Why I'm getting different results from GNU g++ and VC++ - c++

I'm trying to solve this problem in C++:
"Given a sequence S of integers, find a number of increasing sequences I such that every two consecutive elements in I appear in S, but on the opposite sides of the first element of I."
This is the code I've developed:
#include<iostream>
#include<set>
#include<vector>
using namespace std;
struct Element {
long long height;
long long acc;
long long con;
};
bool fncomp(Element* lhs, Element* rhs) {
return lhs->height < rhs->height;
}
int solution(vector<int> &H) {
// set up
int N = (int)H.size();
if (N == 0 || N == 1) return N;
long long sol = 0;
// build trees
bool(*fn_pt)(Element*, Element*) = fncomp;
set<Element*, bool(*)(Element*, Element*)> rightTree(fn_pt), leftTree(fn_pt);
set<Element*, bool(*)(Element*, Element*)>::iterator ri, li;
for (int i = 0; i < N; i++) {
Element* e = new Element;
e->acc = 0;
e->con = 0;
e->height = H[i];
rightTree.insert(e);
}
//tree elements set up
ri = --rightTree.end();
Element* elem = *ri;
elem->con = 1;
elem->acc = 1;
while (elem->height > H[0]) {
Element* succ = elem;
ri--;
elem = *ri;
elem->con = 1;
elem->acc = succ->acc + 1;
}
rightTree.erase(ri);
elem->con = elem->acc;
leftTree.insert(elem);
sol += elem->acc;
// main loop
Element* pE = new Element;
for (int j = 1; j < (N - 1); j++) {
// bad case
if (H[j] < H[j - 1]) {
///////
Element* nE = new Element;
nE->height = H[j];
pE->height = H[j - 1];
rightTree.erase(nE);
leftTree.insert(nE);
///////
li = leftTree.lower_bound(pE);
long ltAcc = (*li)->acc;
li--;
///////
ri = rightTree.lower_bound(pE);
long rtAcc = 0;
if (ri != rightTree.end()) rtAcc = (*ri)->acc;
ri--;
///////
while (ri != (--rightTree.begin()) && (*ri)->height > H[j]) {
if (fncomp(*ri, *li)) {
(*li)->con = rtAcc + 1;
(*li)->acc = rtAcc + 1 + ltAcc;
ltAcc = (*li)->acc;
--li;
}
else {
(*ri)->con = ltAcc + 1;
(*ri)->acc = ltAcc + 1 + rtAcc;
rtAcc = (*ri)->acc;
--ri;
}
}
while ((*li)->height > H[j]) {
(*li)->con = rtAcc + 1;
(*li)->acc = rtAcc + 1 + ltAcc;
ltAcc = (*li)->acc;
--li;
}
(*li)->con = rtAcc + 1;
(*li)->acc = rtAcc + 1 + ltAcc;
sol += (*li)->acc;
}
// good case
else {
Element* nE = new Element;
nE->height = H[j];
ri = rightTree.upper_bound(nE);
li = leftTree.upper_bound(nE);
rightTree.erase(nE);
if (li == leftTree.end() && ri == rightTree.end()) {
nE->con = 1;
nE->acc = 1;
}
else if (li != leftTree.end() && ri == rightTree.end()) {
nE->con = 1;
nE->acc = 1 + (*li)->acc;
}
else if (li == leftTree.end() && ri != rightTree.end()) {
nE->con = (*ri)->acc + 1;
nE->acc = nE->con;
}
else {
nE->con = (*ri)->acc + 1;
nE->acc = nE->con + (*li)->acc;
}
leftTree.insert(nE);
sol += nE->acc;
}
}
// final step
li = leftTree.upper_bound(*rightTree.begin());
while (li != leftTree.end()) {
sol++;
li++;
}
sol++;
return (int)(sol % 1000000007);
}
int main(int argc, char* argv[]) {
vector<int> H = { 13, 2, 5 };
cout << "sol: " << solution(H) << endl;
system("pause");
}
The main function calls solution(vector<int> H). The point is, when the argument has the particular value of H = {13, 2, 5} the VC++ compiled program give an output value of 7 (which is the correct one), but the GNU g++ compiled program give an output value of 5 (also clang compiled program behave like this).
I'm using this website, among others, for testing different compilers
http://rextester.com/l/cpp_online_compiler_gcc
I've tried to figure out the reason for this wierd behaviour but didn't found any relevant info. Only one post treat a similar problem:
Different results VS C++ and GNU g++
and that's why I'm using long long types in the code, but the problem persists.

The problem was decrementing the start-of-sequence --rightTree.begin()
As I found VC++ and GNU g++ does not behave the same way on above operation. Here is the code that shows the difference, adapted from http://www.cplusplus.com/forum/general/84609/:
#include<iostream>
#include<set>
using namespace std;
struct Element {
long long height;
long long acc;
long long con;
};
bool fncomp(Element* lhs, Element* rhs) {
return lhs->height < rhs->height;
}
int main(){
bool(*fn_pt)(Element*, Element*) = fncomp;
set<Element*, bool(*)(Element*, Element*)> rightTree(fn_pt);
set<Element*, bool(*)(Element*, Element*)>::iterator ri;
ri = rightTree.begin();
--ri;
++ri;
if(ri == rightTree.begin()) cout << "it works!" << endl;
}

Related

Product of all the nodes on the path of a tree

I was learning MO's Algorithm. In that I found a question. In which we have to make a program to take input n for n nodes of a tree then n-1 pairs of u and v denoting the connection between node u and node v. After that giving the n node values.
Then we will ask q queries. For each query we take input of k and l which denote the two nodes of that tree. Now we have to find the product of all the nodes in the path of k and l (including k and l).
I want to use MO's algorithm. https://codeforces.com/blog/entry/43230
But I am unable to make the code. Can anybody help me out in this.
The basic code for that would be:
int n, q;
int nxt[ N ], to[ N ], hd[ N ];
struct Que{
int u, v, id;
} que[ N ];
void init() {
// read how many nodes and how many queries
cin >> n >> q;
// read the edge of tree
for ( int i = 1 ; i < n ; ++ i ) {
int u, v; cin >> u >> v;
// save the tree using adjacency list
nxt[ i << 1 | 0 ] = hd[ u ];
to[ i << 1 | 0 ] = v;
hd[ u ] = i << 1 | 0;
nxt[ i << 1 | 1 ] = hd[ v ];
to[ i << 1 | 1 ] = u;
hd[ v ] = i << 1 | 1;
}
for ( int i = 0 ; i < q ; ++ i ) {
// read queries
cin >> que[ i ].u >> que[ i ].v;
que[ i ].id = i;
}
}
int dfn[ N ], dfn_, block_id[ N ], block_;
int stk[ N ], stk_;
void dfs( int u, int f ) {
dfn[ u ] = dfn_++;
int saved_rbp = stk_;
for ( int v_ = hd[ u ] ; v_ ; v_ = nxt[ v_ ] ) {
if ( to[ v_ ] == f ) continue;
dfs( to[ v_ ], u );
if ( stk_ - saved_rbp < SQRT_N ) continue;
for ( ++ block_ ; stk_ != saved_rbp ; )
block_id[ stk[ -- stk_ ] ] = block_;
}
stk[ stk_ ++ ] = u;
}
bool inPath[ N ];
void SymmetricDifference( int u ) {
if ( inPath[ u ] ) {
// remove this edge
} else {
// add this edge
}
inPath[ u ] ^= 1;
}
void traverse( int& origin_u, int u ) {
for ( int g = lca( origin_u, u ) ; origin_u != g ; origin_u = parent_of[ origin_u ] )
SymmetricDifference( origin_u );
for ( int v = u ; v != origin_u ; v = parent_of[ v ] )
SymmetricDifference( v );
origin_u = u;
}
void solve() {
// construct blocks using dfs
dfs( 1, 1 );
while ( stk_ ) block_id[ stk[ -- stk_ ] ] = block_;
// re-order our queries
sort( que, que + q, [] ( const Que& x, const Que& y ) {
return tie( block_id[ x.u ], dfn[ x.v ] ) < tie( block_id[ y.u ], dfn[ y.v ] );
} );
// apply mo's algorithm on tree
int U = 1, V = 1;
for ( int i = 0 ; i < q ; ++ i ) {
pass( U, que[ i ].u );
pass( V, que[ i ].v );
// we could our answer of que[ i ].id
}
}
This problem is a slight modification of the blog that you have shared.
Problem Tags:- MO's Algorithm, Trees, LCA, Binary Lifting, Sieve, Precomputation, Prime Factors
Precomputations:- Just we need to do some precomputations with seiveOfErothenesis to store the highest prime factor of each element possible in input constraints. Then using this we will store all the prime factors and their powers for each element in input array in another matrix.
Observation:- with the constraints you can see the there can be very few such primes possible for each element. For an element (10^6) there can be a maximum of 7 prime factors possible.
Modify MO Algo Given in blog:- Now in our compute method we just need to maintain a map that will store the current count of the prime factor. While adding or subtracting each element in solving the queries we will iterate on the prime factors of that element and divide our result(storing total no. of factors) with the old count of that prime and then update the count of that prime and the multiple our result with the new count.(This will be O(7) max for each addition/subtraction).
Complexity:- O(T * ((N + Q) * sqrt(N) * F)) where F is 7 in our case. F is the complexity of your check method().
T - no of test cases in input file.
N - the size of your input array.
Q - No. of queries.
Below is an implementation of the above approach in JAVA. computePrimePowers() and check() are the methods you would be interested in.
import java.util.*;
import java.io.*;
public class Main {
static int BLOCK_SIZE;
static int ar[];
static ArrayList<Integer> graph[];
static StringBuffer sb = new StringBuffer();
static boolean notPrime[] = new boolean[1000001];
static int hpf[] = new int[1000001];
static void seive(){
notPrime[0] = true;
notPrime[1] = true;
for(int i = 2; i < 1000001; i++){
if(!notPrime[i]){
hpf[i] = i;
for(int j = 2 * i; j < 1000001; j += i){
notPrime[j] = true;
hpf[j] = i;
}
}
}
}
static long modI[] = new long[1000001];
static void computeModI() {
for(int i = 1; i < 1000001; i++) {
modI[i] = pow(i, 1000000005);
}
}
static long pow(long x, long y) {
if (y == 0)
return 1;
long p = pow(x, y / 2);
p = (p >= 1000000007) ? p % 1000000007 : p;
p = p * p;
p = (p >= 1000000007) ? p % 1000000007 : p;
if ((y & 1) == 0)
return p;
else {
long tt = x * p;
return (tt >= 1000000007) ? tt % 1000000007 : tt;
}
}
public static void main(String[] args) throws Exception {
Reader s = new Reader();
int test = s.nextInt();
seive();
computeModI();
for(int ii = 0; ii < test; ii++){
int n = s.nextInt();
lcaTable = new int[19][n + 1];
graph = new ArrayList[n + 1];
arrPrimes = new int[n + 1][7][2];
primeCnt = new int[1000001];
visited = new int[n + 1];
ar = new int[n + 1];
for(int i = 0; i < graph.length; i++) graph[i] = new ArrayList<>();
for(int i = 1; i < n; i++){
int u = s.nextInt(), v = s.nextInt();
graph[u].add(v);
graph[v].add(u);
}
int ip = 1; while(ip <= n) ar[ip++] = s.nextInt();
computePrimePowers();
int q = s.nextInt();
LVL = new int[n + 1];
dfsTime = 0;
dfs(1, -1);
BLOCK_SIZE = (int) Math.sqrt(dfsTime);
int Q[][] = new int[q][4];
int i = 0;
while(q-- > 0) {
int u = s.nextInt(), v = s.nextInt();
Q[i][0] = lca(u, v);
if (l[u] > l[v]) {
int temp = u; u = v; v = temp;
}
if (Q[i][0] == u) {
Q[i][1] = l[u];
Q[i][2] = l[v];
}
else {
Q[i][1] = r[u]; // left at col1 in query
Q[i][2] = l[v]; // right at col2
}
Q[i][3] = i;
i++;
}
Arrays.sort(Q, new Comparator<int[]>() {
#Override
public int compare(int[] x, int[] y) {
int block_x = (x[1] - 1) / (BLOCK_SIZE + 1);
int block_y = (y[1] - 1) / (BLOCK_SIZE + 1);
if(block_x != block_y)
return block_x - block_y;
return x[2] - y[2];
}
});
solveQueries(Q);
}
System.out.println(sb);
}
static long res;
private static void solveQueries(int [][] Q) {
int M = Q.length;
long results[] = new long[M];
res = 1;
int curL = Q[0][1], curR = Q[0][1] - 1;
int i = 0;
while(i < M){
while (curL < Q[i][1]) check(ID[curL++]);
while (curL > Q[i][1]) check(ID[--curL]);
while (curR < Q[i][2]) check(ID[++curR]);
while (curR > Q[i][2]) check(ID[curR--]);
int u = ID[curL], v = ID[curR];
if (Q[i][0] != u && Q[i][0] != v) check(Q[i][0]);
results[Q[i][3]] = res;
if (Q[i][0] != u && Q[i][0] != v) check(Q[i][0]);
i++;
}
i = 0;
while(i < M) sb.append(results[i++] + "\n");
}
static int visited[];
static int primeCnt[];
private static void check(int x) {
if(visited[x] == 1){
for(int i = 0; i < 7; i++) {
int c = arrPrimes[x][i][1];
int pp = arrPrimes[x][i][0];
if(pp == 0) break;
long tem = res * modI[primeCnt[pp] + 1];
res = (tem >= 1000000007) ? tem % 1000000007 : tem;
primeCnt[pp] -= c;
tem = res * (primeCnt[pp] + 1);
res = (tem >= 1000000007) ? tem % 1000000007 : tem;
}
}
else if(visited[x] == 0){
for(int i = 0; i < 7; i++) {
int c = arrPrimes[x][i][1];
int pp = arrPrimes[x][i][0];
if(pp == 0) break;
long tem = res * modI[primeCnt[pp] + 1];
res = (tem >= 1000000007) ? tem % 1000000007 : tem;
primeCnt[pp] += c;
tem = res * (primeCnt[pp] + 1);
res = (tem >= 1000000007) ? tem % 1000000007 : tem;
}
}
visited[x] ^= 1;
}
static int arrPrimes[][][];
static void computePrimePowers() {
int n = arrPrimes.length;
int i = 0;
while(i < n) {
int ele = ar[i];
int k = 0;
while(ele > 1) {
int c = 0;
int pp = hpf[ele];
while(hpf[ele] == pp) {
c++; ele /= pp;
}
arrPrimes[i][k][0] = pp;
arrPrimes[i][k][1] = c;
k++;
}
i++;
}
}
static int dfsTime;
static int l[] = new int[1000001], r[] = new int[1000001], ID[] = new int[1000001], LVL[], lcaTable[][];
static void dfs(int u, int p){
l[u] = ++dfsTime;
ID[dfsTime] = u;
int i = 1;
while(i < 19) {
lcaTable[i][u] = lcaTable[i - 1][lcaTable[i - 1][u]];
i++;
}
i = 0;
while(i < graph[u].size()){
int v = graph[u].get(i);
i++;
if (v == p) continue;
LVL[v] = LVL[u] + 1;
lcaTable[0][v] = u;
dfs(v, u);
}
r[u] = ++dfsTime;
ID[dfsTime] = u;
}
static int lca(int u, int v){
if (LVL[u] > LVL[v]) {
int temp = u;
u = v; v = temp;
}
int i = 18;
while(i >= 0) {
if (LVL[v] - (1 << i) >= LVL[u]) v = lcaTable[i][v];
i--;
}
if (u == v) return u;
i = 18;
while(i >= 0){
if (lcaTable[i][u] != lcaTable[i][v]){
u = lcaTable[i][u];
v = lcaTable[i][v];
}
i--;
}
return lcaTable[0][u];
}
}
// SIMILAR SOLUTION FOR FINDING NUMBER OF DISTINCT ELEMENTS FROM U TO V
// USING MO's ALGORITHM
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 40005;
const int MAXM = 100005;
const int LN = 19;
int N, M, K, cur, A[MAXN], LVL[MAXN], DP[LN][MAXN];
int BL[MAXN << 1], ID[MAXN << 1], VAL[MAXN], ANS[MAXM];
int d[MAXN], l[MAXN], r[MAXN];
bool VIS[MAXN];
vector < int > adjList[MAXN];
struct query{
int id, l, r, lc;
bool operator < (const query& rhs){
return (BL[l] == BL[rhs.l]) ? (r < rhs.r) : (BL[l] < BL[rhs.l]);
}
}Q[MAXM];
// Set up Stuff
void dfs(int u, int par){
l[u] = ++cur;
ID[cur] = u;
for (int i = 1; i < LN; i++) DP[i][u] = DP[i - 1][DP[i - 1][u]];
for (int i = 0; i < adjList[u].size(); i++){
int v = adjList[u][i];
if (v == par) continue;
LVL[v] = LVL[u] + 1;
DP[0][v] = u;
dfs(v, u);
}
r[u] = ++cur; ID[cur] = u;
}
// Function returns lca of (u) and (v)
inline int lca(int u, int v){
if (LVL[u] > LVL[v]) swap(u, v);
for (int i = LN - 1; i >= 0; i--)
if (LVL[v] - (1 << i) >= LVL[u]) v = DP[i][v];
if (u == v) return u;
for (int i = LN - 1; i >= 0; i--){
if (DP[i][u] != DP[i][v]){
u = DP[i][u];
v = DP[i][v];
}
}
return DP[0][u];
}
inline void check(int x, int& res){
// If (x) occurs twice, then don't consider it's value
if ( (VIS[x]) and (--VAL[A[x]] == 0) ) res--;
else if ( (!VIS[x]) and (VAL[A[x]]++ == 0) ) res++;
VIS[x] ^= 1;
}
void compute(){
// Perform standard Mo's Algorithm
int curL = Q[0].l, curR = Q[0].l - 1, res = 0;
for (int i = 0; i < M; i++){
while (curL < Q[i].l) check(ID[curL++], res);
while (curL > Q[i].l) check(ID[--curL], res);
while (curR < Q[i].r) check(ID[++curR], res);
while (curR > Q[i].r) check(ID[curR--], res);
int u = ID[curL], v = ID[curR];
// Case 2
if (Q[i].lc != u and Q[i].lc != v) check(Q[i].lc, res);
ANS[Q[i].id] = res;
if (Q[i].lc != u and Q[i].lc != v) check(Q[i].lc, res);
}
for (int i = 0; i < M; i++) printf("%d\n", ANS[i]);
}
int main(){
int u, v, x;
while (scanf("%d %d", &N, &M) != EOF){
// Cleanup
cur = 0;
memset(VIS, 0, sizeof(VIS));
memset(VAL, 0, sizeof(VAL));
for (int i = 1; i <= N; i++) adjList[i].clear();
// Inputting Values
for (int i = 1; i <= N; i++) scanf("%d", &A[i]);
memcpy(d + 1, A + 1, sizeof(int) * N);
// Compressing Coordinates
sort(d + 1, d + N + 1);
K = unique(d + 1, d + N + 1) - d - 1;
for (int i = 1; i <= N; i++) A[i] = lower_bound(d + 1, d + K + 1, A[i]) - d;
// Inputting Tree
for (int i = 1; i < N; i++){
scanf("%d %d", &u, &v);
adjList[u].push_back(v);
adjList[v].push_back(u);
}
// Preprocess
DP[0][1] = 1;
dfs(1, -1);
int size = sqrt(cur);
for (int i = 1; i <= cur; i++) BL[i] = (i - 1) / size + 1;
for (int i = 0; i < M; i++){
scanf("%d %d", &u, &v);
Q[i].lc = lca(u, v);
if (l[u] > l[v]) swap(u, v);
if (Q[i].lc == u) Q[i].l = l[u], Q[i].r = l[v];
else Q[i].l = r[u], Q[i].r = l[v];
Q[i].id = i;
}
sort(Q, Q + M);
compute();
}
}
Demo

Runtime Error signal 11 on simple C++ code

I am getting a runtime error with this code and I have no idea why.
I am creating a grid and then running a BFS over it. The objective here is to read in the rows and columns of the grid, then determine the maximum number of stars you can pass over before reaching the end.
The start is the top left corner and the end is the bottom right corner.
You can only move down and right. Any ideas?
#include <iostream>
#include <queue>
using namespace std;
int main() {
int r, c, stars[1001][1001], grid[1001][1001], ns[1001][1001];
pair<int, int> cr, nx;
char tmp;
queue<pair<int, int> > q;
cin >> r >> c;
for(int i = 0; i < r; i++) {
for(int j = 0; j < c; j++) {
cin >> tmp;
if(tmp == '.') {
grid[i][j] = 1000000000;
ns[i][j] = 0;
stars[i][j] = 0;
}
else if(tmp == '*') {
grid[i][j] = 1000000000;
ns[i][j] = 1;
stars[i][j] = 1;
}
else
grid[i][j] = -1;
}
}
grid[0][0] = 0;
cr.first = 0;
cr.second = 0;
q.push(cr);
while(!q.empty()) {
cr = q.front();
q.pop();
if(cr.first < r - 1 && grid[cr.first + 1][cr.second] != -1 && ns[cr.first][cr.second] + stars[cr.first + 1][cr.second] > ns[cr.first + 1][cr.second]) {
nx.first = cr.first + 1; nx.second = cr.second;
grid[nx.first][nx.second] = grid[cr.first][cr.second] + 1;
ns[nx.first][nx.second] = ns[cr.first][cr.second] + stars[cr.first + 1][cr.second];
q.push(nx);
}
if(cr.second < c - 1 && grid[cr.first][cr.second + 1] != -1 && ns[cr.first][cr.second] + stars[cr.first][cr.second + 1] > ns[cr.first][cr.second + 1]) {
nx.first = cr.first; nx.second = cr.second + 1;
grid[nx.first][nx.second] = grid[cr.first][cr.second] + 1;
ns[nx.first][nx.second] = ns[cr.first][cr.second] + stars[cr.first][cr.second + 1];
q.push(nx);
}
}
if(grid[r - 1][c - 1] == 1000000000)
cout << "Impossible" << endl;
else
cout << ns[r - 1][c - 1] << endl;
}
Sample input :
6 7
.#*..#.
..*#...
#.....#
..###..
..##..*
*#.....
I'm guessing your stack is not big enough for
int stars[1001][1001], grid[1001][1001], ns[1001][1001];
which is 3 * 1001 * 1001 * sizeof(int) bytes. That's ~12MB if the size of int is 4 bytes.
Either increase the stack size with a compiler option, or go with dynamic allocation i.e. std::vector.
To avoid the large stack you should allocate on the heap
Since you seem to have three parallel 2 - dimension arrays you could
maybe create struct that contains all three values for a x,y position.
That would make it easier to maintain:
struct Area
{
int grid;
int ns;
int stars;
};
std::vector<std::array<Area,1001>> dim2(1001);
dim2[x][y].grid = 100001;
...

How to get the lexical rank of a string? [duplicate]

I'm posting this although much has already been posted about this question. I didn't want to post as an answer since it's not working. The answer to this post (Finding the rank of the Given string in list of all possible permutations with Duplicates) did not work for me.
So I tried this (which is a compilation of code I've plagiarized and my attempt to deal with repetitions). The non-repeating cases work fine. BOOKKEEPER generates 83863, not the desired 10743.
(The factorial function and letter counter array 'repeats' are working correctly. I didn't post to save space.)
while (pointer != length)
{
if (sortedWordChars[pointer] != wordArray[pointer])
{
// Swap the current character with the one after that
char temp = sortedWordChars[pointer];
sortedWordChars[pointer] = sortedWordChars[next];
sortedWordChars[next] = temp;
next++;
//For each position check how many characters left have duplicates,
//and use the logic that if you need to permute n things and if 'a' things
//are similar the number of permutations is n!/a!
int ct = repeats[(sortedWordChars[pointer]-64)];
// Increment the rank
if (ct>1) { //repeats?
System.out.println("repeating " + (sortedWordChars[pointer]-64));
//In case of repetition of any character use: (n-1)!/(times)!
//e.g. if there is 1 character which is repeating twice,
//x* (n-1)!/2!
int dividend = getFactorialIter(length - pointer - 1);
int divisor = getFactorialIter(ct);
int quo = dividend/divisor;
rank += quo;
} else {
rank += getFactorialIter(length - pointer - 1);
}
} else
{
pointer++;
next = pointer + 1;
}
}
Note: this answer is for 1-based rankings, as specified implicitly by example. Here's some Python that works at least for the two examples provided. The key fact is that suffixperms * ctr[y] // ctr[x] is the number of permutations whose first letter is y of the length-(i + 1) suffix of perm.
from collections import Counter
def rankperm(perm):
rank = 1
suffixperms = 1
ctr = Counter()
for i in range(len(perm)):
x = perm[((len(perm) - 1) - i)]
ctr[x] += 1
for y in ctr:
if (y < x):
rank += ((suffixperms * ctr[y]) // ctr[x])
suffixperms = ((suffixperms * (i + 1)) // ctr[x])
return rank
print(rankperm('QUESTION'))
print(rankperm('BOOKKEEPER'))
Java version:
public static long rankPerm(String perm) {
long rank = 1;
long suffixPermCount = 1;
java.util.Map<Character, Integer> charCounts =
new java.util.HashMap<Character, Integer>();
for (int i = perm.length() - 1; i > -1; i--) {
char x = perm.charAt(i);
int xCount = charCounts.containsKey(x) ? charCounts.get(x) + 1 : 1;
charCounts.put(x, xCount);
for (java.util.Map.Entry<Character, Integer> e : charCounts.entrySet()) {
if (e.getKey() < x) {
rank += suffixPermCount * e.getValue() / xCount;
}
}
suffixPermCount *= perm.length() - i;
suffixPermCount /= xCount;
}
return rank;
}
Unranking permutations:
from collections import Counter
def unrankperm(letters, rank):
ctr = Counter()
permcount = 1
for i in range(len(letters)):
x = letters[i]
ctr[x] += 1
permcount = (permcount * (i + 1)) // ctr[x]
# ctr is the histogram of letters
# permcount is the number of distinct perms of letters
perm = []
for i in range(len(letters)):
for x in sorted(ctr.keys()):
# suffixcount is the number of distinct perms that begin with x
suffixcount = permcount * ctr[x] // (len(letters) - i)
if rank <= suffixcount:
perm.append(x)
permcount = suffixcount
ctr[x] -= 1
if ctr[x] == 0:
del ctr[x]
break
rank -= suffixcount
return ''.join(perm)
If we use mathematics, the complexity will come down and will be able to find rank quicker. This will be particularly helpful for large strings.
(more details can be found here)
Suggest to programmatically define the approach shown here (screenshot attached below) given below)
I would say David post (the accepted answer) is super cool. However, I would like to improve it further for speed. The inner loop is trying to find inverse order pairs, and for each such inverse order, it tries to contribute to the increment of rank. If we use an ordered map structure (binary search tree or BST) in that place, we can simply do an inorder traversal from the first node (left-bottom) until it reaches the current character in the BST, rather than traversal for the whole map(BST). In C++, std::map is a perfect one for BST implementation. The following code reduces the necessary iterations in loop and removes the if check.
long long rankofword(string s)
{
long long rank = 1;
long long suffixPermCount = 1;
map<char, int> m;
int size = s.size();
for (int i = size - 1; i > -1; i--)
{
char x = s[i];
m[x]++;
for (auto it = m.begin(); it != m.find(x); it++)
rank += suffixPermCount * it->second / m[x];
suffixPermCount *= (size - i);
suffixPermCount /= m[x];
}
return rank;
}
#Dvaid Einstat, this was really helpful. It took me a WHILE to figure out what you were doing as I am still learning my first language(C#). I translated it into C# and figured that I'd give that solution as well since this listing helped me so much!
Thanks!
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Text.RegularExpressions;
namespace CsharpVersion
{
class Program
{
//Takes in the word and checks to make sure that the word
//is between 1 and 25 charaters inclusive and only
//letters are used
static string readWord(string prompt, int high)
{
Regex rgx = new Regex("^[a-zA-Z]+$");
string word;
string result;
do
{
Console.WriteLine(prompt);
word = Console.ReadLine();
} while (word == "" | word.Length > high | rgx.IsMatch(word) == false);
result = word.ToUpper();
return result;
}
//Creates a sorted dictionary containing distinct letters
//initialized with 0 frequency
static SortedDictionary<char,int> Counter(string word)
{
char[] wordArray = word.ToCharArray();
int len = word.Length;
SortedDictionary<char,int> count = new SortedDictionary<char,int>();
foreach(char c in word)
{
if(count.ContainsKey(c))
{
}
else
{
count.Add(c, 0);
}
}
return count;
}
//Creates a factorial function
static int Factorial(int n)
{
if (n <= 1)
{
return 1;
}
else
{
return n * Factorial(n - 1);
}
}
//Ranks the word input if there are no repeated charaters
//in the word
static Int64 rankWord(char[] wordArray)
{
int n = wordArray.Length;
Int64 rank = 1;
//loops through the array of letters
for (int i = 0; i < n-1; i++)
{
int x=0;
//loops all letters after i and compares them for factorial calculation
for (int j = i+1; j<n ; j++)
{
if (wordArray[i] > wordArray[j])
{
x++;
}
}
rank = rank + x * (Factorial(n - i - 1));
}
return rank;
}
//Ranks the word input if there are repeated charaters
//in the word
static Int64 rankPerm(String word)
{
Int64 rank = 1;
Int64 suffixPermCount = 1;
SortedDictionary<char, int> counter = Counter(word);
for (int i = word.Length - 1; i > -1; i--)
{
char x = Convert.ToChar(word.Substring(i,1));
int xCount;
if(counter[x] != 0)
{
xCount = counter[x] + 1;
}
else
{
xCount = 1;
}
counter[x] = xCount;
foreach (KeyValuePair<char,int> e in counter)
{
if (e.Key < x)
{
rank += suffixPermCount * e.Value / xCount;
}
}
suffixPermCount *= word.Length - i;
suffixPermCount /= xCount;
}
return rank;
}
static void Main(string[] args)
{
Console.WriteLine("Type Exit to end the program.");
string prompt = "Please enter a word using only letters:";
const int MAX_VALUE = 25;
Int64 rank = new Int64();
string theWord;
do
{
theWord = readWord(prompt, MAX_VALUE);
char[] wordLetters = theWord.ToCharArray();
Array.Sort(wordLetters);
bool duplicate = false;
for(int i = 0; i< theWord.Length - 1; i++)
{
if(wordLetters[i] < wordLetters[i+1])
{
duplicate = true;
}
}
if(duplicate)
{
SortedDictionary<char, int> counter = Counter(theWord);
rank = rankPerm(theWord);
Console.WriteLine("\n" + theWord + " = " + rank);
}
else
{
char[] letters = theWord.ToCharArray();
rank = rankWord(letters);
Console.WriteLine("\n" + theWord + " = " + rank);
}
} while (theWord != "EXIT");
Console.WriteLine("\nPress enter to escape..");
Console.Read();
}
}
}
If there are k distinct characters, the i^th character repeated n_i times, then the total number of permutations is given by
(n_1 + n_2 + ..+ n_k)!
------------------------------------------------
n_1! n_2! ... n_k!
which is the multinomial coefficient.
Now we can use this to compute the rank of a given permutation as follows:
Consider the first character(leftmost). say it was the r^th one in the sorted order of characters.
Now if you replace the first character by any of the 1,2,3,..,(r-1)^th character and consider all possible permutations, each of these permutations will precede the given permutation. The total number can be computed using the above formula.
Once you compute the number for the first character, fix the first character, and repeat the same with the second character and so on.
Here's the C++ implementation to your question
#include<iostream>
using namespace std;
int fact(int f) {
if (f == 0) return 1;
if (f <= 2) return f;
return (f * fact(f - 1));
}
int solve(string s,int n) {
int ans = 1;
int arr[26] = {0};
int len = n - 1;
for (int i = 0; i < n; i++) {
s[i] = toupper(s[i]);
arr[s[i] - 'A']++;
}
for(int i = 0; i < n; i++) {
int temp = 0;
int x = 1;
char c = s[i];
for(int j = 0; j < c - 'A'; j++) temp += arr[j];
for (int j = 0; j < 26; j++) x = (x * fact(arr[j]));
arr[c - 'A']--;
ans = ans + (temp * ((fact(len)) / x));
len--;
}
return ans;
}
int main() {
int i,n;
string s;
cin>>s;
n=s.size();
cout << solve(s,n);
return 0;
}
Java version of unrank for a String:
public static String unrankperm(String letters, int rank) {
Map<Character, Integer> charCounts = new java.util.HashMap<>();
int permcount = 1;
for(int i = 0; i < letters.length(); i++) {
char x = letters.charAt(i);
int xCount = charCounts.containsKey(x) ? charCounts.get(x) + 1 : 1;
charCounts.put(x, xCount);
permcount = (permcount * (i + 1)) / xCount;
}
// charCounts is the histogram of letters
// permcount is the number of distinct perms of letters
StringBuilder perm = new StringBuilder();
for(int i = 0; i < letters.length(); i++) {
List<Character> sorted = new ArrayList<>(charCounts.keySet());
Collections.sort(sorted);
for(Character x : sorted) {
// suffixcount is the number of distinct perms that begin with x
Integer frequency = charCounts.get(x);
int suffixcount = permcount * frequency / (letters.length() - i);
if (rank <= suffixcount) {
perm.append(x);
permcount = suffixcount;
if(frequency == 1) {
charCounts.remove(x);
} else {
charCounts.put(x, frequency - 1);
}
break;
}
rank -= suffixcount;
}
}
return perm.toString();
}
See also n-th-permutation-algorithm-for-use-in-brute-force-bin-packaging-parallelization.

How to toggle a variable in a loop

Variable i toggles between 2 and 3 and multiplied into a, as in the following example:
a=2;
a=a*i // a=2*2=4 i=2
a=a*i // a=4*3=12 i=3
a=a*i // a=12*2=24 i=2
a=a*i // a=24*3=72 i=3
which goes on as long as a is < 1000.
How can I give the i two values sequentially as shown in the example?
int a = 2, i = 2;
while( a < 1000 )
{
a *= i;
i = 5 - i;
}
and many other ways.
You should be able to use a loop
int a = 2;
bool flip = true;
while (a < 1000)
{
a *= flip ? 2 : 3;
flip = !flip;
}
You can't have i be equal to two values at the same time. You can however make i alternate between 2 and 3 until a < 1000. Below is the code;
int a = 2;
int counter = 0;
while (a < 1000) {
if (counter % 2 == 0) {
a *= 2;
}
else {
a *= 3;
}
counter++;
}
Here's a quick solution that doesn't involve a conditional.
int c = 0;
while (a < 1000)
a *= (c++ % 2) + 2;
or even
for(int c = 0; a < 1000; c++)
a *= (c % 2) + 2;
The modulo is found, which results in either a 0 or a 1 and then shifted up by 2 resulting in either 2 or 3.
Here's another efficient way to do this.
#include <iostream>
using namespace std;
int main() {
int its_bacon_time;
int i = ++(its_bacon_time = 0);
int y = 18;
int z = 9;
bool flag = !false;
int sizzle;
typedef bool decision_property;
#define perhaps (decision_property)(-42*42*-42)
#ifdef perhaps
# define YUM -
# define YUMMM return
#endif
bool bacon = !(bool) YUM(sizzle = 6);
if(flag)
std::cout << "YEP" << std::endl;
while (flag) {
if (bacon = !bacon)
flag = !flag; // YUM()?
if (YUM((YUM-i)YUM(i*2))+1>=((0x1337|0xECC8)&0x3E8))
(*((int*)&flag)) &= 0x8000;
else
flag = perhaps;
std::cout << i << " ";
int multiplicative_factor = y / (bacon ? z : y);
int* temporal_value_indicator = &i;
(**(&temporal_value_indicator)) *=
(((((multiplicative_factor & 0x0001) > 0) ? sizzle : bacon) // ~yum~
<< 1) ^ (bacon? 0 : 15));
std::cout << (((((multiplicative_factor & 0x0001) > 0) ? sizzle : bacon) // ~yum~
<< 1) ^ (bacon? 0 : 15)) << std::endl;
}
YUMMM its_bacon_time;
}
Point is that you should probably try something yourself first before asking for something that is really simple to achieve.
int main()
{
int a = 2;
int multiplier;
for (int i = 0; a < 1000; ++i)
{
multiplier = (i % 2) ? 2 : 3;
a *= multiplier;
}
}

C++ Not Counting white beands

I need some help. I'm writing a code in C++ that will ultimately take a random string passed in, and it will do a break at every point in the string, and it will count the number of colors to the right and left of the break (r, b, and w). Here's the catch, the w can be either r or b when it breaks or when the strong passes it ultimately making it a hybrid. My problem is when the break is implemented and there is a w immediately to the left or right I can't get the program to go find the fist b or r. Can anyone help me?
#include <stdio.h>
#include "P2Library.h"
void doubleNecklace(char neck[], char doubleNeck[], int size);
int findMaxBeads(char neck2[], int size);
#define SIZE 7
void main(void)
{
char necklace[SIZE];
char necklace2[2 * SIZE];
int brk;
int maxBeads;
int leftI, rightI, leftCount = 0, rightCount=0, totalCount, maxCount = 0;
char leftColor, rightColor;
initNecklace(necklace, SIZE);
doubleNecklace(necklace, necklace2, SIZE);
maxBeads = findMaxBeads(necklace2, SIZE * 2);
checkAnswer(necklace, SIZE, maxBeads);
printf("The max number of beads is %d\n", maxBeads);
}
int findMaxBeads(char neck2[], int size)
{
int brk;
int maxBeads;
int leftI, rightI, leftCount = 0, rightCount=0, totalCount, maxCount = 0;
char leftColor, rightColor;
for(brk = 0; brk < 2 * SIZE - 1; brk++)
{
leftCount = rightCount = 0;
rightI = brk;
rightColor = neck2[rightI];
if(rightI == 'w')
{
while(rightI == 'w')
{
rightI++;
}
rightColor = neck2[rightI];
}
rightI = brk;
while(neck2[rightI] == rightColor || neck2[rightI] == 'w')
{
rightCount++;
rightI++;
}
if(brk > 0)
{
leftI = brk - 1;
leftColor = neck2[leftI];
if(leftI == 'w')
{
while(leftI == 'w')
{
leftI--;
}
leftColor = neck2[leftI];
}
leftI = brk - 1;
while(leftI >= 0 && neck2[leftI] == leftColor || neck2[leftI] == 'w')
{
leftCount++;
leftI--;
}
}
totalCount = leftCount + rightCount;
if(totalCount > maxCount)
{
maxCount = totalCount;
}
}
return maxCount;
}
void doubleNecklace(char neck[], char doubleNeck[], int size)
{
int i;
for(i = 0; i < size; i++)
{
doubleNeck[i] = neck[i];
doubleNeck[i+size] = neck[i];
}
}
I didn't study the code in detail, but something is not symmetric: in the for loop, the "left" code has an if but the "right" code doesn't. Maybe you should remove that -1 in the for condition and add it as an if for the "right" code:
for(brk = 0; brk < 2 * SIZE; brk++)
{
leftCount = rightCount = 0;
if (brk < 2 * SIZE - 1)
{
rightI = brk;
rightColor = neck2[rightI];
//...
}
if(brk > 0)
{
leftI = brk - 1;
leftColor = neck2[leftI];
//...
}
//...
Just guessing, though... :-/
Maybe you should even change those < for <=.