the case that UseA() needs to do something differently on a null object, that you need to explicitly check for a null object anyway. However, what null object pattern really helps with is those situations where it doesn't really matter.
Take, for example, most observer patterns. If you implement your observer pattern as a member of your class for which there can only be one observer, and want to announce to the observer that your class did something, it doesn't matter to the class whether the observer is null or not.
This is also illustrated with empty container classes, which are essentially the null object pattern: Instead of returning a null container from a query, you simply return an empty container. For things like iterating through all entries of a container, it often won't matter whether it's empty or not, so getting rid of the need of a null check makes the code more maintainable/more readable. However, if you want to populate a view of your data set, you still need to explicitly show a different "No entries." that checks for an empty container.
Edit for clarity
One problem is only looking at it from the call site. Like most design patterns, this needs to encompass both sides to be fully utilized. Consider:
public PossiblyNull GetSomethingNull()
{
if (someBadSituation())
return null;
else
return SomehowProduceSomething();
}
vs
public PossiblyEmpty GetSomethingEmpty()
{
if (someBadSituation())
return StaticEmptySomething();
else
return ProdueSomethingYay();
}
Now, your call code, instead of looking like
public void DoSomethingWithChild(Foo foo)
{
if (foo != null)
{
PossiblyNull bar = foo.GetSomething();
if (bar != null)
bar.DoSomething();
}
}
it can be
public void DoSomethingWithChild(Foo foo)
{
if (foo != null)
foo.GetSomething().DoSomething();
}
With the second implementation, is it
not still a good practice to check
that it is not null before calling
A.Method()?
No. If you know that m_A is not null, then the check is superfluous; it's an example of paranoid coding. What harm does it do? It complicates your code - unnecessarily; it makes it harder to read, harder to debug.