Regex to match all lines not starting with == - regex

This should be simple, but I've been having trouble with it. I want to write a regex in perl to match all lines that do not begin with an "==". I created this expression:
^[^\=\=].*
Which works fine in a regex tester I use, but when I run the perl script I get an error stating:
POSIX syntax [= =] is reserved for future extensions in regex
And the script terminates. I assume I'm using some syntax wrong, but I haven't found anything regarding this. Does anyone have a better way to match these lines?

Your regex is incorrect, as it fails with =A as input, by example.
A way to do it would be with a Perl Compatible Regular Expression(PCRE): ^(?!==)

You're misunderstanding how character classes work in regular expressions
A character class is delimited by square brackets [...] and generally will match any one of the characters that it encloses. So [abc] will match a, b, or c, but only the first character of aa or cbc. You probably know that you can also use ranges, such as [a-c]
You can also negate the class, as you have done, so [^a] will match any one character that isn't an a, such as z or &, but only the first character of zz
Replicating a character in a class will not change what it matches, so [aardvark] will match exactly one of a, d, k, r, or v, and is equivalent to [adkrv]
Your regex pattern uses the character class [^\=\=]. It's unnecessary to escape an equals sign, and replicating it has no effect, so you have the equivalent of [^=], which will match any single character other than the equals sign =
The reason you got that error message is that character classes beginning [= and ending =] (just [=] doesn't count) are reserved for special behaviour yet to be implemented. As above, there would ordinarily be no reason to write a character class with multiple occurrences of the same character, so it's reasonable to disallow such a construction
perldoc perldiag has this to say
POSIX syntax [= =] is reserved for future extensions in regex; marked by <-- HERE in m/%s/
(F) Within regular expression character classes ([]) the syntax beginning with "[=" and ending with "=]" is reserved for future extensions. If you need to represent those character sequences inside a regular expression character class, just quote the square brackets with the backslash: "[=" and "=]". The <-- HERE shows whereabouts in the regular expression the problem was discovered. See perlre.
A solution depends on how you want to use the test in your Perl code, but if you need an if statement then I would simply invert the test and check that the line doesn't start with ==
unless ( /^==/ )
or, if you're allergic to Perl's unless
if ( not /^==/ )

Related

^ and $ expressed in fundamental operations in regular expressions

I've read a book where it states that all fundamental operations in regular expressions are concatatenation, or(|), closure(*) and parenthesis to override default precedence. Every other operation is just a shortcut for one or more fundamental operations.
For example, (AB)+ shortcut is expanded to (AB)(AB)* and (AB)? to (ε | AB) where ε is empty string. First of all, I looked up ASCII table and I am not sure which charcode is designated to empty string. Is it ASCII 0?
I'd like to figure out how to express the shortcuts ^ and $ as in ^AB or AB$ expression in the fundamental operations, but I am not sure how to do this. Can you help me out how this is expressed in fundamentals?
Regular expressions, the way they are defined in mathematics, are actually string generators, not search patterns. They are used as a convenient notation for a certain class of sets of strings. (Those sets can contain an infinite number of strings, so enumerating all elements is not practical.)
In a programming context, regexes are usually used as flexible search patterns. In mathematical terms we're saying, "find a substring of the target string S that is an element of the set generated by regex R". This substring search is not part of the regex proper; it's like there's a loop around the actual regex engine that tries to match every possible substring against the regex (and stops when it finds a match).
In fundamental regex terms, it's like there's an implicit .* added before and after your pattern. When you look at it this way, ^ and $ simply prevent .* from being added at the beginning/end of the regex.
As an aside, regexes (as commonly used in programming) are not actually "regular" in the mathematical sense; i.e. there are many constructs that cannot be translated to the fundamental operations listed above. These include backreferences (\1, \2, ...), word boundaries (\b, \<, \>), look-ahead/look-behind assertions ((?= ), (?! ), (?<= ), (?<! )), and others.
As for ε: It has no character code because the empty string is a string, not a character. Specifically, a string is a sequence of characters, and the empty string contains no characters.
^AB can be expressed as (εAB) ie an empty string followed by AB and AB$ can be expressed as (ABε) that's AB followed by an empty string.
The empty string is actually defined as '', that's a string of 0 length, so has no value in the ASCII table. However the C programming language terminates all strings with the ASCII NULL character, although this is not counted in the length of the string it still must be accounted for when allocating memory.
EDIT
As #melpomene pointed out in their comment εAB is equivalent to AB which makes the above invalid. Having talked to a work college I'm no longer sure how to do this or even if it's possible. Hopefully someone can come up with an answer.

Regex character interval with exception

Say I have an interval with characters ['A'-'Z'], I want to match every of these characters except the letter 'F' and I need to do it through the ^ operator. Thus, I don't want to split it into two different intervals.
How can I do it the best way? I want to write something like ['A'-'Z']^'F' (All characters between A-Z except the letter F). This site can be used as reference: http://regexr.com/
EDIT: The relation to ocaml is that I want to define a regular expression of a string literal in ocamllex that starts/ends with a doublequote ( " ) and takes allowed characters in a certain range. Therefore I want to exclude the doublequotes because it obviously ends the string. (I am not considering escaped characters for the moment)
Since it is very rare to find two regular expressions libraries / processors with exactly the same regular expression syntax, it is important to always specify precisely which system you are using.
The tags in the question lead me to believe that you might be using ocamllex to build a scanner. In that case, according to the documentation for its regular expression syntax, you could use
['A'-'Z'] # 'F'
That's loosely based on the syntax used in flex:
[A-Z]{-}[F]
Java and Ruby regular expressions include a similar operator with very different syntax:
[A-Z&&[^F]]
If you are using a regular expression library which includes negative lookahead assertions (Perl, Python, Ecmascript/C++, and others), you could use one of those:
(?!F)[A-Z]
Or you could use a positive lookahead assertion combined with a negated character class:
(?=[A-Z])[^F]
In this simple case, both of those constructions effectively do a conjunction, but lookaround assertions are not really conjunctions. For a regular expression system which does implement a conjunction operator, see, for example, Ragel.
The ocamllex syntax for character set difference is:
['A'-'Z'] # 'F'
which is equivalent to
['A'-'E' 'G'-'Z']
(?!F)[A-Z] or ((?!F)[A-Z])*
This will match every uppercase character excluding 'F'
Use character class subtraction:
[A-Z&&[^F]]
The alternative of [A-EG-Z] is "OK" for a single exception, but breaks down quickly when there are many exceptions. Consider this succinct expression for consonants (non-vowels):
[B-Z&&[^EIOU]]
vs this train wreck
[B-DF-HJ-NP-TV-Z]
The regex below accomplishes what you want using ^ and without splitting into different intervals. It also resambles your original thought (['A'-'Z']^'F').
/(?=[A-Z])[^F]/ig
If only uppercase letters are allowed simple remove the i flag.
Demo

What does (^?)* mean in this regex?

I have this regex:
^(^?)*\?(.*)$
If I understand correctly, this is the breakdown of what it does:
^ - start matching from the beginning of the string
(^?)* - I don't know know, but it stores it in $1
\? - matches a question mark
(.*)$ - matches anything until the end of the string
So what does (^?)* mean?
The (^?) is simply looking for the literal character ^. The ^ character in a regex pattern only has special meaning when used as the first character of the pattern or the first character in a grouping match []. When used outside those 2 positions the ^ is interpreted literally meaning in looks for the ^ character in the input string
Note: Whether or not ^ outside of the first and grouping position is interpreted literally is regex engine specific. I'm not familiar enough with LUA to state which it does
Lua does not have a conventional regexp language, it has Lua patterns in its place. While they look a lot like regexp, Lua patterns are a distinct language of their own that has a simpler set of rules and most importantly lacks grouping and alternation features.
Interpreted as a Lua pattern, the example will surprising a longtime regexp user since so many details are different.
Lua patterns are described in PiL, and at a first glance are similar enough to a conventional regexp to cause confusion. The biggest differences are probably the lack of an alternation operator |, parenthesis are only used to mark captures, quantifiers (?, -, +, and *) only apply to a character or character class, and % is the escape character not \. A big clue that this example was probably not written with Lua in mind is the lack of the Lua pattern quoting character % applied to any (or ideally, all) of the non-alphanumeric characters in the pattern string, and the suspicious use of \? which smells like a conventional regexp to match a single literal ?.
The simple answer to the question asked is: (^?)* is not a recommended form, and would match ^* or *, capturing the presence or absence of the caret. If that were the intended effect, then I would write it as (%^?)%* to make that clearer.
To see why this is the case, let's take the pattern given and analyze it as a Lua pattern. The entire pattern is:
^(^?)*\?(.*)$
Handed to string.match(), it would be interpreted as follows:
^ anchors the match to the beginning of the string.
( marks the beginning of the first capture.
^ is not at the beginning of the pattern or a character class, so it matches a literal ^ character. For clarity that should likely have been written as %^.
? matches exactly zero or one of the previous character.
) marks the end of the first capture.
* is not after something that can be quantified so it matches a literal * character. For clarity that should likely have been written as %*.
\ in a pattern matches itself, it is not an escape character in the pattern language. However, it is an escape character in a Lua short string literal, making the following character not special to the string literal parser which in this case is moot because the ? that follows was not special to it in any case. So if the pattern were enclosed in double or single quotes, then the \ would be absorbed by string parsing. If written in a long string (as [[^(^?)*\?(.*)$]], the backslash would survive the string parser, to appear in the pattern.
? matches exactly zero or one of the previous character.
( marks the beginning the second capture.
. matches any character at all, effectively a synonym for the class [\000-\255] (remember, in Lua numeric escapes are in decimal not octal as in C).
* matches zero or more of the previous character, greedily.
) marks the end of the second capture.
$ anchors the pattern to the end of the string.
So it matches and captures an optional ^ at the beginning of the string, followed by *, then an optional \ which is not captured, and captures the entire rest of the string. string.match would return two strings on success (either or both of which might be zero length), or nil on failure.
Edit: I've fixed some typos, and corrected an error in my answer, noticed by Egor in a comment. I forgot that in patterns, special symbols loose their specialness when in a spot where it can't apply. That makes the first asterisk match a literal asterisk rather than be an error. The cascade of that falls through most of the answer.
Note that if you really want a true regexp in Lua, there are libraries available that will provide it. That said, the built-in pattern language is quite powerful. If it is not sufficient, then you might be best off adopting a full parser, and use LPeg which can do everything a regexp can and more. It even comes with a module that provides a complete regexp syntax that is translated into an LPeg grammar for execution.
In this case, the (^?) refers to the previous string "^" meaning the literal character ^ as Jared has said. Check out regexlib for any further deciphering.
For all your Regex needs: http://regexlib.com/CheatSheet.aspx
It looks to me like the intent of the creator of the expression was to match any number of ^ before the question mark, but only wanted to capture the first instance of ^. However, it may not be a valid expression depending on the engine, as others have stated.

Regex for matching a character, but not when it's enclosed in quotes

I need to match a colon (':') in a string, but not when it's enclosed by quotes - either a " or ' character.
So the following should have 2 matches
something:'firstValue':'secondValue'
something:"firstValue":'secondValue'
but this should only have 1 match
something:'no:match'
If the regular expression implementation supports look-around assertions, try this:
:(?:(?<=["']:)|(?=["']))
This will match any colon that is either preceeded or followed by a double or single quote. So that does only consider construct like you mentioned. something:firstValue would not be matched.
It would be better if you build a little parser that reads the input byte-by-byte and remembers when quotation is open.
Regular expressions are stateless. Tracking whether you are inside of quotes or not is state information. It is, therefore, impossible to handle this correctly using only a single regular expression. (Note that some "regular expression" implementations add extensions which may make this possible; I'm talking solely about "true" regular expressions here.)
Doing it with two regular expressions is possible, though, provided that you're willing to modify the original string or to work with a copy of it. In Perl:
$string =~ s/['"][^'"]*['"]//g;
my $match_count = $string =~ /:/g;
The first will find every sequence consisting of a quote, followed by any number of non-quote characters, and terminated by a second quote, and remove all such sequences from the string. This will eliminate any colons which are within quotes. (something:"firstValue":'secondValue' becomes something:: and something:'no:match' becomes something:)
The second does a simple count of the remaining colons, which will be those that weren't within quotes to start with.
Just counting the non-quoted colons doesn't seem like a particularly useful thing to do in most cases, though, so I suspect that your real goal is to split the string up into fields with colons as the field delimiter, in which case this regex-based solution is unsuitable, as it will destroy any data in quoted fields. In that case, you need to use a real parser (most CSV parsers allow you to specify the delimiter and would be ideal for this) or, in the worst case, walk through the string character-by-character and split it manually.
If you tell us the language you're using, I'm sure somebody could suggest a good parser library for that language.
Uppps ... missed the point. Forget the rest. It's quite hard to do this because regex is not good at counting balanced characters (but the .NET implementation for example has an extension that can do it, but it's a bit complicated).
You can use negated character groups to do this.
[^'"]:[^'"]
You can further wrap the quotes in non-capturing groups.
(?:[^'"]):(?:[^'"])
Or you can use assertion.
(?<!['"]):(?!['"])
I've come up with the following slightly worrying construction:
(?<=^('[^']*')*("[^"]*")*[^'"]*):
It uses a lookbehind assertion to make sure you match an even number of quotes from the beginning of the line to the current colon. It allows for embedding a single quote inside double quotes and vice versa. As in:
'a":b':c::"':" (matches at positions 6, 8 and 9)
EDIT
Gumbo is right, using * within a look behind assertion is not allowed.
You can try to catch the strings withing the quotes
/(?<q>'|")([\w ]+)(\k<q>)/m
First pattern defines the allowed quote types, second pattern takes all Word-Digits and spaces.
Very good on this solution is, it takes ONLY Strings where opening and closing quotes match.
Try it at regex101.com

Regular Expression Opposite

Is it possible to write a regex that returns the converse of a desired result? Regexes are usually inclusive - finding matches. I want to be able to transform a regex into its opposite - asserting that there are no matches. Is this possible? If so, how?
http://zijab.blogspot.com/2008/09/finding-opposite-of-regular-expression.html states that you should bracket your regex with
/^((?!^ MYREGEX ).)*$/
, but this doesn't seem to work. If I have regex
/[a|b]./
, the string "abc" returns false with both my regex and the converse suggested by zijab,
/^((?!^[a|b].).)*$/
. Is it possible to write a regex's converse, or am I thinking incorrectly?
Couldn't you just check to see if there are no matches? I don't know what language you are using, but how about this pseudocode?
if (!'Some String'.match(someRegularExpression))
// do something...
If you can only change the regex, then the one you got from your link should work:
/^((?!REGULAR_EXPRESSION_HERE).)*$/
The reason your inverted regex isn't working is because of the '^' inside the negative lookahead:
/^((?!^[ab].).)*$/
^ # WRONG
Maybe it's different in vim, but in every regex flavor I'm familiar with, the caret matches the beginning of the string (or the beginning of a line in multiline mode). But I think that was just a typo in the blog entry.
You also need to take into account the semantics of the regex tool you're using. For example, in Perl, this is true:
"abc" =~ /[ab]./
But in Java, this isn't:
"abc".matches("[ab].")
That's because the regex passed to the matches() method is implicitly anchored at both ends (i.e., /^[ab].$/).
Taking the more common, Perl semantics, /[ab]./ means the target string contains a sequence consisting of an 'a' or 'b' followed by at least one (non-line separator) character. In other words, at ANY point, the condition is TRUE. The inverse of that statement is, at EVERY point the condition is FALSE. That means, before you consume each character, you perform a negative lookahead to confirm that the character isn't the beginning of a matching sequence:
(?![ab].).
And you have to examine every character, so the regex has to be anchored at both ends:
/^(?:(?![ab].).)*$/
That's the general idea, but I don't think it's possible to invert every regex--not when the original regexes can include positive and negative lookarounds, reluctant and possessive quantifiers, and who-knows-what.
You can invert the character set by writing a ^ at the start ([^…]). So the opposite expression of [ab] (match either a or b) is [^ab] (match neither a nor b).
But the more complex your expression gets, the more complex is the complementary expression too. An example:
You want to match the literal foo. An expression, that does match anything else but a string that contains foo would have to match either
any string that’s shorter than foo (^.{0,2}$), or
any three characters long string that’s not foo (^([^f]..|f[^o].|fo[^o])$), or
any longer string that does not contain foo.
All together this may work:
^[^fo]*(f+($|[^o]|o($|[^fo]*)))*$
But note: This does only apply to foo.
You can also do this (in python) by using re.split, and splitting based on your regular expression, thus returning all the parts that don't match the regex, how to find the converse of a regex
In perl you can anti-match with $string !~ /regex/;.
With grep, you can use --invert-match or -v.
Java Regexps have an interesting way of doing this (can test here) where you can create a greedy optional match for the string you want, and then match data after it. If the greedy match fails, it's optional so it doesn't matter, if it succeeds, it needs some extra data to match the second expression and so fails.
It looks counter-intuitive, but works.
Eg (foo)?+.+ matches bar, foox and xfoo but won't match foo (or an empty string).
It might be possible in other dialects, but couldn't get it to work myself (they seem more willing to backtrack if the second match fails?)