There's a error changing values in array. <C++> - c++

This is Project Euler question 26.
I would like to save the abundant values in an array, assuming there are no more than 200 abundant numbers smaller than 28123, which is the upper limit provided in the question.
This is not the complete code, but my program stops defining values at abundantarr[200]. Why am I seeing a limit to the values in this array?
#include <iostream>
#include <cmath>
using namespace std;
bool IsitAbundant(int a);
int main()
{
int abundantarr[200] = {0};
int counter = 0;
int totalsum = 0;
for (int u = 1; u < 28123; u++)
{
if (IsitAbundant(u))
{
abundantarr[counter] = u;
cout << abundantarr[counter] << endl;
counter++;
}
}
return 0;
}
bool IsitAbundant (int a)
{
int sum = 0;
for (int i = 1; i < a; i++)
{
if (a % i == 0)
{
sum+= i;
}
}
if (sum > a)
{
return true;
}
else
{
return false;
}
}

Related

Trying to implement Willans' formula for the n-th prime, what's the problem with my code?

The formula is listed in the following article: https://en.wikipedia.org/wiki/Formula_for_primes. I am trying to implement it but to no success, for whatever reason the code is producing number which seem to be nth power of two + 1, which is obviously not what I want to achieve.
#include <iostream>
#include <cmath>
using namespace std;
int nth_prime(int n) {
double s = 1;
for (int i = 1; i <= pow(2, n); i++) {
double c = 0;
for (int j = 1; j <= i; j++) {
double f = (tgamma(j)+1)/j;
c+=floor(pow(cos(M_PI*f), 2));
}
s+=floor(pow(n/c, 1/n));
}
return s;
}
int main() {
int n;
while (cin >> n) {
cout << nth_prime(n) << endl;
}
return 0;
}

Process returned -1073741571 (0xC00000FD) on my c++ code [duplicate]

This question already has an answer here:
Clion exit code -1073741571 (0xC00000FD)
(1 answer)
Closed 2 years ago.
The c++ code below works fine for some inputs, but it is stuck at test 9 (number of inputs here is 6000) where it gives me this message "Process returned -1073741571 (0xC00000FD)".
This code reads information for n babies (their gender and name). Next it counts the appearances of each name then sorts the list of structures according to the appearances. Finally, it removes the duplicates and prints the top m female names and top m male names.
What does this error mean and what do I need to change to eliminate this error?
#include <iostream>
#include <fstream>
#include <algorithm>
#include <string.h>
using namespace std;
ifstream fin("input.txt");
struct baby
{
string gender,name;
int cnt;
};
bool cmp(baby a,baby b)
{
if (a.cnt>b.cnt)
return true;
else if (a.cnt==b.cnt && a.name<b.name)
return true;
return false;
}
int howmany(baby babies[],int n,int i)
{
int cnt=0;
for (int j=0; j<n; j++)
{
if (babies[i].name==babies[j].name && babies[i].gender==babies[j].gender)
{
cnt++;
}
}
return cnt;
}
void getData(baby babies[],int n)
{
for (int i=0; i<n; i++)
{
fin>>babies[i].gender>>babies[i].name;
}
}
int removeDuplicates(baby babies[],int n)
{
int j=0;
for (int i=0; i<n-1; i++)
{
if (babies[i].name!=babies[i+1].name)
babies[j++]=babies[i];
}
babies[j++]=babies[n-1];
return j;
}
int main()
{
int n,i,top,j;
fin>>n>>top;
baby babies[50000];
getData(babies,n);
for (i=0; i<n; i++)
{
babies[i].cnt=howmany(babies,n,i);
}
sort(babies,babies+n,cmp);
j=removeDuplicates(babies,n);
int cnt=0;
for (int i=0; i<j; i++)
{
if (cnt<top)
{
if (babies[i].gender=="F")
{
cout<<babies[i].name<<" ";
cnt++;
}
}
}
cout<<endl;
cnt=0;
for (int i=0; i<j; i++)
{
if (cnt<top)
{
if (babies[i].gender=="M")
{
cout<<babies[i].name<<" ";
cnt++;
}
}
}
return 0;
}
As you can see in Window's NT status reference, error code 0xC00000FD means stack overflow (usually caused by infinite recursion). In your case, it seems that you simply allocate a far too large array on the stack (line 57, baby babies[50000];), which is an array of size 50000*20=1000000. The simplest solution will be a dynamic allocation
baby* babies = new baby[50000];
// Your code here
delete[] babies;
A better solution would be to use std::vector which is a dynamic array that can grow and shrink. The simplest thing to do is to take a vector of size 50000, this way:
#include <vector>
...
std::vector<baby> babies(50000);
However, this is a poor solution as your pre-allocate 50000 elements even though you probably need much much less, and a better solution would be to add an element on-demand, using .push_back(element) method, or in your case, allocate n elements to the vector (impossible in a stack-allocated array).
I added your code with some modifications of mine:
#include <vector>
#include <iostream>
#include <fstream>
#include <algorithm>
using namespace std;
ifstream fin("input.txt");
struct baby
{
string gender;
string name;
int cnt = 0;
};
bool cmp(const baby& a, const baby& b)
{
if (a.cnt > b.cnt) {
return true;
}
return a.cnt == b.cnt && a.name < b.name;
}
bool are_equal(const baby& lhs, const baby& rhs)
{
return lhs.gender == rhs.gender && lhs.name == rhs.name;
}
int howmany(const std::vector<baby>& babies, int i)
{
int cnt = 0;
for (int j = 0; j < babies.size(); j++)
{
if (babies[i].name == babies[j].name && babies[i].gender == babies[j].gender)
{
cnt++;
}
}
return cnt;
}
void getData(std::vector<baby>& babies)
{
for (int i = 0; i < babies.size(); i++)
{
fin >> babies[i].gender >> babies[i].name;
}
}
int removeDuplicates(std::vector<baby>& babies)
{
int j = 0;
for (int i = 0; i < babies.size() - 1; i++)
{
if (babies[i].name != babies[i + 1].name) {
babies[j++] = babies[i];
}
}
babies[j++] = babies.back();
return j;
}
void remove_duplicates_improved(std::vector<baby>& babies)
{
babies.erase(babies.begin(), std::unique(babies.begin(), babies.end(), are_equal));
}
int main()
{
int n;
int top;
fin >> n >> top;
std::vector<baby> babies(n);
getData(babies);
for (int i = 0; i < n; i++)
{
babies[i].cnt = howmany(babies, i);
}
sort(babies.begin(), babies.begin() + n, cmp);
remove_duplicates_improved(babies);
int cnt = 0;
for (int i = 0; i < babies.size(); i++)
{
if (cnt < top)
{
if (babies[i].gender == "F")
{
cout << babies[i].name << " ";
cnt++;
}
}
}
cout << endl;
cnt = 0;
for (int i = 0; i < babies.size(); i++)
{
if (cnt < top)
{
if (babies[i].gender == "M")
{
cout << babies[i].name << " ";
cnt++;
}
}
}
return 0;
}
Good luck

Spit the array such that gcd(val[i],val[j])>1

It is good array only if gcd(val[i],val[j])>1
Here,
gcd(a,b) = Greatest common divisor of two numbers.
Split the array has one parameter
Val: A integer array of n integer
Here are two examples.
Sample Input 0:
5 // no of value in an integer
2
3
2
3
3
Sample Output 0:
2
Sample Input 1:
5 //no of value in an integer
3
5
7
11
2
Sample Output 1:
5
example of sample input 0
subarray[1..3] ={2,3,2} here gcd(2,2)>1
subarray[4..5]={3,3} gcd(3,3)>1
#include <bits/stdc++.h>
using namespace std;
string ltrim(const string &);
string rtrim(const string &);
Now how to impelement the splitTheArray() function?
You need to find the minimum number of subarrays such that in each sub-array, first and last elements' gcd > 1. You can do it easily by O(Nˆ2) complexity.
int splitTheArray(vector<int> val) {
// implement this function
int sz = val.size();
if(sz == 0) return 0;
int ind = sz - 1;
int subarray = 0;
while(ind >= 0) {
for(int i = 0; i <= ind; i++) {
if(__gcd(val[ind], val[i]) > 1) {
subarray++;
ind = i-1;
break;
}
}
}
return subarray;
}
#include <iostream>
#include <vector>
#include <fstream>
#include <string>
using namespace std;
int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
int max(int a, int b)
{
return (a > b) ? a : b;
}
int min(int a, int b)
{
return (a < b) ? a : b;
}
int solve(vector<int> vec)
{
int n = gcd(vec[0], vec[vec.size() - 1]);
if (n > 1)
return 0;
int con = 0 , flag = 0 , j=0 , i=0 , flag2=0;
for (i = j; i < vec.size()/2; i++)
{
i = j;
if (i >= vec.size())
break;
int f = vec[i];
flag = 0;
for (j = i+1; j < vec.size(); j++)
{
int l = vec[j];
int ma = max(f, l);
int mi = min(f, l);
n = gcd(ma, mi);
if (flag)
{
if (n > 1)
con++;
else
break;
}
if (n > 1)
{
flag = 1;
flag2 = 1;
con++;
}
}
}
if (!flag2)
return vec.size();
return con;
}
int main()
{
int n;
cin >> n;
vector<int> vec;
for (int i = 0; i < n; i++)
{
int tm;
cin >> tm;
vec.emplace_back(tm);
}
cout<<solve(vec);
return 0;
}
#include <bits/stdc++.h>
using namespace std;
#define int long long int
#define boost ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL)
void solve()
{
int n,i,j;
cin>>n;
int A[n+1],DP[n+1];
for(i=1;i<=n;i++)
cin>>A[i];
memset(DP,0,sizeof(DP));
unordered_map<int,int> M;
for(i=1;i<=n;i++)
{
vector<int> Fact;
Fact.push_back(A[i]);
for(j=2;j*j<=A[i];j++)
{
if(A[i]%j==0)
{
if(j*j==A[i])
{
Fact.push_back(j);
}
else
{
Fact.push_back(j);
Fact.push_back(A[i]/j);
}
}
}
int ans=DP[i-1]+1;
for(j=0;j<Fact.size();j++)
{
if(M.find(Fact[j])==M.end())
{
M[Fact[j]]=DP[i-1];
}
else
{
ans=min(ans,M[Fact[j]]+1);
}
}
DP[i]=ans;
}
cout<<DP[n]<<endl;
}
int32_t main()
{
boost;
int t=1;
// cin>>t;
for(int i=1;i<=t;i++)
{
//cout<<"Case #"<<i<<": ";
solve();
}
}
Time Complexity: N*Sqrt(max(A[i]))
P.S There can be a optimization of calculation of factor using the sieve instead of calculating factor every time for every number.
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n;
cin>>n;
vector<int>a(n);
for(int i=0;i<n;i++){
cin>>a[i];
}
vector<int>dp(n+1,0);
dp[n-1]=1;
for(int i=n-2;i>=0;i--){
dp[i]=1+dp[i+1];
for(int j=i+1;j<n;j++){
if(__gcd(a[i],a[j])>1)
dp[i]=min(dp[i],1+dp[j+1]);
}
}
cout<<dp[0];
return 0;
}

Runtime error in code (C++)

i am a beginner to c++ but i wouldn't have asked this question if i didnt spend hours on it.
The code is about finding primes between two numbers in the most efficient way where maximum limit is 10^9.
The following code gives me runtime error but i have no idea why.. help
#include <iostream>
#include <stdio.h>
#include <math.h>
using namespace std;
long int prime[32000];
bool isprime(long int a){
for(long int i = 3; i <= 32000; i+=2){
if(a%i == 0){
return false;
}
}
return true;
}
void generateprimes(){
long int a = 0;
for(long int i = 3; i < 31623 ; i+=2){
if(isprime(i)){
prime[a] = i;
a++;
}
}
}
bool newisprime(long int a){
long int x =0;
for(long int i = prime[x]; i <= sqrt(a); i = prime[++x]){
if(a%i == 0){
return false;
}
}
return true;
}
void generateprimes_inbetween(long int n,long int m){
if(n%2 == 0){
++n;
}
if(n == 1){
printf("2\n");
n = 3;
}
for(long int i = n; i <= m ; i+=2){
if(newisprime(i)){
printf("%d\n",i);
}
}
}
int main() {
long int a,b,c;
scanf("%ld",&a);
generateprimes();
for(long int i = 0; i < a ; i++){
scanf("%ld %ld",&b,&c);
generateprimes_inbetween(b,c);
printf("\n");
}
return 0;
}
In isprime() you loop through ALL numbers in your array prime[]. But at startup, as it's global data, most of them will be 0, so that a%i will result in a fatal divide by 0.
You have somewhere to keep track of the numer of primes that you've stored in your array and only test against the primes that you've stored there.
Supposing that it's homework and you're not allowed to use vectors, you could do it as follows:
const size_t max_primes = 32000; // avoid hard coded values
unsigned long prime[max_primes] {2, 3}; // prefilled values
size_t nprimes = 2; // number of primes in the array
bool isprime(unsigned long a){
for(size_t i = 0; i < nprimes; i++){
if(a%prime[i] == 0)
return false;
}
return true;
}
void generateprimes(){
nprimes = 2;
for(unsigned long i = 3; nprimes<max_primes && i < ULONG_MAX; i += 2){
if(isprime(i)){
prime[nprimes] = i;
nprimes++;
}
}
}
bool newisprime(unsigned long a){
size_t x = 0;
for(unsigned long i = prime[x]; i <= sqrt(a) && x<nprimes; i = prime[++x]){
if(a%i == 0)
return false;
}
if(x == nprimes) {
cout << "Attention: Reaching end of prime table !!" << endl;
}
return true;
}
Some remarks:
for the index, it's safer to use the unsigned type size_t.
make sure that whenever you use an index, it remains within the bounds
as you work with positive numbers, it could make sense to use unsigned long

Sieve of Eratosthenes algorithm

I am currently reading "Programming: Principles and Practice Using C++", in Chapter 4 there is an exercise in which:
I need to make a program to calculate prime numbers between 1 and 100 using the Sieve of Eratosthenes algorithm.
This is the program I came up with:
#include <vector>
#include <iostream>
using namespace std;
//finds prime numbers using Sieve of Eratosthenes algorithm
vector<int> calc_primes(const int max);
int main()
{
const int max = 100;
vector<int> primes = calc_primes(max);
for(int i = 0; i < primes.size(); i++)
{
if(primes[i] != 0)
cout<<primes[i]<<endl;
}
return 0;
}
vector<int> calc_primes(const int max)
{
vector<int> primes;
for(int i = 2; i < max; i++)
{
primes.push_back(i);
}
for(int i = 0; i < primes.size(); i++)
{
if(!(primes[i] % 2) && primes[i] != 2)
primes[i] = 0;
else if(!(primes[i] % 3) && primes[i] != 3)
primes[i]= 0;
else if(!(primes[i] % 5) && primes[i] != 5)
primes[i]= 0;
else if(!(primes[i] % 7) && primes[i] != 7)
primes[i]= 0;
}
return primes;
}
Not the best or fastest, but I am still early in the book and don't know much about C++.
Now the problem, until max is not bigger than 500 all the values print on the console, if max > 500 not everything gets printed.
Am I doing something wrong?
P.S.: Also any constructive criticism would be greatly appreciated.
I have no idea why you're not getting all the output, as it looks like you should get everything. What output are you missing?
The sieve is implemented wrongly. Something like
vector<int> sieve;
vector<int> primes;
for (int i = 1; i < max + 1; ++i)
sieve.push_back(i); // you'll learn more efficient ways to handle this later
sieve[0]=0;
for (int i = 2; i < max + 1; ++i) { // there are lots of brace styles, this is mine
if (sieve[i-1] != 0) {
primes.push_back(sieve[i-1]);
for (int j = 2 * sieve[i-1]; j < max + 1; j += sieve[i-1]) {
sieve[j-1] = 0;
}
}
}
would implement the sieve. (Code above written off the top of my head; not guaranteed to work or even compile. I don't think it's got anything not covered by the end of chapter 4.)
Return primes as usual, and print out the entire contents.
Think of the sieve as a set.
Go through the set in order. For each value in thesive remove all numbers that are divisable by it.
#include <set>
#include <algorithm>
#include <iterator>
#include <iostream>
typedef std::set<int> Sieve;
int main()
{
static int const max = 100;
Sieve sieve;
for(int loop=2;loop < max;++loop)
{
sieve.insert(loop);
}
// A set is ordered.
// So going from beginning to end will give all the values in order.
for(Sieve::iterator loop = sieve.begin();loop != sieve.end();++loop)
{
// prime is the next item in the set
// It has not been deleted so it must be prime.
int prime = *loop;
// deleter will iterate over all the items from
// here to the end of the sieve and remove any
// that are divisable be this prime.
Sieve::iterator deleter = loop;
++deleter;
while(deleter != sieve.end())
{
if (((*deleter) % prime) == 0)
{
// If it is exactly divasable then it is not a prime
// So delete it from the sieve. Note the use of post
// increment here. This increments deleter but returns
// the old value to be used in the erase method.
sieve.erase(deleter++);
}
else
{
// Otherwise just increment the deleter.
++deleter;
}
}
}
// This copies all the values left in the sieve to the output.
// i.e. It prints all the primes.
std::copy(sieve.begin(),sieve.end(),std::ostream_iterator<int>(std::cout,"\n"));
}
From Algorithms and Data Structures:
void runEratosthenesSieve(int upperBound) {
int upperBoundSquareRoot = (int)sqrt((double)upperBound);
bool *isComposite = new bool[upperBound + 1];
memset(isComposite, 0, sizeof(bool) * (upperBound + 1));
for (int m = 2; m <= upperBoundSquareRoot; m++) {
if (!isComposite[m]) {
cout << m << " ";
for (int k = m * m; k <= upperBound; k += m)
isComposite[k] = true;
}
}
for (int m = upperBoundSquareRoot; m <= upperBound; m++)
if (!isComposite[m])
cout << m << " ";
delete [] isComposite;
}
Interestingly, nobody seems to have answered your question about the output problem. I don't see anything in the code that should effect the output depending on the value of max.
For what it's worth, on my Mac, I get all the output. It's wrong of course, since the algorithm isn't correct, but I do get all the output. You don't mention what platform you're running on, which might be useful if you continue to have output problems.
Here's a version of your code, minimally modified to follow the actual Sieve algorithm.
#include <vector>
#include <iostream>
using namespace std;
//finds prime numbers using Sieve of Eratosthenes algorithm
vector<int> calc_primes(const int max);
int main()
{
const int max = 100;
vector<int> primes = calc_primes(max);
for(int i = 0; i < primes.size(); i++)
{
if(primes[i] != 0)
cout<<primes[i]<<endl;
}
return 0;
}
vector<int> calc_primes(const int max)
{
vector<int> primes;
// fill vector with candidates
for(int i = 2; i < max; i++)
{
primes.push_back(i);
}
// for each value in the vector...
for(int i = 0; i < primes.size(); i++)
{
//get the value
int v = primes[i];
if (v!=0) {
//remove all multiples of the value
int x = i+v;
while(x < primes.size()) {
primes[x]=0;
x = x+v;
}
}
}
return primes;
}
In the code fragment below, the numbers are filtered before they are inserted into the vector. The divisors come from the vector.
I'm also passing the vector by reference. This means that the huge vector won't be copied from the function to the caller. (Large chunks of memory take long times to copy)
vector<unsigned int> primes;
void calc_primes(vector<unsigned int>& primes, const unsigned int MAX)
{
// If MAX is less than 2, return an empty vector
// because 2 is the first prime and can't be placed in the vector.
if (MAX < 2)
{
return;
}
// 2 is the initial and unusual prime, so enter it without calculations.
primes.push_back(2);
for (unsigned int number = 3; number < MAX; number += 2)
{
bool is_prime = true;
for (unsigned int index = 0; index < primes.size(); ++index)
{
if ((number % primes[k]) == 0)
{
is_prime = false;
break;
}
}
if (is_prime)
{
primes.push_back(number);
}
}
}
This not the most efficient algorithm, but it follows the Sieve algorithm.
below is my version which basically uses a bit vector of bool and then goes through the odd numbers and a fast add to find multiples to set to false. In the end a vector is constructed and returned to the client of the prime values.
std::vector<int> getSieveOfEratosthenes ( int max )
{
std::vector<bool> primes(max, true);
int sz = primes.size();
for ( int i = 3; i < sz ; i+=2 )
if ( primes[i] )
for ( int j = i * i; j < sz; j+=i)
primes[j] = false;
std::vector<int> ret;
ret.reserve(primes.size());
ret.push_back(2);
for ( int i = 3; i < sz; i+=2 )
if ( primes[i] )
ret.push_back(i);
return ret;
}
Here is a concise, well explained implementation using bool type:
#include <iostream>
#include <cmath>
void find_primes(bool[], unsigned int);
void print_primes(bool [], unsigned int);
//=========================================================================
int main()
{
const unsigned int max = 100;
bool sieve[max];
find_primes(sieve, max);
print_primes(sieve, max);
}
//=========================================================================
/*
Function: find_primes()
Use: find_primes(bool_array, size_of_array);
It marks all the prime numbers till the
number: size_of_array, in the form of the
indexes of the array with value: true.
It implemenets the Sieve of Eratosthenes,
consisted of:
a loop through the first "sqrt(size_of_array)"
numbers starting from the first prime (2).
a loop through all the indexes < size_of_array,
marking the ones satisfying the relation i^2 + n * i
as false, i.e. composite numbers, where i - known prime
number starting from 2.
*/
void find_primes(bool sieve[], unsigned int size)
{
// by definition 0 and 1 are not prime numbers
sieve[0] = false;
sieve[1] = false;
// all numbers <= max are potential candidates for primes
for (unsigned int i = 2; i <= size; ++i)
{
sieve[i] = true;
}
// loop through the first prime numbers < sqrt(max) (suggested by the algorithm)
unsigned int first_prime = 2;
for (unsigned int i = first_prime; i <= std::sqrt(double(size)); ++i)
{
// find multiples of primes till < max
if (sieve[i] = true)
{
// mark as composite: i^2 + n * i
for (unsigned int j = i * i; j <= size; j += i)
{
sieve[j] = false;
}
}
}
}
/*
Function: print_primes()
Use: print_primes(bool_array, size_of_array);
It prints all the prime numbers,
i.e. the indexes with value: true.
*/
void print_primes(bool sieve[], unsigned int size)
{
// all the indexes of the array marked as true are primes
for (unsigned int i = 0; i <= size; ++i)
{
if (sieve[i] == true)
{
std::cout << i <<" ";
}
}
}
covering the array case. A std::vector implementation will include minor changes such as reducing the functions to one parameter, through which the vector is passed by reference and the loops will use the vector size() member function instead of the reduced parameter.
Here is a more efficient version for Sieve of Eratosthenes algorithm that I implemented.
#include <iostream>
#include <cmath>
#include <set>
using namespace std;
void sieve(int n){
set<int> primes;
primes.insert(2);
for(int i=3; i<=n ; i+=2){
primes.insert(i);
}
int p=*primes.begin();
cout<<p<<"\n";
primes.erase(p);
int maxRoot = sqrt(*(primes.rbegin()));
while(primes.size()>0){
if(p>maxRoot){
while(primes.size()>0){
p=*primes.begin();
cout<<p<<"\n";
primes.erase(p);
}
break;
}
int i=p*p;
int temp = (*(primes.rbegin()));
while(i<=temp){
primes.erase(i);
i+=p;
i+=p;
}
p=*primes.begin();
cout<<p<<"\n";
primes.erase(p);
}
}
int main(){
int n;
n = 1000000;
sieve(n);
return 0;
}
Here's my implementation not sure if 100% correct though :
http://pastebin.com/M2R2J72d
#include<iostream>
#include <stdlib.h>
using namespace std;
void listPrimes(int x);
int main() {
listPrimes(5000);
}
void listPrimes(int x) {
bool *not_prime = new bool[x];
unsigned j = 0, i = 0;
for (i = 0; i <= x; i++) {
if (i < 2) {
not_prime[i] = true;
} else if (i % 2 == 0 && i != 2) {
not_prime[i] = true;
}
}
while (j <= x) {
for (i = j; i <= x; i++) {
if (!not_prime[i]) {
j = i;
break;
}
}
for (i = (j * 2); i <= x; i += j) {
not_prime[i] = true;
}
j++;
}
for ( i = 0; i <= x; i++) {
if (!not_prime[i])
cout << i << ' ';
}
return;
}
I am following the same book now. I have come up with the following implementation of the algorithm.
#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
inline void keep_window_open() { char ch; cin>>ch; }
int main ()
{
int max_no = 100;
vector <int> numbers (max_no - 1);
iota(numbers.begin(), numbers.end(), 2);
for (unsigned int ind = 0; ind < numbers.size(); ++ind)
{
for (unsigned int index = ind+1; index < numbers.size(); ++index)
{
if (numbers[index] % numbers[ind] == 0)
{
numbers.erase(numbers.begin() + index);
}
}
}
cout << "The primes are\n";
for (int primes: numbers)
{
cout << primes << '\n';
}
}
Here is my version:
#include "std_lib_facilities.h"
//helper function:check an int prime, x assumed positive.
bool check_prime(int x) {
bool check_result = true;
for (int i = 2; i < x; ++i){
if (x%i == 0){
check_result = false;
break;
}
}
return check_result;
}
//helper function:return the largest prime smaller than n(>=2).
int near_prime(int n) {
for (int i = n; i > 0; --i) {
if (check_prime(i)) { return i; break; }
}
}
vector<int> sieve_primes(int max_limit) {
vector<int> num;
vector<int> primes;
int stop = near_prime(max_limit);
for (int i = 2; i < max_limit+1; ++i) { num.push_back(i); }
int step = 2;
primes.push_back(2);
//stop when finding the last prime
while (step!=stop){
for (int i = step; i < max_limit+1; i+=step) {num[i-2] = 0; }
//the multiples set to 0, the first none zero element is a prime also step
for (int j = step; j < max_limit+1; ++j) {
if (num[j-2] != 0) { step = num[j-2]; break; }
}
primes.push_back(step);
}
return primes;
}
int main() {
int max_limit = 1000000;
vector<int> primes = sieve_primes(max_limit);
for (int i = 0; i < primes.size(); ++i) {
cout << primes[i] << ',';
}
}
Here is a classic method for doing this,
int main()
{
int max = 500;
vector<int> array(max); // vector of max numbers, initialized to default value 0
for (int i = 2; i < array.size(); ++ i) // loop for rang of numbers from 2 to max
{
// initialize j as a composite number; increment in consecutive composite numbers
for (int j = i * i; j < array.size(); j +=i)
array[j] = 1; // assign j to array[index] with value 1
}
for (int i = 2; i < array.size(); ++ i) // loop for rang of numbers from 2 to max
if (array[i] == 0) // array[index] with value 0 is a prime number
cout << i << '\n'; // get array[index] with value 0
return 0;
}
I think im late to this party but im reading the same book as you, this is the solution in came up with! Feel free to make suggestions (you or any!), for what im seeing here a couple of us extracted the operation to know if a number is multiple of another to a function.
#include "../../std_lib_facilities.h"
bool numIsMultipleOf(int n, int m) {
return n%m == 0;
}
int main() {
vector<int> rawCollection = {};
vector<int> numsToCheck = {2,3,5,7};
// Prepare raw collection
for (int i=2;i<=100;++i) {
rawCollection.push_back(i);
}
// Check multiples
for (int m: numsToCheck) {
vector<int> _temp = {};
for (int n: rawCollection) {
if (!numIsMultipleOf(n,m)||n==m) _temp.push_back(n);
}
rawCollection = _temp;
}
for (int p: rawCollection) {
cout<<"N("<<p<<")"<<" is prime.\n";
}
return 0;
}
Try this code it will be useful to you by using java question bank
import java.io.*;
class Sieve
{
public static void main(String[] args) throws IOException
{
int n = 0, primeCounter = 0;
double sqrt = 0;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println(“Enter the n value : ”);
n = Integer.parseInt(br.readLine());
sqrt = Math.sqrt(n);
boolean[] prime = new boolean[n];
System.out.println(“\n\nThe primes upto ” + n + ” are : ”);
for (int i = 2; i<n; i++)
{
prime[i] = true;
}
for (int i = 2; i <= sqrt; i++)
{
for (int j = i * 2; j<n; j += i)
{
prime[j] = false;
}
}
for (int i = 0; i<prime.length; i++)
{
if (prime[i])
{
primeCounter++;
System.out.print(i + ” “);
}
}
prime = new boolean[0];
}
}