I want to implement collision of 6 torus which are randomly disturbed in the game area. It is a simple 3D space game using the perspective view and in first person. I saw some stack overflow answer suggesting to compute distance of whatever (player) to torus cell and if bigger than half or whole cell size you are colliding +/- your coordinate system and map topology tweaks. But if we take the distance that means we're only considering the z co-ordinates so if the camera moved to that distance (without considering x,y coordinates) it's always taking as a collision which is wrong right?
I'm hoping to do this using AABB algorithm. Is it ok to consider camera position and torus position as 2 boxes and check the collision (box to box collision) or camera as a point and torus as a box (point to box)? Or can somebody suggest best way to do that?
Below is the code that I've tried so far.
float im[16], m[16], znear = 0.1, zfar = 100.0, fovx = 45.0 * M_PI / 180.0;
glm::vec3 p0, p1, p2, p3, o, u, v;
//p0, p1, p2, p3 holds your znear camera screen corners in world coordinates
void ChangeSize(int w, int h)
{
GLfloat fAspect;
// Prevent a divide by zero
if(h == 0)
h = 1;
// Set Viewport to window dimensions
glViewport(0, 0, w, h);
// Calculate aspect ratio of the window
fAspect = (GLfloat)w*1.0/(GLfloat)h;
// Set the perspective coordinate system
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// field of view of 45 degrees, near and far planes 1.0 and 1000
//that znear and zfar should typically have a ratio of 1000:1 to make sorting out z depth easier for the GPU
gluPerspective(45.0f, fAspect, 0.1f, 300.0f); //may need to make larger depending on project
// Modelview matrix reset
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// get camera matrix (must be in right place in code before model transformations)
glGetFloatv(GL_MODELVIEW_MATRIX, im); // get camera inverse matrix
matrix_inv(m, im); // m = inverse(im)
u = glm::vec3(m[0], m[1], m[2]); // x axis
v = glm::vec3(m[4], m[5], m[6]); // y axis
o = glm::vec3(m[12], m[13], m[14]); // origin
o -= glm::vec3(m[8], m[9], m[10]) * znear; // z axis offset
// scale by FOV
u *= znear * tan(0.5 * fovx);
v *= znear * tan(0.5 * fovx / fAspect);
// get rectangle coorners
p0 = o - u - v;
p1 = o + u - v;
p2 = o + u + v;
p3 = o - u + v;
}
void matrix_inv(float* a, float* b) // a[16] = Inverse(b[16])
{
float x, y, z;
// transpose of rotation matrix
a[0] = b[0];
a[5] = b[5];
a[10] = b[10];
x = b[1]; a[1] = b[4]; a[4] = x;
x = b[2]; a[2] = b[8]; a[8] = x;
x = b[6]; a[6] = b[9]; a[9] = x;
// copy projection part
a[3] = b[3];
a[7] = b[7];
a[11] = b[11];
a[15] = b[15];
// convert origin: new_pos = - new_rotation_matrix * old_pos
x = (a[0] * b[12]) + (a[4] * b[13]) + (a[8] * b[14]);
y = (a[1] * b[12]) + (a[5] * b[13]) + (a[9] * b[14]);
z = (a[2] * b[12]) + (a[6] * b[13]) + (a[10] * b[14]);
a[12] = -x;
a[13] = -y;
a[14] = -z;
}
//Store torus coordinates
std::vector<std::vector<GLfloat>> translateTorus = { { 0.0, 1.0, -10.0, 1 }, { 0.0, 4.0, -6.0, 1 } , { -1.0, 0.0, -4.0, 1 },
{ 3.0, 1.0, -6.0, 1 }, { 1.0, -1.0, -9.0, 1 } , { 4.0, 1.0, -4.0, 1 } };
GLfloat xpos, ypos, zpos, flagToDisplayCrystal;
//Looping through 6 Torus
for (int i = 0; i < translateTorus.size(); i++) {
//Get the torus coordinates
xpos = translateTorus[i][0];
ypos = translateTorus[i][1];
zpos = translateTorus[i][2];
//This variable will work as a variable to display crystal after collision
flagToDisplayCrystal = translateTorus[i][3];
//p0 min, p2 max
//Creating a square using Torus index coordinates and radius
double halfside = 1.0 / 2;
//This (xpos+halfside), (xpos-halfside), (ypos+halfside), (ypos-halfside) are //created using Torus index and radius
float d1x = p0[0] - (xpos + halfside);
float d1y = p0[1] - (ypos + halfside);
float d2x = (xpos - halfside) - p2[0];
float d2y = (ypos - halfside) - p2[1];
//Collision is checking here
//For square's min z and max z is checking whether equal to camera's min //z and max z
if ((d1x > 0.0f || d1y > 0.0f || d2x > 0.0f || d2y > 0.0f) && p2[2] == zpos && p0[2] == zpos) {
//If there is collision update the variable as 0
translateTorus[i][3] = 0;
}
else {
if (flagToDisplayCrystal == 1) {
glPushMatrix();
glEnable(GL_TEXTURE_2D);
glTranslatef(xpos, ypos, zpos);
glRotatef(fPlanetRot, 0.0f, -1.0f, 0.0f);
glColor3f(0.0, 0.0, 0.0);
// Select the texture object
glBindTexture(GL_TEXTURE_2D, textures[3]);
glutSolidTorus(0.1, 1.0, 30, 30);
glDisable(GL_TEXTURE_2D);
glPopMatrix();
}
}
}
as I mentioned in the comments you got 2 options either use OpenGL rendering or compute entirely on CPU side without it. Let start with rendering first:
render your scene
but instead of color of torus and stuff use integer indexes (for example 0 empty space, 1 obstacle, 2 torus ...) you can even have separate indexes for each object in the world so you know exactly which one is hit etc ...
so: clear screen with empty color, render your scene (using indexes instead of color with glColor??(???)) without lighting or shading or whatever. But Do not swap buffers !!! as that would show the stuff on screen and cause flickering.
read rendered screen and depth buffers
you simply use glReadPixels to copy your screen and depth buffers into CPU side memory (1D arrays) lets call them scr[],zed[].
scan the scr[] for color matching torus indexes
simply loop through all pixels and if torus pixel found check its depth. If it is close enough to camera you found your collision.
render normally
now clear screen again and render your screen with colors and lighting... now you can swap buffers too.
Beware depth buffer will be non linear which requires linearization to obtain original depth in world units. For more about it and example of reading both scr,zed see:
depth buffer got by glReadPixels is always 1
OpenGL 3D-raypicking with high poly meshes
The other approach is is much faster in case you have not too many torus'es. You simply compute intersection between camera znear plane and torus. Which boils down to either AABB vs rectangle intersection or cylinder vs. rectangle intersection.
However if you not familiar with 3D vector math you might get lost quickly.
let assume the torus is described by AABB. Then intersection between that and rectangle boils down to checking intersection between line (each edge of AABB) and rectangle. So simply finding instersection between plane and line and checking if the point is inside rectangle.
if our rectangle is defined by its vertexes in CW or CCW order (p0,p1,p2,p3) and line by endpoints q0,q1 then:
n = normalize(cross(p1-p0,p2-p1)) // is rectangle normal
dq = normalize(q1-q0) // is line direction
q = q0 + dq*dot(dq,p1-p0) // is plane/line intersection
So now just check if q is inside rectangle. There are 2 ways either test if all crosses between q-edge_start and edge_end-edge_start have the same direction or all dots between all edge_normal and q-edge_point has the same sign or zero.
The problem is that both AABB and rectangle must be in the same coordinate system so either transform AABB into camera coordinates by using modelview matrix or transform the rectangle into world coordinates using inverse of modelview. The latter is better as you do it just once instead of transforming each torus'es AABB ...
For more info about math side see:
Cone to box collision
Understanding 4x4 homogenous transform matrices
The rectangle itself is just extracted from your camera matrix (part of modelviev) position, and x,y basis vectors gives you the "center" and axises of your rectangle... The size must be derived from the perspective matrix (or parameters you passed to it especially aspect ratio, FOV and znear)
Well first you need to obtain camera (view) matrix. The GL_MODELVIEW usually holds:
GL_MODELVIEW = Inverse(Camera)*Rendered_Object
so you need to find the place in your code where your GL_MODELVIEW holds just the Inverse(Camera) transformation and there place:
float aspect=float(xs)/float(ys); // aspect from OpenGL window resolution
float im[16],m[16],znear=0.1,zfar=100.0,fovx=60.0*M_PI/180.0;
vec3 p0,p1,p2,p3,o,u,v; // 3D vectors
// this is how my perspective is set
// glMatrixMode(GL_PROJECTION);
// glLoadIdentity();
// gluPerspective(fovx*180.0/(M_PI*aspect),aspect,znear,zfar);
// get camera matrix (must be in right place in code before model transformations)
glGetFloatv(GL_MODELVIEW_MATRIX,im); // get camera inverse matrix
matrix_inv(m,im); // m = inverse(im)
u =vec3(m[ 0],m[ 1],m[ 2]); // x axis
v =vec3(m[ 4],m[ 5],m[ 6]); // y axis
o =vec3(m[12],m[13],m[14]); // origin
o-=vec3(m[ 8],m[ 9],m[10])*znear; // z axis offset
// scale by FOV
u*=znear*tan(0.5*fovx);
v*=znear*tan(0.5*fovx/aspect);
// get rectangle coorners
p0=o-u-v;
p1=o+u-v;
p2=o+u+v;
p3=o-u+v;
// render it for debug
glColor3f(1.0,1.0,0.0);
glBegin(GL_QUADS);
glColor3f(1.0,0.0,0.0); glVertex3fv(p0.dat);
glColor3f(0.0,0.0,0.0); glVertex3fv(p1.dat);
glColor3f(0.0,0.0,1.0); glVertex3fv(p2.dat);
glColor3f(1.0,1.0,1.0); glVertex3fv(p3.dat);
glEnd();
Which basicaly loads the matrix into CPU side variables inverse it like this:
void matrix_inv(float *a,float *b) // a[16] = Inverse(b[16])
{
float x,y,z;
// transpose of rotation matrix
a[ 0]=b[ 0];
a[ 5]=b[ 5];
a[10]=b[10];
x=b[1]; a[1]=b[4]; a[4]=x;
x=b[2]; a[2]=b[8]; a[8]=x;
x=b[6]; a[6]=b[9]; a[9]=x;
// copy projection part
a[ 3]=b[ 3];
a[ 7]=b[ 7];
a[11]=b[11];
a[15]=b[15];
// convert origin: new_pos = - new_rotation_matrix * old_pos
x=(a[ 0]*b[12])+(a[ 4]*b[13])+(a[ 8]*b[14]);
y=(a[ 1]*b[12])+(a[ 5]*b[13])+(a[ 9]*b[14]);
z=(a[ 2]*b[12])+(a[ 6]*b[13])+(a[10]*b[14]);
a[12]=-x;
a[13]=-y;
a[14]=-z;
}
And compute the corners with perspective in mind as described above...
I used GLSL like vec3 but you can use any 3D math even own like float p0[3],.... You just need +,- and multiplying by constant.
Now the p0,p1,p2,p3 holds your znear camera screen corners in world coordinates.
[Edit1] example
I managed to put together simple example for this. Here support functiosn used first:
//---------------------------------------------------------------------------
void glutSolidTorus(float r,float R,int na,int nb) // render torus(r,R)
{
float *pnt=new float[(na+1)*(nb+1)*3*2]; if (pnt==NULL) return;
float *nor=pnt+((na+1)*(nb+1)*3);
float ca,sa,cb,sb,a,b,da,db,x,y,z,nx,ny,nz;
int ia,ib,i,j;
da=2.0*M_PI/float(na);
db=2.0*M_PI/float(nb);
glBegin(GL_LINES);
for (i=0,a=0.0,ia=0;ia<=na;ia++,a+=da){ ca=cos(a); sa=sin(a);
for ( b=0.0,ib=0;ib<=nb;ib++,b+=db){ cb=cos(b); sb=sin(b);
z=r*ca;
x=(R+z)*cb; nx=(x-(R*cb))/r;
y=(R+z)*sb; ny=(y-(R*sb))/r;
z=r*sa; nz=sa;
pnt[i]=x; nor[i]=nx; i++;
pnt[i]=y; nor[i]=ny; i++;
pnt[i]=z; nor[i]=nz; i++;
}}
glEnd();
for (ia=0;ia<na;ia++)
{
i=(ia+0)*(nb+1)*3;
j=(ia+1)*(nb+1)*3;
glBegin(GL_QUAD_STRIP);
for (ib=0;ib<=nb;ib++)
{
glNormal3fv(nor+i); glVertex3fv(pnt+i); i+=3;
glNormal3fv(nor+j); glVertex3fv(pnt+j); j+=3;
}
glEnd();
}
delete[] pnt;
}
//---------------------------------------------------------------------------
const int AABB_lin[]= // AABB lines
{
0,1,
1,2,
2,3,
3,0,
4,5,
5,6,
6,7,
7,4,
0,4,
1,5,
2,6,
3,7,
-1
};
const int AABB_fac[]= // AABB quads
{
3,2,1,0,
4,5,6,7,
0,1,5,4,
1,2,6,5,
2,3,7,6,
3,0,4,7,
-1
};
void AABBSolidTorus(vec3 *aabb,float r,float R) // aabb[8] = AABB of torus(r,R)
{
R+=r;
aabb[0]=vec3(-R,-R,-r);
aabb[1]=vec3(+R,-R,-r);
aabb[2]=vec3(+R,+R,-r);
aabb[3]=vec3(-R,+R,-r);
aabb[4]=vec3(-R,-R,+r);
aabb[5]=vec3(+R,-R,+r);
aabb[6]=vec3(+R,+R,+r);
aabb[7]=vec3(-R,+R,+r);
}
//---------------------------------------------------------------------------
void matrix_inv(float *a,float *b) // a[16] = Inverse(b[16])
{
float x,y,z;
// transpose of rotation matrix
a[ 0]=b[ 0];
a[ 5]=b[ 5];
a[10]=b[10];
x=b[1]; a[1]=b[4]; a[4]=x;
x=b[2]; a[2]=b[8]; a[8]=x;
x=b[6]; a[6]=b[9]; a[9]=x;
// copy projection part
a[ 3]=b[ 3];
a[ 7]=b[ 7];
a[11]=b[11];
a[15]=b[15];
// convert origin: new_pos = - new_rotation_matrix * old_pos
x=(a[ 0]*b[12])+(a[ 4]*b[13])+(a[ 8]*b[14]);
y=(a[ 1]*b[12])+(a[ 5]*b[13])+(a[ 9]*b[14]);
z=(a[ 2]*b[12])+(a[ 6]*b[13])+(a[10]*b[14]);
a[12]=-x;
a[13]=-y;
a[14]=-z;
}
//---------------------------------------------------------------------------
const int QUAD_lin[]= // quad lines
{
0,1,
1,2,
2,3,
3,0,
-1
};
const int QUAD_fac[]= // quad quads
{
0,1,2,3,
-1
};
void get_perspective_znear(vec3 *quad) // quad[4] = world coordinates of 4 corners of screen at znear distance from camera
{
vec3 o,u,v; // 3D vectors
float im[16],m[16],znear,zfar,aspect,fovx;
// get stuff from perspective
glGetFloatv(GL_PROJECTION_MATRIX,m); // get perspective projection matrix
zfar =0.5*m[14]*(1.0-((m[10]-1.0)/(m[10]+1.0)));// compute zfar from perspective matrix
znear=zfar*(m[10]+1.0)/(m[10]-1.0); // compute znear from perspective matrix
aspect=m[5]/m[0];
fovx=2.0*atan(1.0/m[5])*aspect;
// get stuff from camera matrix (must be in right place in code before model transformations)
glGetFloatv(GL_MODELVIEW_MATRIX,im); // get camera inverse matrix
matrix_inv(m,im); // m = inverse(im)
u =vec3(m[ 0],m[ 1],m[ 2]); // x axis
v =vec3(m[ 4],m[ 5],m[ 6]); // y axis
o =vec3(m[12],m[13],m[14]); // origin
o-=vec3(m[ 8],m[ 9],m[10])*znear; // z axis offset
// scale by FOV
u*=znear*tan(0.5*fovx);
v*=znear*tan(0.5*fovx/aspect);
// get rectangle coorners
quad[0]=o-u-v;
quad[1]=o+u-v;
quad[2]=o+u+v;
quad[3]=o-u+v;
}
//---------------------------------------------------------------------------
bool collideLineQuad(vec3 *lin,vec3 *quad) // return if lin[2] is colliding quad[4]
{
float t,l,u,v;
vec3 p,p0,p1,dp;
vec3 U,V,W;
// quad (rectangle) basis vectors
U=quad[1]-quad[0]; u=length(U); u*=u;
V=quad[3]-quad[0]; v=length(V); v*=v;
W=normalize(cross(U,V));
// convert line from world coordinates to quad local ones
p0=lin[0]-quad[0]; p0=vec3(dot(p0,U)/u,dot(p0,V)/v,dot(p0,W));
p1=lin[1]-quad[0]; p1=vec3(dot(p1,U)/u,dot(p1,V)/v,dot(p1,W));
dp=p1-p0;
// test if crossing the plane
if (fabs(dp.z)<1e-10) return false;
t=-p0.z/dp.z;
p=p0+(t*dp);
// test inside 2D quad (rectangle)
if ((p.x<0.0)||(p.x>1.0)) return false;
if ((p.y<0.0)||(p.y>1.0)) return false;
// inside line
if ((t<0.0)||(t>1.0)) return false;
return true;
}
//---------------------------------------------------------------------------
bool collideQuadQuad(vec3 *quad0,vec3 *quad1) // return if quad0[4] is colliding quad1[4]
{
int i;
vec3 l[2];
// lines vs. quads
for (i=0;QUAD_lin[i]>=0;)
{
l[0]=quad0[QUAD_lin[i]]; i++;
l[1]=quad0[QUAD_lin[i]]; i++;
if (collideLineQuad(l,quad1)) return true;
}
for (i=0;QUAD_lin[i]>=0;)
{
l[0]=quad1[QUAD_lin[i]]; i++;
l[1]=quad1[QUAD_lin[i]]; i++;
if (collideLineQuad(l,quad0)) return true;
}
// ToDo coplanar quads tests (not needed for AABB test)
return false;
}
//---------------------------------------------------------------------------
bool collideAABBQuad(vec3 *aabb,vec3 *quad) // return if aabb[8] is colliding quad[4]
{
int i;
vec3 q[4],n,p;
// test all AABB faces (rectangle) for intersection with quad (rectangle)
for (i=0;AABB_fac[i]>=0;)
{
q[0]=aabb[AABB_fac[i]]; i++;
q[1]=aabb[AABB_fac[i]]; i++;
q[2]=aabb[AABB_fac[i]]; i++;
q[3]=aabb[AABB_fac[i]]; i++;
if (collideQuadQuad(q,quad)) return true;
}
// test if one point of quad is fully inside AABB
for (i=0;AABB_fac[i]>=0;i+=4)
{
n=cross(aabb[AABB_fac[i+1]]-aabb[AABB_fac[i+0]],
aabb[AABB_fac[i+2]]-aabb[AABB_fac[i+1]]);
if (dot(n,quad[0]-aabb[AABB_fac[i+0]])>0.0) return false;
}
return true;
}
//---------------------------------------------------------------------------
And here the usage (during rendering):
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
int i;
float m[16];
mat4 m0,m1;
vec4 v4;
float aspect=float(xs)/float(ys);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(60.0/aspect,aspect,0.1,20.0);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
static float anim=180.0; anim+=0.1; if (anim>=360.0) anim-=360.0;
glEnable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
vec3 line[2],quad[4],aabb[8]; // 3D vectors
get_perspective_znear(quad);
// store view matrix for latter
glMatrixMode(GL_MODELVIEW);
glGetFloatv(GL_MODELVIEW_MATRIX,m);
m0=mat4(m[0],m[1],m[2],m[3],m[4],m[5],m[6],m[7],m[8],m[9],m[10],m[11],m[12],m[13],m[14],m[15]);
m0=inverse(m0);
// <<-- here should be for start that loop through your toruses
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
// set/animate torus position
glTranslatef(0.3,0.3,3.5*(-1.0-cos(anim)));
glRotatef(+75.0,0.5,0.5,0.0);
// get actual matrix and convert it to the change
glGetFloatv(GL_MODELVIEW_MATRIX,m);
m1=m0*mat4(m[0],m[1],m[2],m[3],m[4],m[5],m[6],m[7],m[8],m[9],m[10],m[11],m[12],m[13],m[14],m[15]);
// render torus and compute its AABB
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glColor3f(1.0,1.0,1.0);
glutSolidTorus(0.1,0.5,36,36);
AABBSolidTorus(aabb,0.1,0.5);
glDisable(GL_LIGHT0);
glDisable(GL_LIGHTING);
// convert AABB to the same coordinates as quad
for (i=0;i<8;i++) aabb[i]=(m1*vec4(aabb[i],1.0)).xyz;
// restore original view matrix
glPopMatrix();
// render wireframe AABB
glColor3f(0.0,1.0,0.0);
glBegin(GL_LINES);
for (i=0;AABB_lin[i]>=0;i++)
glVertex3fv(aabb[AABB_lin[i]].dat);
glEnd();
/*
// render filled AABB for debug
glBegin(GL_QUADS);
for (i=0;AABB_fac[i]>=0;i++)
glVertex3fv(aabb[AABB_fac[i]].dat);
glEnd();
// render quad for debug
glBegin(GL_QUADS);
glColor3f(1.0,1.0,1.0);
for (i=0;QUAD_fac[i]>=0;i++)
glVertex3fv(quad[QUAD_fac[i]].dat);
glEnd();
*/
// render X on colision
if (collideAABBQuad(aabb,quad))
{
glColor3f(1.0,0.0,0.0);
glBegin(GL_LINES);
glVertex3fv(quad[0].dat);
glVertex3fv(quad[2].dat);
glVertex3fv(quad[1].dat);
glVertex3fv(quad[3].dat);
glEnd();
}
// <<-- here should be end of the for that loop through your toruses
glFlush();
SwapBuffers(hdc);
just ignore the GLUT solid torus function as you already got it ... Here preview:
The red cross indicates collision with screen ...
I wrote this code that prints a circle. The problem comes when I try to resize the window. The aspect ratio is not kept and the circle becomes an oval.
#include<GL/glut.h>
#include<GL/glu.h>
#include<GL/gl.h>
#include<string.h>
#include<stdio.h>
#include <math.h>
#define PI 3.1415
const float DEG2RAD = 3.14159 / 180;
// Keep track of windows changing width and height
GLfloat windowWidth;
GLfloat windowHeight;
void drawCircle(float radius)
{
glBegin(GL_LINE_LOOP);
for (int i = 0; i <= 300; i++) {
double angle = 2 * PI * i / 300;
double x = radius * cos(angle);
double y = radius * sin(angle);
glVertex2d(x, y);
}
glEnd();
}
///////////////////////////////////////////////////////////
// Called to draw scene
void RenderScene(void)
{
// Clear the window with current clearing color
glClear(GL_COLOR_BUFFER_BIT );
// Save the matrix state and do the rotations
glMatrixMode(GL_MODELVIEW);
//glPushMatrix();
glColor3d(1, 0, 0);
drawCircle(100);
glutSwapBuffers();
}
///////////////////////////////////////////////////////////
// This function does any needed initialization on the
// rendering context.
void SetupRC()
{
// Light values and coordinates
//glEnable(GL_DEPTH_TEST); // Hidden surface removal
glClearColor(0,0,0,0);
}
void ChangeSize(int w, int h)
{
GLfloat aspectRatio;
GLfloat nRange = 200.0f;
// Prevent a divide by zero
if (h == 0)
h = 1;
// Set Viewport to window dimensions
glViewport(0, 0, w, h);
// Reset coordinate system
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// Establish clipping volume (left, right, bottom, top, near, far)
aspectRatio = (GLfloat)w / (GLfloat)h;
if (w <= h)
{
glOrtho(-nRange, nRange, -nRange*aspectRatio, nRange*aspectRatio, -nRange*2, nRange * 2);
}
else
{
glOrtho(-nRange /aspectRatio, nRange /aspectRatio, -nRange, nRange, -nRange * 2, nRange * 2);
}
// Specify the orthographic (or perpendicular) projection,
// i.e., define the viewing box.
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
///////////////////////////////////////////////////////////
// Entry point of the program
int main(int argc, char* argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
glClear(GL_COLOR_BUFFER_BIT);
glutInitWindowSize(800, 800);
glutCreateWindow("Circle");
glutReshapeFunc(ChangeSize);
glutDisplayFunc(RenderScene);
SetupRC();
glutMainLoop();
return 0;
}
That's the code. I think that the problem is in the ChangeSize() function. Can someone help me? I tried dividing and multiplaying the range by the aspect ratio defined as width/height by the problem remains.
The projection matrix describes the mapping from 3D points of a scene, to 2D points of the viewport. The projection matrix transforms from view space to the clip space.
The coordinates in the clip space are transformed to the normalized device coordinates (NDC) in the range (-1, -1, -1) to (1, 1, 1) by dividing with the w component of the clip coordinates.
At Orthographic Projection the coordinates in the eye space are linearly mapped to normalized device coordinates and the clip sapce coordinates are equal the normalized device coordiantes, because the w component is 1 (for a carthesian coordinate).
Orthographic Projection Matrix:
r = right, l = left, b = bottom, t = top, n = near, f = far
2/(r-l) 0 0 0
0 2/(t-b) 0 0
0 0 -2/(f-n) 0
-(r+l)/(r-l) -(t+b)/(t-b) -(f+n)/(f-n) 1
Lets assume you have a full HD window:
w = 1920.0;
h = 1080.0;
The window has an aspcet ratio of 1.77778
aspectRatio = w / h = 1.77778
If you set up an orthographic projection matrix like this:
glOrtho(-nRange*aspectRatio, nRange*aspectRatio, -nRange, nRange, -nRange*2, nRange*2 );
this will result in the following orthographic projections matrix (1.0 / 1.77778 == 0.5625):
0.5625/nRange 0 0.0 0.0
0.0 1.0/nRange 0.0 0.0
0.0 0.0 0.5/nRange 0.0
0.0 0.0 0.0 1.0
When a geometry is drawn, then each point of the geometry is transformed by the projection matrix. If a circle is drawn in the XY-plane of the viewport,
then the X-coordinate is scaled by 0.5625/nRange:
X' = X * prjMat[0][0] = X * 0.5625/nRange
while the Y-coordinate is scaled by 1.0/nRange
Y' = Y * prjMat[1][1] = Y * 1.0/nRange
This means, the orthographic projection matrix applies the reciprocal aspect ratio of the viewport to the geometry, when the geometry is transformed from view space to normalized device space.
This causes that the perfect circle is distorted to an ellipse, in normalized device space and looks like this:
If you stretch this ellipse back to the rectangular viewport, the you can see the perfect circle in the window or on the screen:
I try to use what many people seem to find a good way, I call gluUnproject 2 times with different z-values and then try to calculate the direction vector for the ray from these 2 vectors.
I read this question and tried to use the structure there for my own code:
glGetFloat(GL_MODELVIEW_MATRIX, modelBuffer);
glGetFloat(GL_PROJECTION_MATRIX, projBuffer);
glGetInteger(GL_VIEWPORT, viewBuffer);
gluUnProject(mouseX, mouseY, 0.0f, modelBuffer, projBuffer, viewBuffer, startBuffer);
gluUnProject(mouseX, mouseY, 1.0f, modelBuffer, projBuffer, viewBuffer, endBuffer);
start = vecmath.vector(startBuffer.get(0), startBuffer.get(1), startBuffer.get(2));
end = vecmath.vector(endBuffer.get(0), endBuffer.get(1), endBuffer.get(2));
direction = vecmath.vector(end.x()-start.x(), end.y()-start.y(), end.z()-start.z());
But this only returns the Homogeneous Clip Coordinates (I believe), since they only range from -1 to 1 on every axis.
How to actually get coordinates from which I can create a ray?
EDIT: This is how I construct the matrices:
Matrix projectionMatrix = vecmath.perspectiveMatrix(60f, aspect, 0.1f,
100f);
//The matrix of the camera = viewMatrix
setTransformation(vecmath.lookatMatrix(eye, center, up));
//And every object sets a ModelMatrix in it's display method
Matrix modelMatrix = parentMatrix.mult(vecmath
.translationMatrix(translation));
modelMatrix = modelMatrix.mult(vecmath.rotationMatrix(1, 0, 1, angle));
EDIT 2:
This is how the function looks right now:
private void calcMouseInWorldPosition(float mouseX, float mouseY, Matrix proj, Matrix view) {
Vector start = vecmath.vector(0, 0, 0);
Vector end = vecmath.vector(0, 0, 0);
FloatBuffer modelBuffer = BufferUtils.createFloatBuffer(16);
modelBuffer.put(view.asArray());
modelBuffer.rewind();
FloatBuffer projBuffer = BufferUtils.createFloatBuffer(16);
projBuffer.put(proj.asArray());
projBuffer.rewind();
FloatBuffer startBuffer = BufferUtils.createFloatBuffer(16);
FloatBuffer endBuffer = BufferUtils.createFloatBuffer(16);
IntBuffer viewBuffer = BufferUtils.createIntBuffer(16);
//The two calls for projection and modelView matrix are disabled here,
as I use my own matrices in this case
// glGetFloat(GL_MODELVIEW_MATRIX, modelBuffer);
// glGetFloat(GL_PROJECTION_MATRIX, projBuffer);
glGetInteger(GL_VIEWPORT, viewBuffer);
//I know this is really ugly and bad, but I know that the height and width is always 600
// and this is just for testing purposes
mouseY = 600 - mouseY;
gluUnProject(mouseX, mouseY, 0.0f, modelBuffer, projBuffer, viewBuffer, startBuffer);
gluUnProject(mouseX, mouseY, 1.0f, modelBuffer, projBuffer, viewBuffer, endBuffer);
start = vecmath.vector(startBuffer.get(0), startBuffer.get(1), startBuffer.get(2));
end = vecmath.vector(endBuffer.get(0), endBuffer.get(1), endBuffer.get(2));
direction = vecmath.vector(end.x()-start.x(), end.y()-start.y(), end.z()-start.z());
}
I'm trying to use my own projection and view matrix, but this only seems to give weirder results.
With the GlGet... stuff I get this for a click in the upper right corner:
start: (0.97333336, -0.98, -1.0)
end: (0.97333336, -0.98, 1.0)
When I use my own stuff I get this for the same position:
start: (-2.4399707, -0.55425626, -14.202201)
end: (-2.4399707, -0.55425626, -16.198204)
Now I actually need a modelView matrix instead of just the view matrix, but I don't know how I am supposed to get it, since it is altered and created anew in every display call of every object.
But is this really the problem? In this tutorial he says "Normally, to get into clip space from eye space we multiply the vector by a projection matrix. We can go backwards by multiplying by the inverse of this matrix." and in the next step he multiplies again by the inverse of the view matrix, so I thought this is what I should actually do?
EDIT 3:
Here I tried what user42813 suggested:
Matrix view = cam.getTransformation();
view = view.invertRigid();
mouseY = height - mouseY - 1;
//Here I only these values, because the Z and W values would be 0
//following your suggestion, so no use adding them here
float tempX = view.get(0, 0) * mouseX + view.get(1, 0) * mouseY;
float tempY = view.get(0, 1) * mouseX + view.get(1, 1) * mouseY;
float tempZ = view.get(0, 2) * mouseX + view.get(1, 2) * mouseY;
origin = vecmath.vector(tempX, tempY, tempZ);
direction = cam.getDirection();
But now the direction and origin values are always the same:
origin: (-0.04557252, -0.0020000197, -0.9989586)
direction: (-0.04557252, -0.0020000197, -0.9989586)
Ok I finally managed to work this out, maybe this will help someone.
I found some formula for this and did this with the coordinates that I was getting, which ranged from -1 to 1:
float tempX = (float) (start.x() * 0.1f * Math.tan(Math.PI * 60f / 360));
float tempY = (float) (start.y() * 0.1f * Math.tan(Math.PI * 60f / 360) * height / width);
float tempZ = -0.1f;
direction = vecmath.vector(tempX, tempY, tempZ); //create new vector with these x,y,z
direction = view.transformDirection(direction);
//multiply this new vector with the INVERSED viewMatrix
origin = view.getPosition(); //set the origin to the position values of the matrix (the right column)
I dont really use deprecated opengl but i would share my thought,
First it would be helpfull if you show us how you build your View matrix,
Second the View matrix you have is in the local space of the camera,
now typically you would multiply your mouseX and (ScreenHeight - mouseY - 1) by the View matrix (i think the inverse of that matrix sorry, not sure!) then you will have the mouse coordinates in camera space, then you will add the Forward vector to that vector created by the mouse, then you will have it, it would look something like that:
float mouseCoord[] = { mouseX, screen_heihgt - mouseY - 1, 0, 0 }; /* 0, 0 because we multipling by a matrix 4.*/
mouseCoord = multiply( ViewMatrix /*Or: inverse(ViewMatrix)*/, mouseCoord );
float ray[] = add( mouseCoord, forwardVector );
I am trying to move a pyramid around in opengl in C++ and I am trying to get it to move forward in the direction it is facing. However, I cannot seem to figure out how to do this. This is my code for drawing my pyramid:
void drawTriangle()
{
//back
glBegin(GL_POLYGON);
glColor3f(1,0,0);
glVertex3f(-1,-1,-1);
glVertex3f(1,-1,-1);
glVertex3f(0,1,0);
glEnd();
//front
glBegin(GL_POLYGON);
glColor3f(0,1,0);
glVertex3f(-1,-1,1);
glVertex3f(1,-1,1);
glVertex3f(0,1,0);
glEnd();
//right
glBegin(GL_POLYGON);
glColor3f(0,0,1);
glVertex3f(1,-1,-1);
glVertex3f(1,-1,1);
glVertex3f(0,1,0);
glEnd();
//left
glBegin(GL_POLYGON);
glColor3f(1,1,0);
glVertex3f(-1,-1,-1);
glVertex3f(-1,-1,1);
glVertex3f(0,1,0);
glEnd();
//bottom
glBegin(GL_POLYGON);
glColor3f(1,0,1);
glVertex3f(-1,-1,-1);
glVertex3f(1,-1,-1);
glVertex3f(1,-1,1);
glVertex3f(-1,-1,1);
glEnd();
}
This is how the pyramid is drawn to the screen:
glPushMatrix();
glTranslatef(Xtri,0,Ztri);
glRotatef(heading,0,1,0);
drawTriangle();
glPopMatrix();
glFlush();
And here is how the variables are updated so that the pyramid could move around :
void processKeys()
{
if(keys[VK_LEFT])
{
heading-=1.0f;
}
if(keys[VK_RIGHT])
{
heading+=1.0f;
}
if(keys[VK_UP])
{
Vtri-=0.001f;
}
if(keys[VK_DOWN])
{
Vtri+=0.001f;
}
}
void update()
{
Xtri += Vtri*cos((90+heading)*(PI/180.0f));
Ztri += Vtri*sin((90+heading)*(PI/180.0f));
}
I am trying to get the pyramid to move forward so that the red or back face is the face that I want to be the direction that the pyramid moves in but when I use this code it doesn't work that way at all and it moves in a very funny way.
Here's one way you can do it. It's based on Direct3D, but I assume it should be very similar for OpenGL.
Have two vectors for your pyramid: one containing its position and another one containing its rotation. Initially both initialized to 0,0,0. Also have a direction vector initially facing in the direction your object does (e.g. 1,0,0) and speed, again set to 0.
Upon pressing a or d adjust the y element of the rotation vector to a desired angle. Similarly upon pressing w or s adjust the speed of your object. You probably want to take frame rendering time into account to make the movement fps independent.
Then create a rotation matrix around Y axis, like you do. Use that matrix to create new normalized vector by multiplying it with the initial position vector. Then add this vector multiplied by speed to your position coordinates and use these coordinates for translation matrix.
Hope it makes sense. Here's some pseudo-code:
// in constructor:
x = y = z = 0.0f; // position
ry = 0.0f; // rotation
speed = 0.0f;
initVec(1,0,0); // initial direction vector
// in event handler:
// upon key press adjust speed and/or ry
// in move():
// create rotation matrix around Y axis by ry = rotationMatrix
// use it to find new direction vector
newDirectionVector = initVec * rotationMatrix;
// adjust your position
x += newDirectionVector * speed;
y += newDirectionVector * speed;
z += newDirectionVector * speed;
glTranslatef(x, y, z);
// render
I came across this when searching for ideas for a similar problem, and decided to share my solution:
For a triangle with 1 unit base, and 2 units height, on y = 0.3 = pos[2]
void triangle::draw() {
glPushMatrix();
//pos[0] is the x value initialized to 0
//pos[2] is the z value initialized to 0
glTranslatef(pos[0], 0, pos[2]);
glRotatef(direction, 0, 1, 0);
glBegin(GL_TRIANGLES);
glVertex3f(.5, pos[1], 0);
glVertex3f(-.5, pos[1], 0);
glVertex3f(0, pos[1], 2);
glEnd();
glPopMatrix();
}
//called when key w is pressed
void triangle::forward() {
// convert degrees to rads and multiply (I used 0.5)
pos[0] += sin(M_PI * direction / 180) * .5;
pos[2] += cos(M_PI * direction / 180) * .5;
std::cout << pos[0] << "," << pos[2] << std::endl;
}
//called when key s is pressed
void triangle::back() {
pos[0] -= sin(M_PI * direction / 180) * .5;
pos[2] -= cos(M_PI * direction / 180) * .5;
std::cout << pos[0] << "," << pos[2] << std::endl;
}
//called when key d is pressed
void triangle::right() {
direction -= 5;
//direction is the angle (int)
//this is probably not needed but, if you keep turning in the same direction
//an overflow is not going to happen
if (direction <= 360)direction %= 360;
std::cout << direction << std::endl;
}
//called when key a is pressed
void triangle::left() {
direction += 5;
if (direction >= -360)direction %= 360;
std::cout << direction << std::endl;
}
Hope I was of help, for someone facing similar problems bumping into this.
You need to do rotations before translations, assuming your object is at the origin to begin with (if I recall my math correctly). I believe the rotation matrix applied rotates around the axis (0, 1, 0), if you've already translated to a new location, that rotation will affect your position as well as direction you are facing.
I want to know how to draw a spiral.
I wrote this code:
void RenderScene(void)
{
glClear(GL_COLOR_BUFFER_BIT);
GLfloat x,y,z = -50,angle;
glBegin(GL_POINTS);
for(angle = 0; angle < 360; angle += 1)
{
x = 50 * cos(angle);
y = 50 * sin(angle);
glVertex3f(x,y,z);
z+=1;
}
glEnd();
glutSwapBuffers();
}
If I don't include the z terms I get a perfect circle but when I include z, then I get 3 dots that's it. What might have happened?
I set the viewport using glviewport(0,0,w,h)
To include z should i do anything to set viewport in z direction?
You see points because you are drawing points with glBegin(GL_POINTS).
Try replacing it by glBegin(GL_LINE_STRIP).
NOTE: when you saw the circle you also drew only points, but drawn close enough to appear as a connected circle.
Also, you may have not setup the depth buffer to accept values in the range z = [-50, 310] that you use. These arguments should be provided as zNear and zFar clipping planes in your gluPerspective, glOrtho() or glFrustum() call.
NOTE: this would explain why with z value you only see a few points: the other points are clipped because they are outside the z-buffer range.
UPDATE AFTER YOU HAVE SHOWN YOUR CODE:
glOrtho(-100*aspectratio,100*aspectratio,-100,100,1,-1); would only allow z-values in the [-1, 1] range, which is why only the three points with z = -1, z = 0 and z = 1 will be drawn (thus 3 points).
Finally, you're probably viewing the spiral from the top, looking directly in the direction of the rotation axis. If you are not using a perspective projection (but an isometric one), the spiral will still show up as a circle. You might want to change your view with gluLookAt().
EXAMPLE OF SETTING UP PERSPECTIVE
The following code is taken from the excellent OpenGL tutorials by NeHe:
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION); // Select The Projection Matrix
glLoadIdentity(); // Reset The Projection Matrix
// Calculate The Aspect Ratio Of The Window
gluPerspective(45.0f,(GLfloat)width/(GLfloat)height,0.1f,100.0f);
glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
glLoadIdentity(); // Reset The Modelview Matrix
Then, in your draw loop would look something like this:
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
glLoadIdentity();
glTranslatef(-1.5f,0.0f,-6.0f); // Move Left 1.5 Units And Into The Screen 6.0
glBegin(GL_TRIANGLES); // Drawing Using Triangles
glVertex3f( 0.0f, 1.0f, 0.0f); // Top
glVertex3f(-1.0f,-1.0f, 0.0f); // Bottom Left
glVertex3f( 1.0f,-1.0f, 0.0f); // Bottom Right
glEnd();
Of course, you should alter this example code your needs.
catchmeifyoutry provides a perfectly capable method, but will not draw a spatially accurate 3D spiral, as any render call using a GL_LINE primitive type will rasterize to fixed pixel width. This means that as you change your perspective / view, the lines will not change width. In order to accomplish this, use a geometry shader in combination with GL_LINE_STRIP_ADJACENCY to create 3D geometry that can be rasterized like any other 3D geometry. (This does require that you use the post fixed-function pipeline however)
I recommended you to try catchmeifyoutry's method first as it will be much simpler. If you are not satisfied, try the method I described. You can use the following post as guidance:
http://prideout.net/blog/?tag=opengl-tron
Here is my Spiral function in C. The points are saved into a list which can be easily drawn by OpenGL (e.g. connect adjacent points in list with GL_LINES).
cx,cy ... spiral centre x and y coordinates
r ... max spiral radius
num_segments ... number of segments the spiral will have
SOME_LIST* UniformSpiralPoints(float cx, float cy, float r, int num_segments)
{
SOME_LIST *sl = newSomeList();
int i;
for(i = 0; i < num_segments; i++)
{
float theta = 2.0f * 3.1415926f * i / num_segments; //the current angle
float x = (r/num_segments)*i * cosf(theta); //the x component
float y = (r/num_segments)*i * sinf(theta); //the y component
//add (x + cx, y + cy) to list sl
}
return sl;
}
An example image with r = 1, num_segments = 1024:
P.S. There is difference in using cos(double) and cosf(float).
You use a float variable for a double function cos.