I am working on a project to detect certain objects in an aerial image, and as part of this I am trying to utilize elevation data for the image. I am working with Digital Elevation Models (DEMs), basically a matrix of elevation values. When I am trying to detect trees, for example, I want to search for tree-shaped regions that are higher than their surrounding terrain. Here is an example of a tree in a DEM heatmap:
https://i.stack.imgur.com/pIvlv.png
I want to be able to find small regions like that that are higher than their surroundings.
I am using OpenCV and GDAL for my actual image processing. Do either of those already contain techniques for what I'm trying to accomplish? If not, can you point me in the right direction? Some ideas I've had are going through each pixel and calculating the rate of change in relation to it's surrounding pixels, which would hopefully mean that pixels with high rates change/steep slopes would signify an edge of a raised area.
Note that the elevations will change from image to image, and this needs to work with any elevation. So the ground might be around 10 meters in one image but 20 meters in another.
Supposing you can put the DEM information into a 2D Mat where each "pixel" has the elevation value, you can find local maximums by applying dilate and then substract the result from the original image.
There's a related post with code examples in: http://answers.opencv.org/question/28035/find-local-maximum-in-1d-2d-mat/
Related
I am new to opencv, coding in c++. I have a task given to me to decode a 2D circle barcode using an encoded array. I am up to the point where I am able to centralize the figure and get the line using Hough transforms.
Need help with how to read the colour in the images, note that each of the two adjacent blocks correspond to a letter.
Any pointers will be highly appreciated. Thanks.
First, you need to load the image. I suspect this isn't a problem because you are already using Hough transforms on it, but:
Mat img = imread(filename)
Once the image is loaded, you can grab any of the pixels using:
Scalar intensity = img.at<uchar>(y, x);
However, what you need to do is threshold the image. As I mentioned in the comments, the image colors are either 0 or 255 for each RGB channel. This is on purpose for encoding the data in case there are image artifacts. If the channel is above a certain color value, then you will consider that it's 'on' and if below, it's 'off'.
Threshold the image using adaptiveThreshold. I would threshold down to binary 1 or 0. This will produce RGB triplets that are one of eight (2^3) possible combinations, from (0,0,0) to (1,1,1).
Then you need to walk the pixels. This is where it gets interesting.
You say each adjacent 2 pixels form a single letter. That's 2^6 or 64 different letters. The next question is: are the letters arranged in scan lines, left-to-right, top to bottom? If yes, then it will be important to orientate the image using the crosshair in the center.
If the image is encoded radially (using polar coordinates) then things get a little trickier. You need to use cvLinearPolar to remap the image.
Otherwise you need to walk the whole image, stepping the size of the RGB blocks and discard any pixels whose distance from the center is greater than the radius of the circle. After reading all of the pixels into an array, group them by pairs.
At some point, I would say that using OpenCV to do this is heading towards machine learning. There has to be some point where you can cut in and use Neural Networks to decode the image for you. Once you have the circle (cutoff radius) and the image centered, you can convert to polar coordinates and discard everything outside the circle by cutting off everything greater than the radius of the circle. Remember, polar coordinates are (r,theta), so you should be able to cutoff the right part of the polar image.
Then you could train a Neural Network to take the polar image as input and spit out the paragraph.
You would have to provide lots of training data, and the trained model would still be reliant on your ability to pre-process the image. This will include any affine transforms in case the image is tilted or rotated. At that point you would say to yourself that you've done all the heavy lifting and the last little bit really isn't that hard.
However, once you get a process working for a clean image, you can start adding to steps to introduce ML to work on dirty images. HoughCircles can be used to detect the part of an image to run detection on. Next, you need to decide if the image inside the circle is a barcode or not.
A good barcode system will have parity bits or some other form of error correction, but you can use machine learning to cleanup output.
My 2 cents anyways.
I have written an algorithm to process a camera capture and extract a binary image of two features I'm interested in. I'm trying to find the best (fastest) way of detecting when the two features intersect and where the lowest (y coordinate is greatest) point is (this will be the intersection).
I do not want to use a findContours() based method as this is too slow and, in my opinion, unnecessary. I also think blob detection libraries are too bloated for this.
I have two sample images (sorry for low quality):
(not touching: http://i.imgur.com/7bQ9qMo.jpg)
(touching: http://i.imgur.com/tuSmKw7.jpg)
Due to the way these images are created, there is often noise in the top right corner which looks like pixelated lines but methods such as dilation and erosion lose resolution around the features I'm trying to find.
My initial thought would be to use direct pixel access to form a width filter and a height filter. The lowest point in the image is therefore the intersection.
I have no idea how to detect when they touch... logically I can see that a triangle is formed when they intersect and otherwise there is no enclosed black area. Can I fill the image starting from the corner with say, red, and then calculate how much of the image is still black?
Does anyone have any suggestions?
Thanks
Your suggestion is a way more slow than finding contours. For binary images, finding contour is very easy and quick because you just need to find a black pixel followed by a white pixel or vice versa.
Anyway, if you don't want to use it, you can use the vertical projection or vertical profile you will see it the objects intersect or not.
For example, in the following image check the the letter "n" which is little similar to non-intersecting object, and the letter "o" which is similar to intersecting objects :
By analyzing the histograms you can recognize which one is intersecting or not.
I am currently reading into the topic of stereo vision, using the book of Hartley&Zimmerman alongside some papers, as I am trying to develop an algorithm capable of creating elevation maps from two images.
I am trying to come up with the basic steps for such an algorithm. This is what I think I have to do:
If I have two images I somehow have to find the fundamental matrix, F, in order to find the actual elevation values at all points from triangulation later on. If the cameras are calibrated this is straightforward if not it is slightly more complex (plenty of methods for this can be found in H&Z).
It is necessary to know F in order to obtain the epipolar lines. These are lines that are used in order to find image point x in the first image back in the second image.
Now comes the part were it gets a bit confusing for me:
Now I would start taking a image point x_i in the first picture and try to find the corresponding point x_i’ in the second picture, using some matching algorithm. Using triangulation it is now possible to compute the real world point X and from that it’s elevation. This process will be repeated for every pixel in the right image.
In the perfect world (no noise etc) triangulation will be done based on
x1=P1X
x2=P2X
In the real world it is necessary to find a best fit instead.
Doing this for all pixels will lead to the complete elevation map as desired, some pixels will however be impossible to match and therefore can't be triangulated.
What confuses me most is that I have the feeling that Hartley&Zimmerman skip the entire discussion on how to obtain your point correspondences (matching?) and that the papers I read in addition to the book talk a lot about disparity maps which aren’t mentioned in H&Z at all. However I think I understood correctly that the disparity is simply the difference x1_i- x2_i?
Is this approach correct, and if not where did I make mistakes?
Your approach is in general correct.
You can think of a stereo camera system as two points in space where their relative orientation is known. This are the optical centers. In front of each optical center, you have a coordinate system. These are the image planes. When you have found two corresponding pixels, you can then calculate a line for each pixel, wich goes throug the pixel and the respectively optical center. Where the two lines intersect, there is the object point in 3D. Because of the not perfect world, they will probably not intersect and one may use the point where the lines are closest to each other.
There exist several algorithms to detect which points correspond.
When using disparities, the two image planes need to be aligned such that the images are parallel and each row in image 1 corresponds to the same row in image 2. Then correspondences only need to be searched on a per row basis. Then it is also enough to know about the differences on x-axis of the single corresponding points. This is then the disparity.
Finding Circle Edges :
Here are the two sample images that i have posted.
Need to find the edges of the circle:
Does it possible to develop one generic circle algorithm,that could find all possible circles in all scenarios ?? Like below
1. Circle may in different color ( White , Black , Gray , Red)
2. Background color may be different
3. Different in its size
http://postimage.org/image/tddhvs8c5/
http://postimage.org/image/8kdxqiiyb/
Please suggest some idea to write a algorithm that should work out on above circle
Sounds like a job for the Hough circle transform:
I have not used it myself so far, but it is included in OpenCV. Among other parameters, you can give it a minimum and maximum radius.
Here are links to documentation and a tutorial.
I'd imagine your second example picture will be very hard to detect though
You could apply an edge detection transformation to both images.
Here is what I did in Paint.NET using the outline effect:
You could test edge detect too but that requires more contrast in the images.
Another thing to take into consideration is what it exactly is that you want to detect; in the first image, do you want to detect the white ring or the disc inside. In the second image; do you want to detect the all the circles (there are many tiny ones) or just the big one(s). These requirement will influence what transformation to use and how to initialize these.
After transforming the images into versions that 'highlight' the circles you'll need an algorithm to find them.
Again, there are more options than just one. Here is a paper describing an algoritm
Searching the web for image processing circle recognition gives lots of results.
I think you will have to use a couple of different feature calculations that can be used for segmentation. I the first picture the circle is recognizeable by intensity alone so that one is easy. In the second picture it is mostly the texture that differentiates the circle edge, in that case a feature image based based on some kind of texture filter will be needed, calculating the local variance for instance will result in a scalar image that can segment out the circle. If there are other features that defines the circle in other scenarios (different colors for background foreground etc) you might need other explicit filters that give a scalar difference for those cases.
When you have scalar images where the circles stand out you can use the circular Hough transform to find the circle. Either run it for different circle sizes or modify it to detect a range of sizes.
If you know that there will be only one circle and you know the kind of noise that will be present (vertical/horizontal lines etc) an alternative approach is to design a more specific algorithm e.g. filter out the noise and find center of gravity etc.
Answer to comment:
The idea is to separate the algorithm into independent stages. I do not know how the specific algorithm you have works but presumably it could take a binary or grayscale image where high values means pixel part of circle and low values pixel not part of circle, the present algorithm also needs to give some kind of confidence value on the circle it finds. This present algorithm would then represent some stage(s) at the end of the complete algorithm. You will then have to add the first stage which is to generate feature images for all kind of input you want to handle. For the two examples it should suffice with one intensity image (simply grayscale) and one image where each pixel represents the local variance. In the color case do a color transform an use the hue value perhaps? For every input feed all feature images to the later stage, use the confidence value to select the most likely candidate. If you have other unknowns that your algorithm need as input parameters (circle size etc) just iterate over the possible values and make sure your later stages returns confidence values.
How to find shift and rotation between same two images using programming languages vb.net or C++ or C#?
The problem you state is called motion detection (or motion compensation) and is one of the most important problems in image and video processing at the moment. No easy "here are ten lines of code that will do it" solution exists except for some really trivial cases.
Even your seemingly trivial case is quite a difficult one because a rotation by an unknown angle could cause slight pixel-by-pixel changes that can't be easily detected without specifically tailored algorithms used for motion detection.
If the images are very similar such that the camera is only slightly moved and rotated then the problem could be solved without using highly complex techniques.
What I would do, in that case, is use a motion tracking algorithm to get the optical flow of the image sequence which is a "map" which approximates how a pixel has "moved" from image A to B. OpenCV which is indeed a very good library has functions that does this: CalcOpticalFlowLK and CalcOpticalFlowPyrLK.
The tricky bit is going from the optical flow to total rotation of the image. I would start by heavily low pass filter the optical flow to get a smoother map to work with.
Then you need to use some logic to test if the image is only shifted or rotated. If it is only shifted then the entire map should be one "color", i.e. all flow vectors point in the same direction.
If there has been a rotation then the vectors will point in different direction depending on the rotation.
If the input images are not as nice as the above method requires, then I would look into feature descriptors to find how a specific object in the first image is located within the second. This will however be much harder.
There is no short answer. You could try to use free OpenCV library for finding relationship between two images.
The two operations, rotation and translation can be determined in either order. It's far easier to first detect rotation, because you can then compensate for that. Once both images are oriented the same, the translation becomes a matter of simmple correlation.
Finding the relative rotation of an image is best done by determining the local gradients. For every neighborhood (e.g. 3x3 pixels), treat the greyvalue as a function z(x,y), fit a plane through the 9 pixels, and determine the slope or gradient of that plane. Now average the gradient you found over the entire image, or at least the center of it. Your two images will produce different averages. Part of that is because for non-90 degree rotations the images won't overlap fully, but in general the difference in average gradients is the rotation between the two.
Once you've rotated back one image, you can determine a correlation. This is a fairly standard operation; you're essentially determining for each possible offset how well the two images overlap. This will give you an estimate for the shift.
Once you've got both, you can refine your rotation angle estimate by rotating back the translation, shifting the second image, and determining the average gradient only over the pixels common to both images.
If the images are exactly the same, it should be fairly easy to extract some feature points - for example using SIFT - and match the features of both images. You can then use any two of the matching features to find the rotation and translation. The translation is just the difference between two matching feature points. The you compensate for the translation in one image and get the rotation angle as the angle formed by the three remaining points.