Compiletime transform of tree into tuple - c++

I'm stuck with the following problem:
given a tree represented by non-terminal nodes of type Node<> and terminal nodes of arbitrary types like A, B and so on (see below).
Because I don't want to use runtime-polymorphism I like to transform the tree into a std::tuple via a constexpr function like the immediately invoked lambda expression in the example below.
struct A {};
struct B {};
struct C {};
struct D {};
struct E {};
template<typename... T>
struct Node {
constexpr Node(const T&... n) : mChildren{n...} {}
std::tuple<T...> mChildren;
};
template<uint8_t N>
struct IndexNode {
std::array<uint8_t, N> mChildren;
};
int main() {
constexpr auto tree = []() {
auto t = Node(A(),
B(),
Node(C(),
Node(D())),
E());
// transform t into std::tuple<A, B, C, D, IndexNode<1>{3}, IndexNode<2>{2, 4}, E, IndexNode<4>{0, 1, 5, 6}>
// return ...;
}();
}
The idea is to use an index to a tuple element as a "pointer" to the active (selected) node of the tree. The overall purpose is to implement a menu-system on a µC without using runtime-polymorphism.
If I can carry out this transformation at compiletime, I can use a special meta-function to retrieve the active tuple-element and call some function on it. This function I wrote already.
The missing link would surely be some sort of depth-first tree-traversal ... but I can't figure it out.

What about using a lot of std::tuple_cat, std::index_sequence and recursion as follows?
#include <tuple>
#include <array>
#include <iostream>
struct A {};
struct B {};
struct C {};
struct D {};
struct E {};
template <typename... T>
struct Node
{
constexpr Node (T const & ... n) : mChildren { n... }
{ }
std::tuple<T...> mChildren;
};
template <std::size_t N>
struct IndexNode
{ std::array<uint8_t, N> mChildren; };
template <typename>
struct cntT : public std::integral_constant<std::size_t, 1U>
{ };
template <typename ... Ts>
struct cntT<Node<Ts...>>
: public std::integral_constant<std::size_t, 1U + (cntT<Ts>::value + ...)>
{ };
template <typename T>
struct getT
{
constexpr auto operator() (T const & t, std::size_t & cnt)
{ ++cnt; return std::make_tuple(t); }
};
template <typename ... Ts>
struct getT<Node<Ts...>>
{
template <std::size_t ... Is>
constexpr auto func (std::tuple<Ts...> const & t,
std::index_sequence<Is...> const &,
std::size_t & cnt)
{
std::size_t val { cnt };
IndexNode<sizeof...(Ts)> in
{ { { uint8_t(val += cntT<Ts>::value)... } } };
return std::tuple_cat(getT<Ts>()(std::get<Is>(t), cnt)...,
std::make_tuple(in));
}
constexpr auto operator() (Node<Ts...> const & n, std::size_t & cnt)
{
return func(n.mChildren, std::make_index_sequence<sizeof...(Ts)>{},
cnt);
}
};
template <typename ... Ts>
constexpr auto linearNode (Node<Ts...> const & n)
{
std::size_t cnt ( -1 );
return getT<Node<Ts...>>()(n, cnt);
}
int main()
{
constexpr auto tree = []()
{
auto t = Node { A{}, B{}, Node{ C{}, Node{ D{} } }, E{} };
return linearNode(t);
}();
static_assert( std::is_same<
decltype(tree),
std::tuple<A, B, C, D, IndexNode<1>, IndexNode<2>, E,
IndexNode<4>> const>::value, "!");
std::cout << "IndexNode<1> { ";
for ( auto const & v : std::get<4U>(tree).mChildren )
std::cout << int(v) << ", ";
std::cout << "}" << std::endl; // print IndexNode<1> { 3, }
std::cout << "IndexNode<2> { ";
for ( auto const & v : std::get<5U>(tree).mChildren )
std::cout << int(v) << ", ";
std::cout << "}" << std::endl; // print IndexNode<2> { 2, 4, }
std::cout << "IndexNode<4> { ";
for ( auto const & v : std::get<7U>(tree).mChildren )
std::cout << int(v) << ", ";
std::cout << "}" << std::endl; // print IndexNode<4> { 0, 1, 5, 6, }
}

#wimalopaan did you read max66' answer or did you find another solution for your idea? I tried to tackle the problem by connecting input and output via an index mapping. However, that became more complicated than I expected. Here is how I trid to establish the index mapping:
For the output tuple, there is an obvious choice of indices. Swapping the storage order a bit (which is simpler for me to imagine), the indices read
using Tree = std::tuple<
IndexNode<4>{1, 2, 3, 7},// 0
A, // 1
B, // 2
IndexNode<2>{4, 5}, // 3
C, // 4
IndexNode<1>{6}, // 5
D, // 6
E // 7
>;
The input consists of nested tuples, so let us invent some multiindex:
Node(/* 1, 2, 3, 7 */ // 0, Vals<>
A{}, // 1, Vals<0>
B{}, // 2, Vals<1>
Node(/* 4, 5 */ // 3, Vals<2>
C{}, // 4, Vals<2, 0>
Node(/* 6 */ // 5, Vals<2, 1>
D{} // 6, Vals<2, 1, 0>
)
),
E{} // 7, Vals<3>
);
For computing the indices in IndexNode it is useful to specify the "number of output indices consumed by a Node including its children". In max66's answer this is called cntT. Let us use the term rank for this quantity here and compute by function overload:
template<class> struct Type {};// helper to pass a type by value (for overloading)
template<class Terminal>
size_t rank_of(Type<Terminal>) {// break depth recursion for terminal node
return 1;
}
template<class... Children>
size_t rank_of(Type<Node<Children...>>) {// continue recursion for non-terminal node
return (
1 +// count enclosing non-terminal node
... + rank_of(Type<Children>{})
);
}
The same strategy can be applied to obtain the multiindices of each node in the input representation. The multiindices are accumulated (by depth recursion) into ParentInds.
#include "indexer.hpp"// helper for the "indices trick"
#include "merge.hpp"// tuple_cat for types
#include "types.hpp"// template<class...> struct Types {};
#include "vals.hpp"// helper wrapped around std::integer_sequence
template<class Terminal, class ParentInds=Vals<>>
auto indices_of(
Type<Terminal>,// break depth recursion for terminal node
ParentInds = ParentInds{}
) {
std::cout << __PRETTY_FUNCTION__ << std::endl;
return Types<ParentInds>{};// wrap in Types<...> for simple merging
}
template<class... Children, class ParentInds=Vals<>>
auto indices_of(
Type<Node<Children...>>,// continue recursion for non-terminal node
ParentInds parent_inds = ParentInds{}
) {
return indexer<Children...>([&] (auto... child_inds) {
return merge(
Types<ParentInds>{},// indices for enclosing non-terminal node
indices_of(
Type<Children>{},
parent_inds.append(child_inds)
)...
);
});
}
Output with GCC 7.2:
auto indices_of(Type<Terminal>, ParentInds) [with Terminal = E; ParentInds = Vals<3>]
auto indices_of(Type<Terminal>, ParentInds) [with Terminal = D; ParentInds = Vals<2, 1, 0>]
auto indices_of(Type<Terminal>, ParentInds) [with Terminal = C; ParentInds = Vals<2, 0>]
auto indices_of(Type<Terminal>, ParentInds) [with Terminal = B; ParentInds = Vals<1>]
auto indices_of(Type<Terminal>, ParentInds) [with Terminal = A; ParentInds = Vals<0>]
With the index mapping computed by indices_of we can construct the output tuple like this:
template<class T>
constexpr auto transform(const T& t) {
static_assert(
std::is_same<
T,
Node<A, B, Node<C, Node<D> >, E>
>{}
);
auto inds = indices_of(Type<T>{});
static_assert(
std::is_same<
decltype(inds),
Types<
Vals<>,
Vals<0>,
Vals<1>,
Vals<2>,
Vals<2, 0>,
Vals<2, 1>,
Vals<2, 1, 0>,
Vals<3>
>
>{}
);
return indexer(inds.size, [&] (auto... is) {// `is` are the tuple's output inds
return std::make_tuple(// becomes the final output tuple
transform_at(
inds.construct_type_at(is),// multiindex `Vals<...>{}` for each tuple element
t,// input tree
is.next()// used by each `IndexNode`: offset for its index computation
)...
);
});
}
Here is a complete (hopefully bug-free) working example (online demo):
#include <algorithm>
#include <iostream>
#include <tuple>
#include <numeric>
////////////////////////////////////////////////////////////////////////////////
template<size_t i>
struct Val : std::integral_constant<size_t, i> {
template<size_t dist=1>
constexpr auto next(Val<dist> = {}) {
return Val<i+dist>{};
}
};
template<size_t... is>
struct Vals {
template<size_t i>
constexpr auto append(Val<i>) {
return Vals<is..., i>{};
}
};
template<size_t i0, size_t... is>
constexpr auto front(Vals<i0, is...>) { return Val<i0>{}; }
template<size_t i0, size_t... is>
constexpr auto pop_front(Vals<i0, is...>) { return Vals<is...>{}; }
////////////////////////////////////////////////////////////////////////////////
template<class> struct Type {};
template<class... Ts>
struct Types {
static constexpr auto size = Val<sizeof...(Ts)>{};
template<std::size_t i, class... Args>
constexpr auto construct_type_at(Val<i>, Args&&... args) {
using Ret = std::tuple_element_t<i, std::tuple<Ts...>>;
return Ret(std::forward<Args>(args)...);
}
};
////////////////////////////////////////////////////////////////////////////////
template<std::size_t... is, class F>
constexpr decltype(auto) indexer_impl(std::index_sequence<is...>, F f) {
return f(Val<is>{}...);
}
template<class... Ts, class F>
constexpr decltype(auto) indexer(F f) {
return indexer_impl(std::index_sequence_for<Ts...>{}, f);
}
template<size_t N, class F>
constexpr decltype(auto) indexer(std::integral_constant<size_t, N>, F f) {
return indexer_impl(std::make_index_sequence<N>{}, f);
}
////////////////////////////////////////////////////////////////////////////////
template<class... Ts>
auto merge(Types<Ts...> done) {
return done;
}
template<class... Ts, class... Us, class... Vs>
auto merge(Types<Ts...>, Types<Us...>, Vs...) {
// TODO: if desired, switch to logarithmic recursion
// https://stackoverflow.com/a/46934308/2615118
return merge(Types<Ts..., Us...>{}, Vs{}...);
}
////////////////////////////////////////////////////////////////////////////////
struct TerminalNode { const char* msg{""}; };// JUST FOR DEBUG
std::ostream& operator<<(std::ostream& os, const TerminalNode& tn) {
return os << tn.msg << std::endl;// JUST FOR DEBUG
}
struct A : TerminalNode {};// INHERITANCE JUST FOR DEBUG
struct B : TerminalNode {};
struct C : TerminalNode {};
struct D : TerminalNode {};
struct E : TerminalNode {};
template<typename... T>
struct Node {
constexpr Node(const T&... n) : mChildren{n...} {}
std::tuple<T...> mChildren;
};
template<size_t N>
struct IndexNode {
std::array<size_t, N> mChildren;
constexpr IndexNode(std::array<size_t, N> arr) : mChildren(arr) {}
friend std::ostream& operator<<(std::ostream& os, const IndexNode& self) {
for(auto r : self.mChildren) os << r << ", ";// JUST FOR DEBUG
return os << "\n";
}
};
////////////////////////////////////////////////////////////////////////////////
template<class Terminal>
size_t rank_of(
Type<Terminal>// break depth recursion for terminal node
) {
return 1;
}
template<class... Children>
size_t rank_of(
Type<Node<Children...>>// continue recursion for non-terminal node
) {
return (
1 +// count enclosing non-terminal node
... + rank_of(Type<Children>{})
);
}
////////////////////////////////////////////////////////////////////////////////
template<class Terminal, class ParentInds=Vals<>>
auto indices_of(
Type<Terminal>,// break depth recursion for terminal node
ParentInds = ParentInds{}
) {
std::cout << __PRETTY_FUNCTION__ << std::endl;
return Types<ParentInds>{};// wrap in Types<...> for simple merging
}
template<class... Children, class ParentInds=Vals<>>
auto indices_of(
Type<Node<Children...>>,// continue recursion for non-terminal node
ParentInds parent_inds = ParentInds{}
) {
return indexer<Children...>([&] (auto... child_inds) {
return merge(
Types<ParentInds>{},// indices for enclosing non-terminal node
indices_of(
Type<Children>{},
parent_inds.append(child_inds)
)...
);
});
}
////////////////////////////////////////////////////////////////////////////////
template<class It, class T>
constexpr It exclusive_scan(It first, It last, It out, T init) {
for(auto it=first; it!=last; ++it) {
auto in = *it;
*out++ = init;
init += in;
}
return out;
}
////////////////////////////////////////////////////////////////////////////////
template<size_t... child_inds, class Terminal, class Offset>
constexpr decltype(auto) transform_at(
Vals<child_inds...> inds,
const Terminal& terminal,
Offset
) {
static_assert(0 == sizeof...(child_inds));
return terminal;
}
template<size_t... child_inds, class... Children, class Offset>
constexpr decltype(auto) transform_at(
Vals<child_inds...> inds,
const Node<Children...>& node,
Offset offset = Offset{}
) {
if constexpr(0 == sizeof...(child_inds)) {// the IndexNode is desired
auto ranks = std::array{rank_of(Type<Children>{})...};
exclusive_scan(std::begin(ranks), std::end(ranks), std::begin(ranks), 0);
auto add_offset = [] (size_t& i) { i += Offset{}; };
std::for_each(std::begin(ranks), std::end(ranks), add_offset);
return IndexNode{ranks};
}
else {// some child of this enclosing node is desired
return transform_at(
pop_front(inds),
std::get<front(inds)>(node.mChildren),
offset
);
}
}
template<class T>
constexpr auto transform(const T& t) {
auto inds = indices_of(Type<T>{});
return indexer(inds.size, [&] (auto... is) {// is are the tuple output inds
return std::make_tuple(// becomes the final output tuple
transform_at(
inds.construct_type_at(is),// multiindex for each tuple element
t,// input tree
is.next()// used by each `IndexNode`: offset for its index computation
)...
);
});
}
////////////////////////////////////////////////////////////////////////////////
int main() {
auto tree = []() {
auto t = Node( // 0, Val<>
A{"FROM A"}, // 1, Val<0>
B{"FROM B"}, // 2, Val<1>
Node( // 3, Val<2>
C{"FROM C"}, // 4, Val<2, 0>
Node( // 5, Val<2, 1>
D{"FROM D"} // 6, Val<2, 1, 0>
)
),
E{"FROM E"} // 7, Val<3>
);
return transform(t);
}();
using Tree = decltype(tree);
indexer(std::tuple_size<Tree>{}, [&] (auto... is) {
(std::cout << ... << std::get<is>(tree));
});
return 0;
}

Related

Can't get tuple member by its index in a loop [duplicate]

How can I iterate over a tuple (using C++11)? I tried the following:
for(int i=0; i<std::tuple_size<T...>::value; ++i)
std::get<i>(my_tuple).do_sth();
but this doesn't work:
Error 1: sorry, unimplemented: cannot expand ‘Listener ...’ into a fixed-length argument list.
Error 2: i cannot appear in a constant expression.
So, how do I correctly iterate over the elements of a tuple?
I have an answer based on Iterating over a Tuple:
#include <tuple>
#include <utility>
#include <iostream>
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I == sizeof...(Tp), void>::type
print(std::tuple<Tp...>& t)
{ }
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I < sizeof...(Tp), void>::type
print(std::tuple<Tp...>& t)
{
std::cout << std::get<I>(t) << std::endl;
print<I + 1, Tp...>(t);
}
int
main()
{
typedef std::tuple<int, float, double> T;
T t = std::make_tuple(2, 3.14159F, 2345.678);
print(t);
}
The usual idea is to use compile time recursion. In fact, this idea is used to make a printf that is type safe as noted in the original tuple papers.
This can be easily generalized into a for_each for tuples:
#include <tuple>
#include <utility>
template<std::size_t I = 0, typename FuncT, typename... Tp>
inline typename std::enable_if<I == sizeof...(Tp), void>::type
for_each(std::tuple<Tp...> &, FuncT) // Unused arguments are given no names.
{ }
template<std::size_t I = 0, typename FuncT, typename... Tp>
inline typename std::enable_if<I < sizeof...(Tp), void>::type
for_each(std::tuple<Tp...>& t, FuncT f)
{
f(std::get<I>(t));
for_each<I + 1, FuncT, Tp...>(t, f);
}
Though this then requires some effort to have FuncT represent something with the appropriate overloads for every type the tuple might contain. This works best if you know all the tuple elements will share a common base class or something similar.
In C++17, you can use std::apply with fold expression:
std::apply([](auto&&... args) {((/* args.dosomething() */), ...);}, the_tuple);
A complete example for printing a tuple:
#include <tuple>
#include <iostream>
int main()
{
std::tuple t{42, 'a', 4.2}; // Another C++17 feature: class template argument deduction
std::apply([](auto&&... args) {((std::cout << args << '\n'), ...);}, t);
}
[Online Example on Coliru]
This solution solves the issue of evaluation order in M. Alaggan's answer.
C++ is introducing expansion statements for this purpose. They were originally on track for C++20 but narrowly missed the cut due to a lack of time for language wording review (see here and here).
The currently agreed syntax (see the links above) is:
{
auto tup = std::make_tuple(0, 'a', 3.14);
template for (auto elem : tup)
std::cout << elem << std::endl;
}
Boost.Fusion is a possibility:
Untested example:
struct DoSomething
{
template<typename T>
void operator()(T& t) const
{
t.do_sth();
}
};
tuple<....> t = ...;
boost::fusion::for_each(t, DoSomething());
In C++17 you can do this:
std::apply([](auto ...x){std::make_tuple(x.do_something()...);} , the_tuple);
This already works in Clang++ 3.9, using std::experimental::apply.
A more simple, intuitive and compiler-friendly way of doing this in C++17, using if constexpr:
// prints every element of a tuple
template<size_t I = 0, typename... Tp>
void print(std::tuple<Tp...>& t) {
std::cout << std::get<I>(t) << " ";
// do things
if constexpr(I+1 != sizeof...(Tp))
print<I+1>(t);
}
This is compile-time recursion, similar to the one presented by #emsr. But this doesn't use SFINAE so (I think) it is more compiler-friendly.
Use Boost.Hana and generic lambdas:
#include <tuple>
#include <iostream>
#include <boost/hana.hpp>
#include <boost/hana/ext/std/tuple.hpp>
struct Foo1 {
int foo() const { return 42; }
};
struct Foo2 {
int bar = 0;
int foo() { bar = 24; return bar; }
};
int main() {
using namespace std;
using boost::hana::for_each;
Foo1 foo1;
Foo2 foo2;
for_each(tie(foo1, foo2), [](auto &foo) {
cout << foo.foo() << endl;
});
cout << "foo2.bar after mutation: " << foo2.bar << endl;
}
http://coliru.stacked-crooked.com/a/27b3691f55caf271
Here's an easy C++17 way of iterating over tuple items with just standard library:
#include <tuple> // std::tuple
#include <functional> // std::invoke
template <
size_t Index = 0, // start iteration at 0 index
typename TTuple, // the tuple type
size_t Size =
std::tuple_size_v<
std::remove_reference_t<TTuple>>, // tuple size
typename TCallable, // the callable to be invoked for each tuple item
typename... TArgs // other arguments to be passed to the callable
>
void for_each(TTuple&& tuple, TCallable&& callable, TArgs&&... args)
{
if constexpr (Index < Size)
{
std::invoke(callable, args..., std::get<Index>(tuple));
if constexpr (Index + 1 < Size)
for_each<Index + 1>(
std::forward<TTuple>(tuple),
std::forward<TCallable>(callable),
std::forward<TArgs>(args)...);
}
}
Example:
#include <iostream>
int main()
{
std::tuple<int, char> items{1, 'a'};
for_each(items, [](const auto& item) {
std::cout << item << "\n";
});
}
Output:
1
a
This can be extended to conditionally break the loop in case the callable returns a value (but still work with callables that do not return a bool assignable value, e.g. void):
#include <tuple> // std::tuple
#include <functional> // std::invoke
template <
size_t Index = 0, // start iteration at 0 index
typename TTuple, // the tuple type
size_t Size =
std::tuple_size_v<
std::remove_reference_t<TTuple>>, // tuple size
typename TCallable, // the callable to bo invoked for each tuple item
typename... TArgs // other arguments to be passed to the callable
>
void for_each(TTuple&& tuple, TCallable&& callable, TArgs&&... args)
{
if constexpr (Index < Size)
{
if constexpr (std::is_assignable_v<bool&, std::invoke_result_t<TCallable&&, TArgs&&..., decltype(std::get<Index>(tuple))>>)
{
if (!std::invoke(callable, args..., std::get<Index>(tuple)))
return;
}
else
{
std::invoke(callable, args..., std::get<Index>(tuple));
}
if constexpr (Index + 1 < Size)
for_each<Index + 1>(
std::forward<TTuple>(tuple),
std::forward<TCallable>(callable),
std::forward<TArgs>(args)...);
}
}
Example:
#include <iostream>
int main()
{
std::tuple<int, char> items{ 1, 'a' };
for_each(items, [](const auto& item) {
std::cout << item << "\n";
});
std::cout << "---\n";
for_each(items, [](const auto& item) {
std::cout << item << "\n";
return false;
});
}
Output:
1
a
---
1
You need to use template metaprogramming, here shown with Boost.Tuple:
#include <boost/tuple/tuple.hpp>
#include <iostream>
template <typename T_Tuple, size_t size>
struct print_tuple_helper {
static std::ostream & print( std::ostream & s, const T_Tuple & t ) {
return print_tuple_helper<T_Tuple,size-1>::print( s, t ) << boost::get<size-1>( t );
}
};
template <typename T_Tuple>
struct print_tuple_helper<T_Tuple,0> {
static std::ostream & print( std::ostream & s, const T_Tuple & ) {
return s;
}
};
template <typename T_Tuple>
std::ostream & print_tuple( std::ostream & s, const T_Tuple & t ) {
return print_tuple_helper<T_Tuple,boost::tuples::length<T_Tuple>::value>::print( s, t );
}
int main() {
const boost::tuple<int,char,float,char,double> t( 0, ' ', 2.5f, '\n', 3.1416 );
print_tuple( std::cout, t );
return 0;
}
In C++0x, you can write print_tuple() as a variadic template function instead.
First define some index helpers:
template <size_t ...I>
struct index_sequence {};
template <size_t N, size_t ...I>
struct make_index_sequence : public make_index_sequence<N - 1, N - 1, I...> {};
template <size_t ...I>
struct make_index_sequence<0, I...> : public index_sequence<I...> {};
With your function you would like to apply on each tuple element:
template <typename T>
/* ... */ foo(T t) { /* ... */ }
you can write:
template<typename ...T, size_t ...I>
/* ... */ do_foo_helper(std::tuple<T...> &ts, index_sequence<I...>) {
std::tie(foo(std::get<I>(ts)) ...);
}
template <typename ...T>
/* ... */ do_foo(std::tuple<T...> &ts) {
return do_foo_helper(ts, make_index_sequence<sizeof...(T)>());
}
Or if foo returns void, use
std::tie((foo(std::get<I>(ts)), 1) ... );
Note: On C++14 make_index_sequence is already defined (http://en.cppreference.com/w/cpp/utility/integer_sequence).
If you do need a left-to-right evaluation order, consider something like this:
template <typename T, typename ...R>
void do_foo_iter(T t, R ...r) {
foo(t);
do_foo(r...);
}
void do_foo_iter() {}
template<typename ...T, size_t ...I>
void do_foo_helper(std::tuple<T...> &ts, index_sequence<I...>) {
do_foo_iter(std::get<I>(ts) ...);
}
template <typename ...T>
void do_foo(std::tuple<T...> &ts) {
do_foo_helper(ts, make_index_sequence<sizeof...(T)>());
}
If you want to use std::tuple and you have C++ compiler which supports variadic templates, try code bellow (tested with g++4.5). This should be the answer to your question.
#include <tuple>
// ------------- UTILITY---------------
template<int...> struct index_tuple{};
template<int I, typename IndexTuple, typename... Types>
struct make_indexes_impl;
template<int I, int... Indexes, typename T, typename ... Types>
struct make_indexes_impl<I, index_tuple<Indexes...>, T, Types...>
{
typedef typename make_indexes_impl<I + 1, index_tuple<Indexes..., I>, Types...>::type type;
};
template<int I, int... Indexes>
struct make_indexes_impl<I, index_tuple<Indexes...> >
{
typedef index_tuple<Indexes...> type;
};
template<typename ... Types>
struct make_indexes : make_indexes_impl<0, index_tuple<>, Types...>
{};
// ----------- FOR EACH -----------------
template<typename Func, typename Last>
void for_each_impl(Func&& f, Last&& last)
{
f(last);
}
template<typename Func, typename First, typename ... Rest>
void for_each_impl(Func&& f, First&& first, Rest&&...rest)
{
f(first);
for_each_impl( std::forward<Func>(f), rest...);
}
template<typename Func, int ... Indexes, typename ... Args>
void for_each_helper( Func&& f, index_tuple<Indexes...>, std::tuple<Args...>&& tup)
{
for_each_impl( std::forward<Func>(f), std::forward<Args>(std::get<Indexes>(tup))...);
}
template<typename Func, typename ... Args>
void for_each( std::tuple<Args...>& tup, Func&& f)
{
for_each_helper(std::forward<Func>(f),
typename make_indexes<Args...>::type(),
std::forward<std::tuple<Args...>>(tup) );
}
template<typename Func, typename ... Args>
void for_each( std::tuple<Args...>&& tup, Func&& f)
{
for_each_helper(std::forward<Func>(f),
typename make_indexes<Args...>::type(),
std::forward<std::tuple<Args...>>(tup) );
}
boost::fusion is another option, but it requires its own tuple type: boost::fusion::tuple. Lets better stick to the standard! Here is a test:
#include <iostream>
// ---------- FUNCTOR ----------
struct Functor
{
template<typename T>
void operator()(T& t) const { std::cout << t << std::endl; }
};
int main()
{
for_each( std::make_tuple(2, 0.6, 'c'), Functor() );
return 0;
}
the power of variadic templates!
In MSVC STL there's a _For_each_tuple_element function (not documented):
#include <tuple>
// ...
std::tuple<int, char, float> values{};
std::_For_each_tuple_element(values, [](auto&& value)
{
// process 'value'
});
Another option would be to implement iterators for tuples. This has the advantage that you can use a variety of algorithms provided by the standard library and range-based for loops. An elegant approach to this is explained here https://foonathan.net/2017/03/tuple-iterator/. The basic idea is to turn tuples into a range with begin() and end() methods to provide iterators. The iterator itself returns a std::variant<...> which can then be visited using std::visit.
Here some examples:
auto t = std::tuple{ 1, 2.f, 3.0 };
auto r = to_range(t);
for(auto v : r)
{
std::visit(unwrap([](auto& x)
{
x = 1;
}), v);
}
std::for_each(begin(r), end(r), [](auto v)
{
std::visit(unwrap([](auto& x)
{
x = 0;
}), v);
});
std::accumulate(begin(r), end(r), 0.0, [](auto acc, auto v)
{
return acc + std::visit(unwrap([](auto& x)
{
return static_cast<double>(x);
}), v);
});
std::for_each(begin(r), end(r), [](auto v)
{
std::visit(unwrap([](const auto& x)
{
std::cout << x << std::endl;
}), v);
});
std::for_each(begin(r), end(r), [](auto v)
{
std::visit(overload(
[](int x) { std::cout << "int" << std::endl; },
[](float x) { std::cout << "float" << std::endl; },
[](double x) { std::cout << "double" << std::endl; }), v);
});
My implementation (which is heavily based on the explanations in the link above):
#ifndef TUPLE_RANGE_H
#define TUPLE_RANGE_H
#include <utility>
#include <functional>
#include <variant>
#include <type_traits>
template<typename Accessor>
class tuple_iterator
{
public:
tuple_iterator(Accessor acc, const int idx)
: acc_(acc), index_(idx)
{
}
tuple_iterator operator++()
{
++index_;
return *this;
}
template<typename T>
bool operator ==(tuple_iterator<T> other)
{
return index_ == other.index();
}
template<typename T>
bool operator !=(tuple_iterator<T> other)
{
return index_ != other.index();
}
auto operator*() { return std::invoke(acc_, index_); }
[[nodiscard]] int index() const { return index_; }
private:
const Accessor acc_;
int index_;
};
template<bool IsConst, typename...Ts>
struct tuple_access
{
using tuple_type = std::tuple<Ts...>;
using tuple_ref = std::conditional_t<IsConst, const tuple_type&, tuple_type&>;
template<typename T>
using element_ref = std::conditional_t<IsConst,
std::reference_wrapper<const T>,
std::reference_wrapper<T>>;
using variant_type = std::variant<element_ref<Ts>...>;
using function_type = variant_type(*)(tuple_ref);
using table_type = std::array<function_type, sizeof...(Ts)>;
private:
template<size_t Index>
static constexpr function_type create_accessor()
{
return { [](tuple_ref t) -> variant_type
{
if constexpr (IsConst)
return std::cref(std::get<Index>(t));
else
return std::ref(std::get<Index>(t));
} };
}
template<size_t...Is>
static constexpr table_type create_table(std::index_sequence<Is...>)
{
return { create_accessor<Is>()... };
}
public:
static constexpr auto table = create_table(std::make_index_sequence<sizeof...(Ts)>{});
};
template<bool IsConst, typename...Ts>
class tuple_range
{
public:
using tuple_access_type = tuple_access<IsConst, Ts...>;
using tuple_ref = typename tuple_access_type::tuple_ref;
static constexpr auto tuple_size = sizeof...(Ts);
explicit tuple_range(tuple_ref tuple)
: tuple_(tuple)
{
}
[[nodiscard]] auto begin() const
{
return tuple_iterator{ create_accessor(), 0 };
}
[[nodiscard]] auto end() const
{
return tuple_iterator{ create_accessor(), tuple_size };
}
private:
tuple_ref tuple_;
auto create_accessor() const
{
return [this](int idx)
{
return std::invoke(tuple_access_type::table[idx], tuple_);
};
}
};
template<bool IsConst, typename...Ts>
auto begin(const tuple_range<IsConst, Ts...>& r)
{
return r.begin();
}
template<bool IsConst, typename...Ts>
auto end(const tuple_range<IsConst, Ts...>& r)
{
return r.end();
}
template <class ... Fs>
struct overload : Fs... {
explicit overload(Fs&&... fs) : Fs{ fs }... {}
using Fs::operator()...;
template<class T>
auto operator()(std::reference_wrapper<T> ref)
{
return (*this)(ref.get());
}
template<class T>
auto operator()(std::reference_wrapper<const T> ref)
{
return (*this)(ref.get());
}
};
template <class F>
struct unwrap : overload<F>
{
explicit unwrap(F&& f) : overload<F>{ std::forward<F>(f) } {}
using overload<F>::operator();
};
template<typename...Ts>
auto to_range(std::tuple<Ts...>& t)
{
return tuple_range<false, Ts...>{t};
}
template<typename...Ts>
auto to_range(const std::tuple<Ts...>& t)
{
return tuple_range<true, Ts...>{t};
}
#endif
Read-only access is also supported by passing a const std::tuple<>& to to_range().
Others have mentioned some well-designed third-party libraries that you may turn to. However, if you are using C++ without those third-party libraries, the following code may help.
namespace detail {
template <class Tuple, std::size_t I, class = void>
struct for_each_in_tuple_helper {
template <class UnaryFunction>
static void apply(Tuple&& tp, UnaryFunction& f) {
f(std::get<I>(std::forward<Tuple>(tp)));
for_each_in_tuple_helper<Tuple, I + 1u>::apply(std::forward<Tuple>(tp), f);
}
};
template <class Tuple, std::size_t I>
struct for_each_in_tuple_helper<Tuple, I, typename std::enable_if<
I == std::tuple_size<typename std::decay<Tuple>::type>::value>::type> {
template <class UnaryFunction>
static void apply(Tuple&&, UnaryFunction&) {}
};
} // namespace detail
template <class Tuple, class UnaryFunction>
UnaryFunction for_each_in_tuple(Tuple&& tp, UnaryFunction f) {
detail::for_each_in_tuple_helper<Tuple, 0u>
::apply(std::forward<Tuple>(tp), f);
return std::move(f);
}
Note: The code compiles with any compiler supporing C++11, and it keeps consistency with design of the standard library:
The tuple need not be std::tuple, and instead may be anything that supports std::get and std::tuple_size; in particular, std::array and std::pair may be used;
The tuple may be a reference type or cv-qualified;
It has similar behavior as std::for_each, and returns the input UnaryFunction;
For C++14 (or laster version) users, typename std::enable_if<T>::type and typename std::decay<T>::type could be replaced with their simplified version, std::enable_if_t<T> and std::decay_t<T>;
For C++17 (or laster version) users, std::tuple_size<T>::value could be replaced with its simplified version, std::tuple_size_v<T>.
For C++20 (or laster version) users, the SFINAE feature could be implemented with the Concepts.
Using constexpr and if constexpr(C++17) this is fairly simple and straight forward:
template <std::size_t I = 0, typename ... Ts>
void print(std::tuple<Ts...> tup) {
if constexpr (I == sizeof...(Ts)) {
return;
} else {
std::cout << std::get<I>(tup) << ' ';
print<I+1>(tup);
}
}
I might have missed this train, but this will be here for future reference.
Here's my construct based on this answer and on this gist:
#include <tuple>
#include <utility>
template<std::size_t N>
struct tuple_functor
{
template<typename T, typename F>
static void run(std::size_t i, T&& t, F&& f)
{
const std::size_t I = (N - 1);
switch(i)
{
case I:
std::forward<F>(f)(std::get<I>(std::forward<T>(t)));
break;
default:
tuple_functor<I>::run(i, std::forward<T>(t), std::forward<F>(f));
}
}
};
template<>
struct tuple_functor<0>
{
template<typename T, typename F>
static void run(std::size_t, T, F){}
};
You then use it as follow:
template<typename... T>
void logger(std::string format, T... args) //behaves like C#'s String.Format()
{
auto tp = std::forward_as_tuple(args...);
auto fc = [](const auto& t){std::cout << t;};
/* ... */
std::size_t some_index = ...
tuple_functor<sizeof...(T)>::run(some_index, tp, fc);
/* ... */
}
There could be room for improvements.
As per OP's code, it would become this:
const std::size_t num = sizeof...(T);
auto my_tuple = std::forward_as_tuple(t...);
auto do_sth = [](const auto& elem){/* ... */};
for(int i = 0; i < num; ++i)
tuple_functor<num>::run(i, my_tuple, do_sth);
Of all the answers I've seen here, here and here, I liked #sigidagi's way of iterating best. Unfortunately, his answer is very verbose which in my opinion obscures the inherent clarity.
This is my version of his solution which is more concise and works with std::tuple, std::pair and std::array.
template<typename UnaryFunction>
void invoke_with_arg(UnaryFunction)
{}
/**
* Invoke the unary function with each of the arguments in turn.
*/
template<typename UnaryFunction, typename Arg0, typename... Args>
void invoke_with_arg(UnaryFunction f, Arg0&& a0, Args&&... as)
{
f(std::forward<Arg0>(a0));
invoke_with_arg(std::move(f), std::forward<Args>(as)...);
}
template<typename Tuple, typename UnaryFunction, std::size_t... Indices>
void for_each_helper(Tuple&& t, UnaryFunction f, std::index_sequence<Indices...>)
{
using std::get;
invoke_with_arg(std::move(f), get<Indices>(std::forward<Tuple>(t))...);
}
/**
* Invoke the unary function for each of the elements of the tuple.
*/
template<typename Tuple, typename UnaryFunction>
void for_each(Tuple&& t, UnaryFunction f)
{
using size = std::tuple_size<typename std::remove_reference<Tuple>::type>;
for_each_helper(
std::forward<Tuple>(t),
std::move(f),
std::make_index_sequence<size::value>()
);
}
Demo: coliru
C++14's std::make_index_sequence can be implemented for C++11.
Expanding on #Stypox answer, we can make their solution more generic (C++17 onward). By adding a callable function argument:
template<size_t I = 0, typename... Tp, typename F>
void for_each_apply(std::tuple<Tp...>& t, F &&f) {
f(std::get<I>(t));
if constexpr(I+1 != sizeof...(Tp)) {
for_each_apply<I+1>(t, std::forward<F>(f));
}
}
Then, we need a strategy to visit each type.
Let start with some helpers (first two taken from cppreference):
template<class... Ts> struct overloaded : Ts... { using Ts::operator()...; };
template<class... Ts> overloaded(Ts...) -> overloaded<Ts...>;
template<class ... Ts> struct variant_ref { using type = std::variant<std::reference_wrapper<Ts>...>; };
variant_ref is used to allow tuples' state to be modified.
Usage:
std::tuple<Foo, Bar, Foo> tuples;
for_each_apply(tuples,
[](variant_ref<Foo, Bar>::type &&v) {
std::visit(overloaded {
[](Foo &arg) { arg.foo(); },
[](Bar const &arg) { arg.bar(); },
}, v);
});
Result:
Foo0
Bar
Foo0
Foo1
Bar
Foo1
For completeness, here are my Bar & Foo:
struct Foo {
void foo() {std::cout << "Foo" << i++ << std::endl;}
int i = 0;
};
struct Bar {
void bar() const {std::cout << "Bar" << std::endl;}
};
I have stumbled on the same problem for iterating over a tuple of function objects, so here is one more solution:
#include <tuple>
#include <iostream>
// Function objects
class A
{
public:
inline void operator()() const { std::cout << "A\n"; };
};
class B
{
public:
inline void operator()() const { std::cout << "B\n"; };
};
class C
{
public:
inline void operator()() const { std::cout << "C\n"; };
};
class D
{
public:
inline void operator()() const { std::cout << "D\n"; };
};
// Call iterator using recursion.
template<typename Fobjects, int N = 0>
struct call_functors
{
static void apply(Fobjects const& funcs)
{
std::get<N>(funcs)();
// Choose either the stopper or descend further,
// depending if N + 1 < size of the tuple.
using caller = std::conditional_t
<
N + 1 < std::tuple_size_v<Fobjects>,
call_functors<Fobjects, N + 1>,
call_functors<Fobjects, -1>
>;
caller::apply(funcs);
}
};
// Stopper.
template<typename Fobjects>
struct call_functors<Fobjects, -1>
{
static void apply(Fobjects const& funcs)
{
}
};
// Call dispatch function.
template<typename Fobjects>
void call(Fobjects const& funcs)
{
call_functors<Fobjects>::apply(funcs);
};
using namespace std;
int main()
{
using Tuple = tuple<A,B,C,D>;
Tuple functors = {A{}, B{}, C{}, D{}};
call(functors);
return 0;
}
Output:
A
B
C
D
There're many great answers, but for some reason most of them don't consider returning the results of applying f to our tuple...
or did I overlook it? Anyway, here's yet another way you can do that:
Doing Foreach with style (debatable)
auto t = std::make_tuple(1, "two", 3.f);
t | foreach([](auto v){ std::cout << v << " "; });
And returning from that:
auto t = std::make_tuple(1, "two", 3.f);
auto sizes = t | foreach([](auto v) {
return sizeof(v);
});
sizes | foreach([](auto v) {
std::cout << v;
});
Implementation (pretty simple one)
Edit: it gets a little messier.
I won't include some metaprogramming boilerplate here, for it will definitely make things less readable and besides, I believe those have already been answered somewhere on stackoverflow.
In case you're feeling lazy, feel free to peek into my github repo for implementation of both
#include <utility>
// Optional includes, if you don't want to implement it by hand or google it
// you can find it in the repo (link below)
#include "typesystem/typelist.hpp"
// used to check if all return types are void,
// making it a special case
// (and, alas, not using constexpr-if
// for the sake of being compatible with C++14...)
template <bool Cond, typename T, typename F>
using select = typename std::conditional<Cond, T, F>::type;
template <typename F>
struct elementwise_apply {
F f;
};
template <typename F>
constexpr auto foreach(F && f) -> elementwise_apply<F> { return {std::forward<F>(f)}; }
template <typename R>
struct tuple_map {
template <typename F, typename T, size_t... Is>
static constexpr decltype(auto) impl(std::index_sequence<Is...>, F && f, T&& tuple) {
return R{ std::forward<F>(f)( std::get<Is>(tuple) )... };
}
};
template<>
struct tuple_map<void> {
template <typename F, typename T, size_t... Is>
static constexpr void impl(std::index_sequence<Is...>, F && f, T&& tuple) {
[[maybe_unused]] std::initializer_list<int> _ {((void)std::forward<F>(f)( std::get<Is>(tuple) ), 0)... };
}
};
template <typename F, typename... Ts>
constexpr decltype(auto) operator| (std::tuple<Ts...> & t, fmap<F> && op) {
constexpr bool all_void = core::Types<decltype( std::move(op).f(std::declval<Ts&>()) )...>.all( core::is_void );
using R = meta::select<all_void, void, std::tuple<decltype(std::move(op).f(std::declval<Ts&>()))...>>;
return tuple_map<R>::impl(std::make_index_sequence<sizeof...(Ts)>{}, std::move(op).f, t);
}
template <typename F, typename... Ts>
constexpr decltype(auto) operator| (std::tuple<Ts...> const& t, fmap<F> && op) {
constexpr bool all_void = check if all "decltype( std::move(op).f(std::declval<Ts>()) )..." types are void, since then it's a special case
// e.g. core::Types<decltype( std::move(op).f(std::declval<Ts>()) )...>.all( core::is_void );
using R = meta::select<all_void, void, std::tuple<decltype(std::move(op).f(std::declval<Ts const&>()))...>>;
return tuple_map<R>::impl(std::make_index_sequence<sizeof...(Ts)>{}, std::move(op).f, t);
}
template <typename F, typename... Ts>
constexpr decltype(auto) operator| (std::tuple<Ts...> && t, fmap<F> && op) {
constexpr bool all_void = core::Types<decltype( std::move(op).f(std::declval<Ts&&>()) )...>.all( core::is_void );
using R = meta::select<all_void, void, std::tuple<decltype(std::move(op).f(std::declval<Ts&&>()))...>>;
return tuple_map<R>::impl(std::make_index_sequence<sizeof...(Ts)>{}, std::move(op).f, std::move(t));
}
Yeah, that would be much nicer if we were to use C++17
This is also an example of std::moving object's members, for which I'll better refer to this nice brief article
P.S. If you're stuck checking if all "decltype( std::move(op).f(std::declval()) )..." types are void
you can find some metaprogramming library, or, if those libraries seem too hard to grasp (which some of them may be due to some crazy metaprogramming tricks), you know where to look
template <typename F, typename T>
static constexpr size_t
foreach_in_tuple(std::tuple<T> & tuple, F && do_, size_t index_ = 0)
{
do_(tuple, index_);
return index_;
}
template <typename F, typename T, typename U, typename... Types>
static constexpr size_t
foreach_in_tuple(std::tuple<T,U,Types...> & tuple, F && do_, size_t index_ = 0)
{
if(!do_(tuple, index_))
return index_;
auto & next_tuple = reinterpret_cast<std::tuple<U,Types...> &>(tuple);
return foreach_in_tuple(next_tuple, std::forward<F>(do_), index_+1);
}
int main()
{
using namespace std;
auto tup = make_tuple(1, 2.3f, 'G', "hello");
foreach_in_tuple(tup, [](auto & tuple, size_t i)
{
auto & value = std::get<0>(tuple);
std::cout << i << " " << value << std::endl;
// if(i >= 2) return false; // break;
return true; // continue
});
}
Here is a solution based on std::interger_sequence.
As I don't know if my_tuple is constructed from std::make_tuple<T>(T &&...) in your code. It's essential for how to construct std::integer_sequence in the solution below.
(1) if your already have a my_tuple outside your function(not using template<typename ...T>), You can use
[](auto my_tuple)
{
[&my_tuple]<typename N, N... n>(std::integer_sequence<N, n...> int_seq)
{
((std::cout << std::get<n>(my_tuple) << '\n'), ...);
}(std::make_index_sequence<std::tuple_size_v<decltype(my_tuple)>>{});
}(std::make_tuple());
(2) if your havn't constructed my_tuple in your function and want to handle your T ...arguments
[]<typename ...T>(T... args)
{
[&args...]<typename N, N... n>(std::integer_sequence<N, n...> int_seq)
{
((std::cout << std::get<n>(std::forward_as_tuple(args...)) << '\n'), ...);
}(std::index_sequence_for<T...>{});
}();
boost's tuple provides helper functions get_head() and get_tail() so your helper functions may look like this:
inline void call_do_sth(const null_type&) {};
template <class H, class T>
inline void call_do_sth(cons<H, T>& x) { x.get_head().do_sth(); call_do_sth(x.get_tail()); }
as described in here http://www.boost.org/doc/libs/1_34_0/libs/tuple/doc/tuple_advanced_interface.html
with std::tuple it should be similar.
Actually, unfortunately std::tuple does not seem to provide such interface, so methods suggested before should work, or you would need to switch to boost::tuple which has other benefits (like io operators already provided). Though there is downside of boost::tuple with gcc - it does not accept variadic templates yet, but that may be already fixed as I do not have latest version of boost installed on my machine.

Cartesian product for multiple sets at compile time

I am struggling with an implementation of the Cartesian product for
multiple indices with a given range 0,...,n-1.
The basic idea is to have a function:
cartesian_product<std::size_t range, std::size_t sets>()
with an output array that contains tuples that hold the different products
[(0,..,0), (0,...,1), (0,...,n-1),...., (n-1, ..., n-1)]
An simple example would be the following:
auto result = cartesian_product<3, 2>();
with the output type std::array<std::tuple<int, int>, (3^2)>:
[(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)]
My main problem is that my version of the Cartesian product is slow and creates a stack overflow if you choose to have more than 5 sets. I believe that my code has too many recursions and temporary variables.
My implementation (C++17) can be found here: cartesian_product
#include <stdio.h>
#include <iostream>
#include <tuple>
template<typename T, std::size_t ...is>
constexpr auto flatten_tuple_i(T tuple, std::index_sequence<is...>) {
return std::tuple_cat(std::get<is>(tuple)...);
}
template<typename T>
constexpr auto flatten_tuple(T tuple) {
return flatten_tuple_i(tuple, std::make_index_sequence<std::tuple_size<T>::value>{});
}
template<std::size_t depth, typename T>
constexpr auto recursive_flatten_tuple(T tuple){
if constexpr(depth <= 1){
return tuple;
}else{
return recursive_flatten_tuple<depth-1>(flatten_tuple(tuple));
}
}
template<std::size_t depth, typename T, std::size_t ...is>
constexpr auto wdh(T&& tuple, std::index_sequence<is...>){
if constexpr (depth == 0) {
return tuple;
}else{
//return (wdh<depth-1>(std::tuple_cat(tuple, std::make_tuple(is)),std::make_index_sequence<sizeof...(is)>{})...);
return std::make_tuple(wdh<depth-1>(std::tuple_cat(tuple, std::make_tuple(is)), std::make_index_sequence<sizeof...(is)>{})...);
}
}
template<std::size_t sets, typename T, std::size_t ...is>
constexpr auto to_array(T tuple, std::index_sequence<is...>){
if constexpr (sets == 0){
auto t = (std::make_tuple(std::get<is>(tuple)),...);
std::array<decltype(t), sizeof...(is)> arr = {std::make_tuple(std::get<is>(tuple))...};
//decltype(arr)::foo = 1;
return arr;
}else{
auto t = ((std::get<is>(tuple)),...);
std::array<decltype(t), sizeof...(is)> arr = {std::get<is>(tuple)...};
return arr;
}
}
template<std::size_t sets, std::size_t ...is>
constexpr auto ct_i(std::index_sequence<is...>){
if constexpr (sets == 0){
auto u = std::tuple_cat(wdh<sets>(std::make_tuple(is), std::make_index_sequence<sizeof...(is)>{})...);
auto arr = to_array<sets>(u, std::make_index_sequence<std::tuple_size<decltype(u)>::value>{});
return arr;
}else {
auto u = std::tuple_cat(wdh<sets>(std::make_tuple(is), std::make_index_sequence<sizeof...(is)>{})...);
auto r = recursive_flatten_tuple<sets>(u);
auto d = to_array<sets>(r, std::make_index_sequence<std::tuple_size<decltype(r)>::value>{});
return d;
}
}
template<std::size_t range, std::size_t sets>
constexpr auto cartesian_product(){
static_assert( (range > 0), "lowest input must be cartesian<1,1>" );
static_assert( (sets > 0), "lowest input must be cartesian<1,1>" );
return ct_i<sets-1>(std::make_index_sequence<range>{});
}
int main()
{
constexpr auto crt = cartesian_product<3, 2>();
for(auto&& ele : crt){
std::cout << std::get<0>(ele) << " " << std::get<1>(ele) << std::endl;
}
return 0;
}
Since I was also working on a solution I thought I post it aswell (although very similar to Artyer's answer). Same premise, we replace the tuple with an array and just iterate over the elements, incrementing them one by one.
Note that the power function is broken, so if you need power values <0 or non-integer types you have to fix it.
template <typename It, typename T>
constexpr void setAll(It begin, It end, T value)
{
for (; begin != end; ++begin)
*begin = value;
}
template <typename T, std::size_t I>
constexpr void increment(std::array<T, I>& counter, T max)
{
for (auto idx = I; idx > 0;)
{
--idx;
if (++counter[idx] >= max)
{
setAll(counter.begin() + idx, counter.end(), 0); // because std::fill is not constexpr yet
}
else
{
break;
}
}
}
// std::pow is not constexpr
constexpr auto power = [](auto base, auto power)
{
auto result = base;
while (--power)
result *= base;
return result;
};
template<std::size_t range, std::size_t sets>
constexpr auto cartesian_product()
{
std::array<std::array<int, sets>, power(range, sets)> products{};
std::array<int, sets> currentSet{};
for (auto& product : products)
{
product = currentSet;
increment(currentSet, static_cast<int>(range));
}
return products;
}
int main()
{
constexpr auto crt = cartesian_product<5, 3>();
for (auto&& ele : crt)
{
for (auto val : ele)
std::cout << val << " ";
std::cout << "\n";
}
return 0;
}
Example
With Boost.Mp11, this is... alright, it's not a one-liner, but it's still not so bad:
template <typename... Lists>
using list_product = mp_product<mp_list, Lists...>;
template <typename... Ts>
constexpr auto list_to_tuple(mp_list<Ts...>) {
return std::make_tuple(int(Ts::value)...);
}
template <typename... Ls>
constexpr auto list_to_array(mp_list<Ls...>) {
return std::array{list_to_tuple(Ls{})...};
}
template <size_t R, size_t N>
constexpr auto cartesian_product()
{
using L = mp_repeat_c<mp_list<mp_iota_c<R>>, N>;
return list_to_array(mp_apply<list_product, L>{});
}
With C++20, you can declare the two helper function templates as lambdas inside of cartesian_product, which makes this read nicer (top to bottom instead of bottom to top).
Explanation of what's going on, based on the OP example of cartesian_product<3, 2>:
mp_iota_c<R> gives us the list [0, 1, 2] (but as integral constant types)
mp_repeat_c<mp_list<mp_iota_c<R>>, N> gives us [[0, 1, 2], [0, 1, 2]]. We just repeat the list, but we want a list of lists (hence the extra mp_list in the middle).
mp_apply<list_product, L> does mp_product, which is a cartesian product of all the lists you pass in... sticking the result in an mp_list. This gives you [[0, 0], [0, 1], [0, 2], ..., [2, 2]], but as an mp_list of mp_list of integral constants.
At this point the hard part is over, we just have to convert the result back to an array of tuples. list_to_tuple takes an mp_list of integral constants and turns that into a tuple<int...> with the right values. And list_to_array takes an mp_list of mp_lists of integral constants and turns that into an std::array of tuples.
A slightly different approach using just the single helper function:
template <template <typename...> class L,
typename... Ts, typename F>
constexpr auto unpack(L<Ts...>, F f) {
return f(Ts{}...);
}
template <size_t R, size_t N>
constexpr auto cartesian_product()
{
using P = mp_apply_q<
mp_bind_front<mp_product_q, mp_quote<mp_list>>,
mp_repeat_c<mp_list<mp_iota_c<R>>, N>>;
return unpack(P{},
[](auto... lists){
return std::array{
unpack(lists, [](auto... values){
return std::make_tuple(int(values)...);
})...
};
});
}
This approach is harder to read though, but it's the same algorithm.
You can do this without recursion easily. Notice that each tuple is the digits of numbers from 0 to range ** sets in base range, so you could increment a counter (Or apply to a std::index_sequence) and calculate each value one after the other.
Here's an implementation (That returns a std::array of std::arrays, which works mostly the same as std::tuples as you can get<N>, tuple_size and tuple_element<N> on a std::array, though if you really wanted you can convert them to std::tuples):
#include <cstddef>
#include <array>
namespace detail {
constexpr std::size_t ipow(std::size_t base, std::size_t exponent) noexcept {
std::size_t p = 1;
while (exponent) {
if (exponent % 2 != 0) {
p *= base;
}
exponent /= 2;
base *= base;
}
return p;
}
}
template<std::size_t range, std::size_t sets>
constexpr std::array<std::array<std::size_t, sets>, detail::ipow(range, sets)>
cartesian_product() noexcept {
constexpr std::size_t size = detail::ipow(range, sets);
std::array<std::array<std::size_t, sets>, size> result{};
for (std::size_t i = 0; i < size; ++i) {
std::size_t place = size;
for (std::size_t j = 0; j < sets; ++j) {
place /= range;
result[i][j] = (i / place) % range;
}
}
return result;
}
Here's a test link: https://www.onlinegdb.com/By_X9wbrI
Note that (empty_set)^0 is defined as a set containing an empty set here, but that can be changed by making ipow(0, 0) == 0 instead of 1
I was trying it out just for fun and I ended with pretty much the same idea as #Timo, just with a different format/style.
#include <iostream>
#include <array>
using namespace std;
template<size_t range, size_t sets>
constexpr auto cartesian_product() {
// how many elements = range^sets
constexpr auto size = []() {
size_t x = range;
size_t n = sets;
while(--n != 0) x *= range;
return x;
}();
auto products = array<array<size_t, sets>, size>();
auto counter = array<size_t, sets>{}; // array of zeroes
for (auto &product : products) {
product = counter;
// counter increment and wrapping/carry over
counter.back()++;
for (size_t i = counter.size()-1; i != 0; i--) {
if (counter[i] == range) {
counter[i] = 0;
counter[i-1]++;
}
else break;
}
}
return products;
}
int main() {
auto prods = cartesian_product<3, 6>();
}
I basically have a counter array which I increment manually, like so:
// given cartesian_product<3, 4>
[0, 0, 0, 0]
[0, 0, 0, 1]
[0, 0, 0, 2]
[0, 0, 1, 0] // carry over
...
...
[2, 2, 2, 2]
Pretty much just how you would do it by hand.
Example
If you want it in compile-time, you should only employ compile-time evaluations over compile-time data structures. As #Barry pointed above, using Boost.Mp11 greatly facilitates it. Of course you can do reimplement the relevant fundamental functions in plain C++17 on your own:
#include <iostream>
template<class T> struct Box {
using type = T;
};
template<class... Types> struct List {};
template<class Car, class Cdr> struct Cons;
template<class Car, class Cdr> using ConsT = typename Cons<Car, Cdr>::type;
template<class Car, class... Cdr> struct Cons<Car, List<Cdr...>>: Box<List<Car, Cdr...>> {};
using Nil = List<>;
template<std::size_t i, class L> struct Nth;
template<std::size_t i, class L> using NthT = typename Nth<i, L>::type;
template<std::size_t i, class... Ts> struct Nth<i, List<Ts...>>: std::tuple_element<i, std::tuple<Ts...>> {};
template<class L> struct Head;
template<class L> using HeadT = typename Head<L>::type;
template<class Car, class... Cdr> struct Head<List<Car, Cdr...>>: Box<Car> {};
template<class L> struct Tail;
template<class L> using TailT = typename Tail<L>::type;
template<class Car, class... Cdr> struct Tail<List<Car, Cdr...>>: Box<List<Cdr...>> {};
template<class... Lists> struct Concat;
template<class... Lists> using ConcatT = typename Concat<Lists...>::type;
template<class T, class... Rest> struct Concat<T, Rest...>: Cons<T, ConcatT<Rest...>> {};
template<class Head, class... Tail, class... Rest> struct Concat<List<Head, Tail...>, Rest...>: Cons<Head, ConcatT<List<Tail...>, Rest...>> {};
template<class... Rest> struct Concat<Nil, Rest...>: Concat<Rest...> {};
template<> struct Concat<>: Box<Nil> {};
template<class T, class Subspace> struct Prepend;
template<class T, class Subspace> using PrependT = typename Prepend<T, Subspace>::type;
template<class T, class... Points> struct Prepend<T, List<Points...>>: Box<List<ConsT<T, Points>...>> {};
template<class T> struct Prepend<T, Nil>: Box<List<List<T>>> {};
template<class Range, class Subspace> struct Product;
template<class Range, class Subspace> using ProductT = typename Product<Range, Subspace>::type;
template<class Range, class Subspace> struct Product: Concat<PrependT<HeadT<Range>, Subspace>, ProductT<TailT<Range>, Subspace>> {};
template<class Subspace> struct Product<Nil, Subspace>: Box<Nil> {};
template<std::size_t i> using IntValue = std::integral_constant<std::size_t, i>;
template<class Seq> struct IntegerSequence;
template<class Seq> using IntegerSequenceT = typename IntegerSequence<Seq>::type;
template<std::size_t... is> struct IntegerSequence<std::index_sequence<is...>>: Box<List<IntValue<is>...>> {};
template<std::size_t n> using Range = IntegerSequenceT<std::make_index_sequence<n>>;
template<std::size_t dimensions, std::size_t range> struct CartesianCube;
template<std::size_t dimensions, std::size_t range> using CartesianCubeT = typename CartesianCube<dimensions, range>::type;
template<std::size_t dimensions, std::size_t range> struct CartesianCube: Product<Range<range>, CartesianCubeT<dimensions - 1, range>> {};
template<std::size_t range> struct CartesianCube<0, range>: Box<Nil> {};
template<std::size_t i> std::ostream &operator<<(std::ostream &s, IntValue<i>) {
return s << '<' << i << '>';
}
template<class... Ts> std::ostream &operator<<(std::ostream &s, List<Ts...>);
namespace detail_ {
template<class L, std::size_t... is> std::ostream &printList(std::ostream &s, L, std::index_sequence<is...>) {
return ((s << (is == 0? "" : ", ") << NthT<is, L>{}), ...), s;
}
}
template<class... Ts> std::ostream &operator<<(std::ostream &s, List<Ts...>) {
return detail_::printList(s << "List{", List<Ts...>{}, std::index_sequence_for<Ts...>{}) << '}';
}
int main() {
std::cout << CartesianCubeT<2, 3>{} << '\n';
}
Note that CartesianCubeT here is actually a List of Lists of integral_constants. Once you have those, converting them into run-time values is trivial. Note that cartesian_product does not even have to be a function, since the whole data set is evaluated at compile-time it can be a templated value.

I made a C++17 burrito for mapping over tuples, and anything that has begin() end() iterators. Is it possible to get rid of these factory functions?

I found myself needing to iterate (generically) over an array, or a tuple of N T's.
Code demo:
http://coliru.stacked-crooked.com/a/9b8ab7c01b79d086
I came up with the following implementation, which I'm reasonably happy with it, as it seems to to handle the cases I need without introducing any overhead.
#include <array>
#include <iostream>
#include <tuple>
#include <vector>
namespace functional
{
namespace detail {
template <typename Tuple, typename F, std::size_t... Indices>
void
tuple_for_each_impl(Tuple &&tuple, F &&f, std::index_sequence<Indices...>)
{
using swallow = int[];
(void)swallow{1, (f(std::get<Indices>(std::forward<Tuple>(tuple))), void(), int{})...};
}
} // ns detail
template <typename Tuple, typename F>
void
for_each(Tuple &&tuple, F &&f)
{
constexpr std::size_t N = std::tuple_size<std::remove_reference_t<Tuple>>::value;
detail::tuple_for_each_impl(std::forward<Tuple>(tuple), std::forward<F>(f), std::make_index_sequence<N>{});
}
} // ns functional
struct tuple_tag {};
struct iterator_tag {};
template<typename U, typename TAG>
struct burrito
{
U value;
using TAG_TYPE = TAG;
template<typename T>
burrito(T const& t) : value(t) {}
template<typename T>
burrito(T t0, T t1) : value(std::make_pair(t0, t1)) {}
template<typename FN>
void iterate(FN const fn) const
{
bool constexpr IS_TUPLE = std::is_same<tuple_tag, TAG_TYPE>();
if constexpr (IS_TUPLE) {
functional::for_each(this->value, fn);
} else {
for (auto it{value.first}; it < value.second; ++it) {
fn(*it);
}
}
}
};
template<typename M, typename FN>
void testfn(M const& m, FN const& fn)
{
m.iterate(fn);
}
template<typename T>
auto
make_burrito(T t0, T t1)
{
auto const p = std::make_pair(t0, t1);
return burrito<decltype(p), iterator_tag>{p};
}
template<typename C>
auto
make_burrito(C const& c)
{
return make_burrito(c.cbegin(), c.cend());
}
template<typename ...T>
auto
make_burrito(std::tuple<T...> const& t)
{
using U = std::tuple<T...>;
return burrito<U, tuple_tag>{t};
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// demo
int main()
{
std::tuple<int, int> const tup0 = std::make_tuple(-3, -4);
std::array<int, 10> const arr0 = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
std::vector<int> const v = {32, 42, 52, 62};
auto const m0 = make_burrito(tup0);
auto const m1 = make_burrito(arr0.begin(), arr0.end());
auto const m2 = make_burrito(v);
auto const fn = [](auto const& i) {
std::cerr << std::to_string(i) << "\n";
};
std::cerr << "printing tuple\n";
testfn(m0, fn);
std::cerr << "|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-" << "\n";
std::cerr << "printing array\n";
testfn(m1, fn);
std::cerr << "|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-" << "\n";
std::cerr << "printing vec\n";
testfn(m2, fn);
std::cerr << "|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-" << "\n";
}
I'd like to be able to hide the instantiation of the burrito from the caller entirely, but still define my function arguments as a burrito.
Like this:
template<typename B, typename FN>
void something(B const& burrito_like, FN const& fn) {
burrito_like.iterate(fn);
}
With the caller doing:
auto const tup = ...; // somehow caller creates a tuple
something(tup, []() {});
This doesn't work though (obviously) and the compiler complains about tuple not implement iterate(FN const&);
I looked into implicit conversion constructors, but I don't see how I would specify the different TAG parameters from within the implicit constructor.
So my question is, is something like this possible?

constexpr initialization of array to sort contents

This is a bit of a puzzle rather than a real-world problem, but I've gotten into a situation where I want to be able to write something that behaves exactly like
template<int N>
struct SortMyElements {
int data[N];
template<typename... TT>
SortMyElements(TT... tt) : data{ tt... }
{
std::sort(data, data+N);
}
};
int main() {
SortMyElements<5> se(1,4,2,5,3);
int se_reference[5] = {1,2,3,4,5};
assert(memcmp(se.data, se_reference, sizeof se.data) == 0);
}
except that I want the SortMyElements constructor to be constexpr.
Obviously this is possible for fixed N; for example, I can specialize
template<>
struct SortMyElements<1> {
int data[1];
constexpr SortMyElements(int x) : data{ x } {}
};
template<>
struct SortMyElements<2> {
int data[2];
constexpr SortMyElements(int x, int y) : data{ x>y?y:x, x>y?x:y } {}
};
But how do I generalize this into something that will work for any N?
Please notice that the array elements have to come from the actual values of the arguments, not from template non-type arguments; my elements come from constexpr expressions that, despite being evaluated at compile-time, reside firmly inside the "value system", rather than the "type system". (For example, Boost.MPL's sort works strictly within the "type system".)
I've posted a working "answer", but it's too inefficient to work for N > 6. I'd like to use this with 2 < N < 50 or thereabouts.
(P.S.— Actually what I'd really like to do is shuffle all the zeroes in an array to the end of the array and pack the nonzero values toward the front, which might be easier than full-on sorting; but I figure sorting is easier to describe. Feel free to tackle the "shuffle zeroes" problem instead of sorting.)
It's ugly, and probably not the best way to sort in a constant expression (because of the required instantiation depth).. but voilà, a merge sort:
Helper type, returnable array type with constexpr element access:
#include <cstddef>
#include <iterator>
#include <type_traits>
template<class T, std::size_t N>
struct c_array
{
T arr[N];
constexpr T const& operator[](std::size_t p) const
{ return arr[p]; }
constexpr T const* begin() const
{ return arr+0; }
constexpr T const* end() const
{ return arr+N; }
};
template<class T>
struct c_array<T, 0> {};
append function for that array type:
template<std::size_t... Is>
struct seq {};
template<std::size_t N, std::size_t... Is>
struct gen_seq : gen_seq<N-1, N-1, Is...> {};
template<std::size_t... Is>
struct gen_seq<0, Is...> : seq<Is...> {};
template<class T, std::size_t N, class U, std::size_t... Is>
constexpr c_array<T, N+1> append_impl(c_array<T, N> const& p, U const& e,
seq<Is...>)
{
return {{p[Is]..., e}};
}
template<class T, std::size_t N, class U>
constexpr c_array<T, N+1> append(c_array<T, N> const& p, U const& e)
{
return append_impl(p, e, gen_seq<N>{});
}
Merge sort:
template<std::size_t Res, class T, class It, std::size_t Accum,
class = typename std::enable_if<Res!=Accum, void>::type >
constexpr c_array<T, Res> c_merge(It beg0, It end0, It beg1, It end1,
c_array<T, Accum> const& accum)
{
return
beg0 == end0 ? c_merge<Res>(beg0 , end0, beg1+1, end1, append(accum, *beg1)) :
beg1 == end1 ? c_merge<Res>(beg0+1, end0, beg1 , end1, append(accum, *beg0)) :
*beg0 < *beg1 ? c_merge<Res>(beg0+1, end0, beg1 , end1, append(accum, *beg0))
: c_merge<Res>(beg0 , end0, beg1+1, end1, append(accum, *beg1));
}
template<std::size_t Res, class T, class It, class... Dummies>
constexpr c_array<T, Res> c_merge(It beg0, It end0, It beg1, It end1,
c_array<T, Res> const& accum, Dummies...)
{
return accum;
}
template<class T, std::size_t L, std::size_t R>
constexpr c_array<T, L+R> c_merge(c_array<T, L> const& l,
c_array<T, R> const& r)
{
return c_merge<L+R>(l.begin(), l.end(), r.begin(), r.end(),
c_array<T, 0>{});
}
template<class T>
using rem_ref = typename std::remove_reference<T>::type;
template<std::size_t dist>
struct helper
{
template < class It >
static constexpr auto merge_sort(It beg, It end)
-> c_array<rem_ref<decltype(*beg)>, dist>
{
return c_merge(helper<dist/2>::merge_sort(beg, beg+dist/2),
helper<dist-dist/2>::merge_sort(beg+dist/2, end));
}
};
template<>
struct helper<0>
{
template < class It >
static constexpr auto merge_sort(It beg, It end)
-> c_array<rem_ref<decltype(*beg)>, 0>
{
return {};
}
};
template<>
struct helper<1>
{
template < class It >
static constexpr auto merge_sort(It beg, It end)
-> c_array<rem_ref<decltype(*beg)>, 1>
{
return {*beg};
}
};
template < std::size_t dist, class It >
constexpr auto merge_sort(It beg, It end)
-> c_array<rem_ref<decltype(*beg)>, dist>
{
return helper<dist>::merge_sort(beg, end);
}
Helpers for usage example:
template<class T, std::size_t N>
constexpr std::size_t array_size(T (&arr)[N]) { return N; }
template<class T, std::size_t N>
constexpr T* c_begin(T (&arr)[N]) { return arr; }
template<class T, std::size_t N>
constexpr T* c_end(T (&arr)[N]) { return arr+N; }
Usage example:
constexpr int unsorted[] = {5,7,3,4,1,8,2,9,0,6,10}; // odd number of elements
constexpr auto sorted = merge_sort<array_size(unsorted)>(c_begin(unsorted),
c_end(unsorted));
#include <iostream>
int main()
{
std::cout << "unsorted: ";
for(auto const& e : unsorted) std::cout << e << ", ";
std::cout << '\n';
std::cout << "sorted: ";
for(auto const& e : sorted) std::cout << e << ", ";
std::cout << '\n';
}
Output:
unsorted: 5, 7, 3, 4, 1, 8, 2, 9, 0, 6, 10,
sorted: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
I know that this is an old question but as we have C++14 (and C++17 soon), and since C++14 constexpr rules aren't so restricted, and, for sure, couple of people will find your question in google, here is how quicksort (and of course other algorithms) can be done since C++14.
(big credits to #dyp for constexpr array)
#include <utility>
#include <cstdlib>
template<class T>
constexpr void swap(T& l, T& r)
{
T tmp = std::move(l);
l = std::move(r);
r = std::move(tmp);
}
template <typename T, size_t N>
struct array
{
constexpr T& operator[](size_t i)
{
return arr[i];
}
constexpr const T& operator[](size_t i) const
{
return arr[i];
}
constexpr const T* begin() const
{
return arr;
}
constexpr const T* end() const
{
return arr + N;
}
T arr[N];
};
template <typename T, size_t N>
constexpr void sort_impl(array<T, N> &array, size_t left, size_t right)
{
if (left < right)
{
size_t m = left;
for (size_t i = left + 1; i<right; i++)
if (array[i]<array[left])
swap(array[++m], array[i]);
swap(array[left], array[m]);
sort_impl(array, left, m);
sort_impl(array, m + 1, right);
}
}
template <typename T, size_t N>
constexpr array<T, N> sort(array<T, N> array)
{
auto sorted = array;
sort_impl(sorted, 0, N);
return sorted;
}
constexpr array<int, 11> unsorted{5,7,3,4,1,8,2,9,0,6,10}; // odd number of elements
constexpr auto sorted = sort(unsorted);
#include <iostream>
int main()
{
std::cout << "unsorted: ";
for(auto const& e : unsorted)
std::cout << e << ", ";
std::cout << '\n';
std::cout << "sorted: ";
for(auto const& e : sorted)
std::cout << e << ", ";
std::cout << '\n';
}
LIVE DEMO
A bit late to the party, but a much better and simpler implementation is the following comb_sort implementation.
template<typename Array>
constexpr void comb_sort_impl ( Array & array_ ) noexcept {
using size_type = typename Array::size_type;
size_type gap = array_.size ( );
bool swapped = false;
while ( ( gap > size_type { 1 } ) or swapped ) {
if ( gap > size_type { 1 } ) {
gap = static_cast<size_type> ( gap / 1.247330950103979 );
}
swapped = false;
for ( size_type i = size_type { 0 }; gap + i < static_cast<size_type> ( array_.size ( ) ); ++i ) {
if ( array_ [ i ] > array_ [ i + gap ] ) {
auto swap = array_ [ i ];
array_ [ i ] = array_ [ i + gap ];
array_ [ i + gap ] = swap;
swapped = true;
}
}
}
}
template<typename Array>
constexpr Array sort ( Array array_ ) noexcept {
auto sorted = array_;
comb_sort_impl ( sorted );
return sorted;
}
int main ( ) {
constexpr auto sorted = sort ( std::array<int, 8> { 6, 8, 0, 1, 5, 9, 2, 7 } );
for ( auto i : sorted )
std::cout << i << ' ';
std::cout << std::endl;
return EXIT_SUCCESS;
}
Output: 0 1 2 5 6 7 8 9
Why better, it's [the algorithm] often as good as insertion sort, but is non-recursive, which means it will work on any size arrays (at least not limited by the recursive depth).
Well, I got my inefficient version to compile, at least with Clang on OSX. Here's the code.
However, while it's tolerably fast for five elements, on my laptop it takes 0.5 seconds to sort six elements and 7 seconds to sort seven elements. (Catastrophically varying performance, too, depending on whether the items are almost-sorted or reverse-sorted.) I didn't even try timing eight. Clearly, this doesn't scale to the kind of things I want to do with it. (I'd say 50 elements is a reasonable upper bound for my contrived use-case, but 6 is unreasonably tiny.)
#include <cstring>
#include <cassert>
template<int...>
struct IntHolder {};
// Now let's make a consecutive range of ints from [A to B).
template<int A, int B, int... Accum>
struct IntRange_ : IntRange_<A+1, B, Accum..., A> {};
template<int A, int... Accum>
struct IntRange_<A, A, Accum...> {
using type = IntHolder<Accum...>;
};
template<int A, int B>
using IntRange = typename IntRange_<A,B>::type;
// And a helper function to do what std::min should be doing for us.
template<typename... TT> constexpr int min(TT...);
constexpr int min(int i) { return i; }
template<typename... TT> constexpr int min(int i, TT... tt) { return i < min(tt...) ? i : min(tt...); }
template<int N>
struct SortMyElements {
int data[N];
template<int... II, typename... TT>
constexpr SortMyElements(IntHolder<II...> ii, int minval, int a, TT... tt) : data{
( a==minval ? a : SortMyElements<N>(ii, minval, tt..., a).data[0] ),
( a==minval ? SortMyElements<N-1>(tt...).data[II] : SortMyElements<N>(ii, minval, tt..., a).data[II+1] )...
} {}
template<typename... TT>
constexpr SortMyElements(TT... tt) : SortMyElements(IntRange<0,sizeof...(tt)-1>(), min(tt...), tt...) {}
};
template<>
struct SortMyElements<1> {
int data[1];
constexpr SortMyElements(int x) : data{ x } {}
constexpr SortMyElements(IntHolder<>, int minval, int x) : SortMyElements(x) {}
};
static_assert(SortMyElements<5>(5,2,1,3,1).data[0] == 1, "");
static_assert(SortMyElements<5>(5,2,1,3,1).data[1] == 1, "");
static_assert(SortMyElements<5>(5,2,1,3,1).data[2] == 2, "");
static_assert(SortMyElements<5>(5,2,1,3,1).data[3] == 3, "");
static_assert(SortMyElements<5>(5,2,1,3,1).data[4] == 5, "");
char global_array[ SortMyElements<5>(1,4,2,5,3).data[2] ];
static_assert(sizeof global_array == 3, "");
int main() {
SortMyElements<5> se(1,4,2,5,3);
int se_reference[5] = {1,2,3,4,5};
assert(memcmp(se.data, se_reference, sizeof se.data) == 0);
}
UPDATE: I haven't figured out how to do a fast mergesort (although DyP's answer looks potentially feasible to me). However, this morning I did solve my original puzzle-problem of shuffling zeroes to the end of an array! I used a recursive partition-and-merge algorithm; the code looks like this.
Starting with C++20, all you need to change in your example is to add constexpr to the constructor. That is, in C++20, std::sort is in fact constexpr.

boost::range::join for multiple ranges

I want to do the following:
std::vector<int> a = {1,2,3}, b = {4,5,6}, c = {7,8,9};
for(auto&& i : join(a,b,c)) {
i += 1
std::cout << i; // -> 2345678910
}
I tried using boost::range::join, this works fine:
auto r = boost::join(a,b);
for(auto&& i : boost::join(r,c)) {
i += 1;
std::cout << i; // -> 2345678910
}
Chaining joins, reading operations work:
for(auto&& i : boost::join(boost::join(a,b),c))
std::cout << i; // -> 123456789
However, writing doesn't work:
for(auto&& i : boost::join(boost::join(a,b),c)) {
i += 1; // Fails :(
std::cout << i;
}
My variadic join has the same problem, i.e. works for reading but not for writing:
template<class C> C&& join(C&& c) { return c; }
template<class C, class D, class... Args>
auto join(C&& c, D&& d, Args&&... args)
-> decltype(boost::join(boost::join(std::forward<C>(c), std::forward<D>(d)),
join(std::forward<Args>(args)...))) {
return boost::join(boost::join(std::forward<C>(c), std::forward<D>(d)),
join(std::forward<Args>(args)...));
}
Mehrdad gave the solution in the comments
template<class C>
auto join(C&& c)
-> decltype(boost::make_iterator_range(std::begin(c),std::end(c))) {
return boost::make_iterator_range(std::begin(c),std::end(c));
}
template<class C, class D, class... Args>
auto join(C&& c, D&& d, Args&&... args)
-> decltype(boost::join(boost::join(boost::make_iterator_range(std::begin(c),std::end(c)),
boost::make_iterator_range(std::begin(d),std::end(d))),
join(std::forward<Args>(args)...))) {
return boost::join(boost::join(boost::make_iterator_range(std::begin(c),std::end(c)),
boost::make_iterator_range(std::begin(d),std::end(d))),
join(std::forward<Args>(args)...));
}
There are two overloads of boost::join
template<typename SinglePassRange1, typename SinglePassRange2>
joined_range<const SinglePassRange1, const SinglePassRange2>
join(const SinglePassRange1& rng1, const SinglePassRange2& rng2)
template<typename SinglePassRange1, typename SinglePassRange2>
joined_range<SinglePassRange1, SinglePassRange2>
join(SinglePassRange1& rng1, SinglePassRange2& rng2);
When you do this
for(auto&& i : boost::join(boost::join(a,b), c)) {
// ^^^^ ^^^^ temporary here
// ||
// calls the const ref overload
You get a temporary joined_range and as those can only bind to const references, the first overload is selected which returns a range that doesn't allow modifying.
You can work around this if you avoid temporaries:
#include <boost/range.hpp>
#include <boost/range/join.hpp>
int main()
{
std::vector<int> a = {1,2,3}, b = {4,5,6}, c = {7,8,9};
auto range = boost::join(a,b);
for(int& i : boost::join(range,c)) {
i += 1;
std::cout << i;
}
}
Live demo.
I haven't looked into your variadic functions, but the problem is likely similar.
Here's a complete solution, which works correctly on GCC 12. For GCC 10 & 11, the subranges function can be used to obtain an array of subranges, which can then be used as the lhs argument to | std::views::join.
EDIT: These functions only return on ranges that have a common iterator type. If you don't have a common iterator type, one option is to create a new container from the ranges (which is probably not what you want), or to create a custom type with different sub-ranges (which can't be used with std::views::join).
#include <ranges>
#include <vector>
#include <iostream>
#include <tuple>
#include <array>
#include <algorithm>
namespace detail {
template<std::size_t N, typename... Ts>
struct has_common_type_helper {
using T1 = std::decay_t<std::tuple_element_t<N-1, std::tuple<Ts...>>>;
using T2 = std::decay_t<std::tuple_element_t<N-2, std::tuple<Ts...>>>;
static constexpr bool value = std::same_as<T1, T2> && has_common_type_helper<N-1, Ts...>::value;
};
template<typename... Ts>
struct has_common_type_helper<0, Ts...> : std::false_type {
static_assert(std::is_void_v<Ts...>, "Undefined for an empty parameter pack");
};
template<typename... Ts>
struct has_common_type_helper<1, Ts...> : std::true_type {};
template<typename T> struct iterator_types;
template<std::ranges::range... Ts>
struct iterator_types<std::tuple<Ts...>> {
using type = std::tuple<std::ranges::iterator_t<Ts>...>;
};
}
template<typename T>
struct has_common_type;
template<typename T1, typename T2>
struct has_common_type<std::pair<T1,T2>> {
static constexpr bool value = std::same_as<std::decay_t<T1>, std::decay_t<T2>>;
};
template <typename... Ts>
struct has_common_type<std::tuple<Ts...>> : detail::has_common_type_helper<sizeof...(Ts), Ts...> {};
template <typename T>
inline constexpr bool has_common_type_v = has_common_type<T>::value;
template<std::size_t I = 0, typename Array, typename... Ts, typename Func> requires (I == sizeof...(Ts))
void init_array_from_tuple(Array& a, const std::tuple<Ts...>& t, Func fn)
{
}
template<std::size_t I = 0, typename Array, typename... Ts, typename Func> requires (I < sizeof...(Ts))
void init_array_from_tuple(Array& a, const std::tuple<Ts...>& t, Func fn)
{
a[I] = fn(std::get<I>(t));
init_array_from_tuple<I+1>(a, t, fn);
}
template<std::ranges::range... Ranges>
auto subranges(Ranges&&... rngs)
{
using IteratorTypes = detail::iterator_types<std::tuple<Ranges...>>::type;
static_assert(has_common_type_v<IteratorTypes>);
using SubrangeT = std::ranges::subrange<std::tuple_element_t<0, IteratorTypes>>;
auto subrngs = std::array<SubrangeT, sizeof...(Ranges)>{};
auto t = std::tuple<Ranges&&...>{std::forward<Ranges>(rngs)...};
auto fn = [](auto&& rng) {
return std::ranges::subrange{rng.begin(), rng.end()};
};
init_array_from_tuple(subrngs, t, fn);
return subrngs;
}
#if __GNUC__ >= 12
template<std::ranges::range... Ranges>
auto join(Ranges&&... rngs)
{
return std::ranges::owning_view{subranges(std::forward<Ranges>(rngs)...) | std::views::join};
}
#endif
int main()
{
std::vector<int> v1{1,2,3};
std::vector<int> v2{4};
std::vector<int> v3{5,6};
#if __GNUC__ >= 12
std::ranges::copy(join(v1,v2,v3,v1), std::ostream_iterator<int>(std::cout, " "));
#else
auto subrngs = subranges(v1,v2,v3,v1);
std::ranges::copy(subrngs | std::views::join, std::ostream_iterator<int>(std::cout, " "));
#endif
std::cout << '\n';
return 0;
}
Here's an implementation that works for two different ranges with a common reference type. You can extend it to 3 ranges using a brute-force approach.
#include <ranges>
#include <vector>
#include <list>
#include <iostream>
#include <algorithm>
template<std::ranges::range Range1, std::ranges::range Range2>
auto join2(Range1&& rng1, Range2&& rng2)
{
using Ref1 = std::ranges::range_reference_t<Range1>;
using Ref2 = std::ranges::range_reference_t<Range2>;
using Ref = std::common_reference_t<Ref1, Ref2>;
class Iter {
public:
using value_type = std::remove_cv_t<std::remove_reference_t<Ref>>;
using difference_type = std::ptrdiff_t;
Iter() = default;
Iter(Range1&& rng1_, Range2&& rng2_, bool begin)
: m_it1{begin ? rng1_.begin() : rng1_.end()}
, m_it2{begin ? rng2_.begin() : rng2_.end()}
, m_e1{rng1_.end()} {}
bool operator==(const Iter& rhs) const {
return m_it1 == rhs.m_it1 && m_it2 == rhs.m_it2;
}
Ref operator*() const {
return m_it1 != m_e1 ? *m_it1 : *m_it2;
}
Iter& operator++() {
(m_it1 != m_e1) ? (void)++m_it1 : (void)++m_it2;
return *this;
}
Iter operator++(int) {
Iter ret = *this;
++(*this);
return ret;
}
private:
std::ranges::iterator_t<Range1> m_it1;
std::ranges::iterator_t<Range2> m_it2;
std::ranges::iterator_t<Range1> m_e1;
};
static_assert(std::forward_iterator<Iter>);
auto b = Iter{std::forward<Range1>(rng1), std::forward<Range2>(rng2), true};
auto e = Iter{std::forward<Range1>(rng1), std::forward<Range2>(rng2), false};
return std::ranges::subrange<Iter>{b, e};
}
int main()
{
std::vector<int> v{1,2,3};
std::list<int> l{4,5,6};
std::ranges::copy(join2(v,l), std::ostream_iterator<int>(std::cout, " "));
std::cout << '\n';
return 0;
}
P.S. I am not optimistic about a variadic implementation, although I'm sure someone smarter than me would be able to figure it out.