runtime-check whether an instance (Base*) override a parent function (Base::f()) - c++

How to determine whether a pointer of base (B) class is (polymorphism-ly) override a certain virtual function of the base class?
class B{
public: int aField=0;
virtual void f(){};
};
class C : public B{
public: virtual void f(){aField=5;};
};
class D: public B{};
int main() {
B b;
C c;
D d;
std::vector<B*> bs;
bs.push_back(&b);
bs.push_back(&c);
bs.push_back(&d);
for(int n=0;n<3;n++){
//std::cout<<(bs[n]->f)==B::f<<std::endl;
//should print "true false true"
}
}
I tried to compare the address of function pointer bs[n]->f against B::f, but it is uncompilable.
Demo
I feel that this question might be duplicated, but I can't find (sorry).

GCC has an extension that allows you to get the address of a virtual member function.
This can be used like so:
#include <vector>
#include <iostream>
class B{
public: int aField=0;
virtual void f(){};
};
class C : public B{
public: virtual void f(){aField=5;};
};
class D: public B{};
int main() {
B b;
C c;
D d;
std::vector<B*> bs;
bs.push_back(&b);
bs.push_back(&c);
bs.push_back(&d);
for(int n=0;n<3;n++){
// This might need to be: (void*) B{}.*&B::f == (void*) (...)
std::cout << ((void*) &B::f == (void*)(bs[n]->*&B::f)) << '\n';
}
}
Demo
You may find this QA to be interesting.
Naturally, this is nonstandard behavior. If you wanted similar behavior in standard C++, you might actually be looking for pure virtual functions:
class B{
public: int aField=0;
virtual void f() = 0;
};
Otherwise, you'd have to have some other mechanism to communicate, such as a bool return type on f().

Related

How do I determine what a function will be called if it's virtual and when it is not?

Look at this excerpt of a program.
I see that cout << obj->foo(); call is not polymorphic. Actually, it is obvious, because it has no virtual specificator.
But I am confused with cout << ((B*)obj)->foo(); Why the program does not use the B's definition of virtual function and will call the third version of foo()?
#include <iostream>
using namespace std;
class A{
public:
int foo(){ return 1; }
};
class B: public A{
public:
virtual int foo(){ return 2; }
};
class C: public B{
public:
int foo(){ return 3; }
};
int main() {
A* obj = new C;
cout << obj->foo();
cout << ((B*)obj)->foo();
cout << ((C*)obj)->foo();
return 0;
}
A::foo() is not virtual. Calling foo() via an A* pointer (or A& reference) will call A::foo() directly without any polymorphic dispatch.
B::foo() is virtual. Calling foo() via a B* pointer (or B& reference) will dispatch the call to the most derived implementation of foo() that exists in the object that the B* (or B&) refers to.
C derives from B, and C::foo() overrides B::foo(), and obj points to a C object, which is why C::foo() gets called by polymorphic dispatch when foo() is called via a B* or C* pointer (or a B& or C& reference).
Because ((B*)obj)->foo(); behaves by design like B* b = (B*)obj; b->foo() and calls C::foo. You may call the base's method explicitly like ((B*)obj)->B::foo();.
#include <iostream>
using namespace std;
class A{
public:
int foo(){ return 1; }
};
class B: public A{
public:
virtual int foo(){ return 2; }
};
class C: public B{
public:
int foo() override { return 3; }
};
int main() {
A* obj = new C;
cout << obj->foo();
cout << ((B*)obj)->B::foo();
cout << ((C*)obj)->foo();
return 0;
}
Output: 123
Member function foo is virtual from class B downwards, i.e. also in C, even if it is not marked virtual or override there.
Thus, call ((B*)obj)->foo() is a virtual call, actually resulting in calling C::foo.

Method nonvisibility in base class despite definition in derived class; polymorphism and using `virtual` keyword

#include <iostream>
class A {
protected:
int foo;
};
class B : public A {
public:
B(int bar) { foo = bar; }
int method() { return foo; }
};
class C {
private:
A baz;
public:
C(A faz) { baz = faz; }
A get() { return baz; }
};
int main(void) {
C boo(B(1));
std::cout << boo.get().method() << std::endl;
return 0;
}
I have a base class A which B is a derived class of. Class C takes an A yet I have passed a derived class (B) in its place. No warnings or errors passing a B to C, but I'd like to have method visibility of method() in the above situation.
I'm not very familiar with virtual but I did try to add virtual int method() = 0; to A which lead to further errors.
Consider were I to add a second derived class:
class D : public A {
public:
D(int bar) { foo = bar; }
int method() { return foo+1; }
};
I'd like C to be able to take either B or D and my best assumption would be to take an A and let it handle it.
How do I use polymorphism correctly in this fashion?
Expected output with the below:
int main(void) {
C boo(B(1));
C boz(D(2));
std::cout << boo.get().method() << std::endl;
std::cout << boz.get().method() << std::endl;
return 0;
}
Would be:
1
3
First of all, in order to use A polymorphically, you need to add a virtual destructor, otherwise you will run into undefined behavior when trying to destroy the object. Then the method that you want to call through A must be virtual as well. If it shouldn't have an implementation in the base class itself, make it pure virtual:
class A {
protected:
int foo;
public:
virtual ~A() {}
virtual int method() = 0;
};
Then in C you need to use pointers or references to A, since polymorphism only works with those.
If you want C to own the A, as your code example to suggest, then you need to provide a destructor deleting the pointer and you need to disable copying of the class (or decide on some useful semantics for it):
class C {
private:
C(const C&); // Don't allow copying
C& operator=(const C&); // Don't allow copying
A* baz;
public:
C(A* faz) : baz(faz) { }
~C() { delete baz; }
A& get() { return *baz; }
};
int main(void) {
C boo(new B(1));
C boz(new D(2));
std::cout << boo.get().method() << std::endl;
std::cout << boz.get().method() << std::endl;
return 0;
}
Ideally you would upgrade to C++11 and use std::unique_ptr<A> instead of A* as member. But even if you can't do that, consider using boost::scoped_ptr<A>, which will manage the deletion for you (you don't need the destructor) and will make the class non-copyable by default. It also provides better exception-safety to encapsulate allocations in smart pointers like that.
If you need to call method() of type B using base class type A there has to be lookup during the runtime. The lookup is necessary to answer the question: Which method should be called? - the one that corresponds the type in a current line? Or other method in inheritance hierarchy?" If you expect method() from class B to be called when you have pointer or reference to A then you have to create a lookup table. This table is called vtable (from virtual functions table) and it's defined by adding virtual keyword to functions.
#include <iostream>
class A {
public:
virtual ~A(){}
virtual int method() = 0;
protected:
int foo;
};
class B : public A {
public:
B(int bar) { foo = bar; }
int method() {
std::cout << "Calling method() from B" << std::endl;
return foo; }
};
class C {
private:
A* baz;
public:
C(A* faz) { baz = faz; }
A* get() { return baz; }
};
int main(void) {
A* element = new B(1);
C boo(element);
boo.get()->method();
return 0;
}
It prints "Calling method() from B". Please keep in mind that the code is for presentation purposes and it's not good from best practices perspective.

Virtual function behavior in derived classes

Can I have a virtual function in the base class and some of my derived classes do have that function and some don't have.
class A{
virtual void Dosomething();
};
class B : public A{
void Dosomething();
};
class C : public A{
//Does not have Dosomething() function.
};
From one of my c++ textbook:
Once a function is declared virtual, it remains virtual all the way down the inheritance, even if the function is not explicitly declared virtual when the derived class overrides it.
When the derived class chooses not to override it, it simply inherits its base class's virtual function.
Therefore to your question the answer is No. Class c will use Class A's virtual function.
Derived classes do not have to implement all the virtual functions, unless it is a pure virtual function. Even in this case, it will cause an error only when you try to instantiate the derived class( without implementing the pure virtual function ).
#include <iostream>
class A{
public :
virtual void foo() = 0;
};
class B: public A{
public :
void foo(){ std::cout << "foo" << std::endl;}
};
class C: public A{
void bar();
};
int main() {
//C temp; The compiler will complain only if this is initialized without
// implementing foo in the derived class C
return 0;
}
I think the closest you might get, is to change the access modifier in the derived class, as depicted below.
But, I would consider it bad practice, as it violates Liskov's substitution principle.
If you have a situation like this, you might need to reconsider your class design.
#include <iostream>
class A {
public:
virtual void doSomething() { std::cout << "A" << std::endl; }
};
class B : public A {
public:
void doSomething() override { std::cout << "B" << std::endl; };
};
class C : public A {
private:
void doSomething() override { std::cout << "C" << std::endl; };
};
int main(int argc, char **args) {
A a;
a.doSomething();
B b;
b.doSomething();
C c;
//c.doSomething(); // Not part of the public interface. Violates Liskov's substitution principle.
A* c2 = &c;
c2->doSomething(); // Still possible, even though it is private! But, C::doSomething() is called!
return 0;
}

Multiple inheritance in c++ using abstract base classes [duplicate]

I tried this code:
class A
{
virtual void foo() = 0;
};
class B
{
virtual void foo() = 0;
};
class C : public A, public B
{
//virtual void A::foo(){}
//virtual void B::foo(){}
virtual void A::foo();
virtual void B::foo();
};
void C::A::foo(){}
void C::B::foo(){}
int main()
{
C c;
return 0;
}
It is OK when using the commented part, but when I try to write the definitions outside the class declaration, the compiler reports errors.
I am using the MSVC11 compiler, does anyone know how to write this?
I need to move the code into the cpp file.
Thank you~~
A function overrides a virtual function of a base class based on the name and parameter types (see below). Therefore, your class C has two virtual functions foo, one inherited from each A and B. But a function void C::foo() overrides both:
[class.virtual]/2
If a virtual member function vf is declared in a class Base and in a class Derived, derived directly or indirectly from Base, a member function vf with the same name, parameter-type-list, cv-qualification, and ref-qualifier (or absence of same) as Base::vf is declared, then Derived::vf is also virtual (whether or not it is so declared) and it overrides Base::vf.
As I already stated in the comments, [dcl.meaning]/1 forbids the use of a qualified-id in the declaration of a (member) function:
When the declarator-id is qualified, the declaration shall refer to a previously declared member of the class or namespace to which the qualifier refers [...]"
Therefore any virtual void X::foo(); is illegal as a declaration inside C.
The code
class C : public A, public B
{
virtual void foo();
};
is the only way AFAIK to override foo, and it will override both A::foo and B::foo. There is no way to have two different overrides for A::foo and B::foo with different behaviour other than by introducing another layer of inheritance:
#include <iostream>
struct A
{
virtual void foo() = 0;
};
struct B
{
virtual void foo() = 0;
};
struct CA : A
{
virtual void foo() { std::cout << "A" << std::endl; }
};
struct CB : B
{
virtual void foo() { std::cout << "B" << std::endl; }
};
struct C : CA, CB {};
int main() {
C c;
//c.foo(); // ambiguous
A& a = c;
a.foo();
B& b = c;
b.foo();
}
You've got just one virtual function foo:
class A {
virtual void foo() = 0;
};
class B {
virtual void foo() = 0;
};
class C : public A, public B {
virtual void foo();
};
void C::foo(){}
void C::A::foo(){}
void C::B::foo(){};
int main() {
C c;
return 0;
}
I stepped into the same problem and accidentially opened a second thread. Sorry for that. One way that worked for me was to solve it without multiple inheritance.
#include <stdio.h>
class A
{
public:
virtual void foo(void) = 0;
};
class B
{
public:
virtual void foo(void) = 0;
};
class C
{
class IA: public A
{
virtual void foo(void)
{
printf("IA::foo()\r\n");
}
};
class IB: public B
{
virtual void foo(void)
{
printf("IB::foo()\r\n");
}
};
IA m_A;
IB m_B;
public:
A* GetA(void)
{
return(&m_A);
}
B* GetB(void)
{
return(&m_B);
}
};
The trick is to define classes derived from the interfaces (A and B) as local classes (IA and IB) instead of using multiple inheritance. Furthermore this approach also opens the option to have multiple realizations of each interface if desired which would not be possible using multiple inheritance.
The local classes IA and IB can be easily given access to class C, so the implementations of both interfaces IA and IB can share data.
Access of each interface can be done as follows:
main()
{
C test;
test.GetA()->foo();
test.GetB()->foo();
}
... and there is no ambiguity regarding the foo method any more.
You can resolve this ambiguity with different function parameters.
In real-world code, such virtual functions do something, so they usually already have either:
different parameters in A and B, or
different return values in A and B that you can turn into [out] parameters for the sake of solving this inheritance problem; otherwise
you need to add some tag parameters, which the optimizer will throw away.
(In my own code I usually find myself in case (1), sometimes in (2), never so far in (3).)
Your example is case (3) and would look like this:
class A
{
public:
struct tag_a { };
virtual void foo(tag_a) = 0;
};
class B
{
public:
struct tag_b { };
virtual void foo(tag_b) = 0;
};
class C : public A, public B
{
void foo(tag_a) override;
void foo(tag_b) override;
};
A slight improvement over adigostin's solution:
#include <iostream>
struct A {
virtual void foo() = 0;
};
struct B {
virtual void foo() = 0;
};
template <class T> struct Tagger : T {
struct tag {};
void foo() final { foo({}); }
virtual void foo(tag) = 0;
};
using A2 = Tagger<A>;
using B2 = Tagger<B>;
struct C : public A2, public B2 {
void foo(A2::tag) override { std::cout << "A" << std::endl; }
void foo(B2::tag) override { std::cout << "B" << std::endl; }
};
int main() {
C c;
A* pa = &c;
B* pb = &c;
pa->foo(); // A
pb->foo(); // B
return 0;
}
Assuming that the base classes A and B are given and cannot be modified.

unique pointer of base class with derived member

For my C++ program I have a lot of classes where a member should be of one of two types which have the same base class.
I thought I could implement this with pointers but I don't get it to work.
Example: lets assume we have a class A with a member b_ of class B:
class A{
public:
A(B b): b_{b} {}
private:
B b_;
}
The class B has only one function which is pure virtual:
class B{
public:
virtual void print() = 0;
}
now I have two derived classes of B and I want to change A in a way, that it could hold eihther objects of class B1 or B2:
class B1: public B{
public:
void print(){cout << "B1\n";}
}
class B2: public B{
public:
void print(){cout << "B2\n";}
}
My plan was to use unique pointers:
class A{
public:
A(std::unique_ptr<B> b): b_{std::move(b)} {}
private:
std::unique_ptr<B> b_;
}
int main(){
std::unique_ptr<B> b;
if (some condition){
b = make_unique<B1>(new B1()) ///?
}else{
b = make_unique<B2>(new B2()) ///?
}
A(b);
A.getB()->print();
}
There are several mistakes on your code. First of, you can't have two definitions of A. Second, you must pass the unique_ptr as r-value reference (std::move) since it is not copyable. Last, make a variable of type A (a) and then call methods on it.
#include <memory>
#include <iostream>
using namespace std;
class B{
public:
virtual void print() = 0;
virtual ~B() {};
};
class B1: public B{
public:
void print(){cout << "B1\n";}
};
class B2: public B{
public:
void print(){cout << "B2\n";}
};
class A{
public:
A(std::unique_ptr<B> b): b_{std::move(b)} {}
auto *getB() { return b_.get(); }
private:
std::unique_ptr<B> b_;
};
int main()
{
std::unique_ptr<B> b;
if(false)
b = make_unique<B1>();
else
b = make_unique<B2>();
A a(std::move(b));
a.getB()->print();
}