Related
I have some legacy code which performs the matrix operation of B = B + A*E as
DO I = 1,N
DO L = 1,N
DO K = 1,N
B(I,K) = B(I,K) + A(I,L)*E(L,K,J-1)
end do
end do
end do
To improve readability as well as take advantage of modern fortran intrinsic functions, I would like to write the above code as
B = B + matmul( A, E(:, 1:N, J-1) )
I noticed that the improved readability comes at the cost of performance. I determined that the problem is not with the intrinsic function matmul - the left figure shows that matmul performs just as well as the manually written operation for all values of N.
When matrix multiplication is combined with matrix addition, then for small values of N the manually written operation performs better than the intrinsic functions. For my uses, usually N < 10; I would like to improve the readability without losing the performance. Might there be a suggestion for that?
The code I am using is below. I am using Mac OS 10.14.6 with gfortran 8.2.0 and compiling with the -O3 optimization option.
program test
implicit none
integer :: loop_max = 1000
integer :: j ! loop index
integer :: i ! loop index
real :: t1, t2 ! start and end times
real :: t_manual, t_intrinsic, t_man_add, t_intrn_add
integer :: N ! matrix dimension
integer, parameter :: NJ = 12
real, dimension(:, :), allocatable :: A, B ! matrices
real, dimension(:, :), allocatable :: D
real, dimension(:), allocatable :: G
real, dimension(:, :, :), allocatable :: E
open(1, file = 'Delete.txt', status = 'unknown')
do N = 1, 40
allocate(A(N,N), B(N,N), G(N), D(N, 2*N+1), E(N, N+1, NJ))
! ##########################################################################
! manual matrix multiplication vs matmul
call rand_fill
call CPU_time(t1)
do i = 1, loop_max
do j = 2, 12
call matmul_manual(j, N, NJ, A, B, D, G, E)
end do
end do
call CPU_time(t2)
t_manual = t2 - t1
write(1, *) A, B, D, G, E
call rand_fill
call CPU_time(t1)
do i = 1, loop_max
do j = 2, 12
B = matmul( A, E(:, 1:N, j-1) )
end do
end do
call CPU_time(t2)
t_intrinsic = t2 - t1
write(1, *) A, B, D, G, E
! --------------------------------------------------------------------------
! ##########################################################################
! manual matrix multiplication with matrix addition
call rand_fill
call CPU_time(t1)
do i = 1, loop_max
do j = 2, 12
call manual_matmul_add(j, N, NJ, A, B, D, G, E)
end do
end do
call CPU_time(t2)
t_man_add = t2 - t1
write(1, *) A, B, D, G, E
! --------------------------------------------------------------------------
! ##########################################################################
! intrinsic matrix multiplication (matmul) with matrix addition
call rand_fill
call CPU_time(t1)
do i = 1, loop_max
do j = 2, 12
call intrinsic_matmul_add(j, N, NJ, A, B, D, G, E)
end do
end do
call CPU_time(t2)
t_intrn_add = t2 - t1
write(1, *) A, B, D, G, E
! --------------------------------------------------------------------------
deallocate(A, B, D, G, E)
print*, N, t_manual, t_intrinsic, t_man_add, t_intrn_add
end do
contains
subroutine rand_fill
! fill the matrices with random numbers
call random_number(A)
call random_number(B)
call random_number(D)
call random_number(G)
call random_number(E)
end subroutine
end program test
subroutine matmul_manual(j, N, NJ, A, B, D, G, E)
implicit none
integer, intent(in) :: j
integer, intent(in) :: N, NJ
real, dimension(N, N), intent(in out) :: A, B
real, dimension(N, 2*N+1), intent(in out) :: D
real, dimension(N), intent(in out) :: G
real, dimension(N, N+1, NJ), intent(in out) :: E
integer :: I, L, K ! loop indices
B = 0.0
DO I = 1,N
DO L = 1,N
DO K = 1,N
B(I,K) = B(I,K) + A(I,L)*E(L,K,J-1)
end do
end do
end do
end subroutine matmul_manual
subroutine manual_matmul_add(j, N, NJ, A, B, D, G, E)
implicit none
integer, intent(in) :: j
integer, intent(in) :: N, NJ
real, dimension(N, N), intent(in out) :: A, B
real, dimension(N, 2*N+1), intent(in out) :: D
real, dimension(N), intent(in out) :: G
real, dimension(N, N+1, NJ), intent(in out) :: E
integer :: I, L, K ! loop indices
DO I = 1,N
D(I,N+1) = -G(I)
DO L = 1,N
D(I,N+1) = D(I,N+1)+A(I,L)*E(L,N+1,J-1)
DO K = 1,N
B(I,K) = B(I,K) + A(I,L)*E(L,K,J-1)
end do
end do
end do
end subroutine manual_matmul_add
subroutine intrinsic_matmul_add(j, N, NJ, A, B, D, G, E)
implicit none
integer, intent(in) :: j
integer, intent(in) :: N, NJ
real, dimension(N, N), intent(in out) :: A, B
real, dimension(N, 2*N+1), intent(in out) :: D
real, dimension(N), intent(in out) :: G
real, dimension(N, N+1, NJ), intent(in out) :: E
real, dimension(N, N+1) :: temp1
real, dimension(N, N) :: temp2
D(:, N+1) = -G + matmul( A, E(:, N+1, j-1) )
B = B + matmul( A, E(:, 1:N, j-1) )
end subroutine intrinsic_matmul_add
subroutine mat_sub_new(j, N, NJ, A, B, D, G, E)
implicit none
integer, intent(in) :: j
integer, intent(in) :: N, NJ
real, dimension(N, N), intent(in out) :: A, B
real, dimension(N, 2*N+1), intent(in out) :: D
real, dimension(N), intent(in out) :: G
real, dimension(N, N+1, NJ), intent(in out) :: E
if (N == 1) then ! matmul seems to be inefficient when N = 1
D(N,N+1) = -G(N) + A(N,N)*E(N, N+1, J-1)
B(N,N) = B(N,N) + A(N,N)*E(N, N, J-1)
else
D(:, N+1) = -G + matmul( A, E(:, N+1, j-1) )
B = B + matmul( A, E(:, 1:N, j-1) )
end if
end subroutine mat_sub_new
I suspect this has to do with two issues:
How the compiler resolves the MATMUL generic interface to a proper call to the correct routine (REAL vs. COMPLEX vs. INTEGER, or matrix times vector vs. matrix times matrix): I have no idea whether this is done systematically at compilation or at runtime, or whether this choice is made based on the optimization level; (this would justify the additional overhead especially for the low-size cases)
The internal "general purpose" algorithm may not be in general the best suited for your problem, as it looks like in some cases, brute-force compiler optimization does a better job. Is gfortran's MATMUL intrinsics based on BLAS, for example? If so, that may not be the fastest.
I've done a similar test with NORM2 on my PC (Windows, i7, gfortran 9.2.0, compiled with -O3 -march=core-avx2): Turns out that, for NORM2:
The BLAS implementation is always slowest, despite having been slightly refactored to feed the compiler a PURE version
Usage of the intrinsics (both NORM2 or SQRT(SUM(X**2))) is always slow, regardless of the array size
The fastest cases are when either using a simple loop, or the intrinsics with a fixed-size array:
ARRAY SIZE assumed-shape fixed-size intrinsic NORM2 LOOP BLAS
N [ms/N] [ms/N] [ms/N] [ms/N] [ms/N]
2 5.93750E-09 4.06250E-09 8.43750E-09 4.06250E-09 1.03125E-08
12 1.03125E-08 7.81250E-09 3.12500E-08 7.81250E-09 5.09375E-08
22 1.65625E-08 1.40625E-08 5.50000E-08 1.43750E-08 9.15625E-08
32 2.25000E-08 2.00000E-08 7.81250E-08 2.00000E-08 1.29375E-07
BTW The code is pasted here below (beware of the large memory footprint!):
program test_norm
use iso_fortran_env
implicit none
integer :: xsize,i,iunit,icase
integer, parameter :: testSize = 50000000
real(real64), allocatable :: set(:,:),setNorm(:)
real(real64) :: t0,t1,setSum(5),timeTable(5,35)
intrinsic :: norm2
open(newunit=iunit,file='garbage.txt',action='write')
print '(6(1x,a15))' ,'ARRAY SIZE','assumed-shape','fixed-size','intrinsic NORM2','LOOP','BLAS'
print '(6(1x,a15))' ,'N',('[ms/N]',i=1,5)
icase = 0
do xsize = 2,32,10
! Initialize test set
icase = icase+1
allocate(set(xsize,testSize),setNorm(testSize))
call random_number(set)
! Test 1: intrinsic SQRT/SUM, assumed-shape array
call cpu_time(t0); forall(i=1:testSize) setNorm(i) = norm_v1(set(:,i)); call cpu_time(t1)
setSum(1) = sum(setNorm); timeTable(1,icase) = t1-t0
! Test 2: intrinsic SQRT/SUM, fixed-size array
call cpu_time(t0); forall(i=1:testSize) setNorm(i) = norm_v2(xsize,set(:,i)); call cpu_time(t1)
setSum(2) = sum(setNorm); timeTable(2,icase) = t1-t0
! Test 3: intrinsic NORM2
call cpu_time(t0); forall(i=1:testSize) setNorm(i) = norm2(set(:,i)); call cpu_time(t1)
setSum(3) = sum(setNorm); timeTable(3,icase) = t1-t0
! Test 4: LOOP
call cpu_time(t0); forall(i=1:testSize) setNorm(i) = norm_v3(xsize,set(:,i)); call cpu_time(t1)
setSum(4) = sum(setNorm); timeTable(4,icase) = t1-t0
! Test 5: BLAS
call cpu_time(t0); forall(i=1:testSize) setNorm(i) = DNRM2(xsize,set(:,i),1); call cpu_time(t1)
setSum(5) = sum(setNorm); timeTable(5,icase) = t1-t0
! Print output
print '(7x,i2,9x,5(2x,1pe13.5e2,1x))', xsize,timeTable(:,icase)/testSize
write (iunit,*) 'setSum = ',setSum
deallocate(set,setNorm)
end do
close(iunit)
contains
pure real(real64) function norm_v1(x) result(L2)
real(real64), intent(in) :: x(:)
L2 = sqrt(sum(x**2))
end function norm_v1
pure real(real64) function norm_v2(n,x) result(L2)
integer, intent(in) :: n
real(real64), intent(in) :: x(n)
L2 = sqrt(sum(x**2))
end function norm_v2
pure real(real64) function norm_v3(n,x) result(L2)
integer, intent(in) :: n
real(real64), intent(in) :: x(n)
integer :: i
L2 = 0.0_real64
do i=1,n
L2 = L2 + x(i)**2
end do
L2 = sqrt(L2)
end function norm_v3
PURE REAL(REAL64) FUNCTION DNRM2 ( N, X, INCX )
INTEGER, INTENT(IN) :: N,INCX
REAL(REAL64), INTENT(IN) :: X( * )
REAL(REAL64), PARAMETER :: ONE = 1.0_REAL64
REAL(REAL64), PARAMETER :: ZERO = 0.0_REAL64
INTEGER :: IX
REAL(REAL64) :: ABSXI, NORM, SCALE, SSQ
INTRINSIC :: ABS, SQRT
IF( N<1 .OR. INCX<1 )THEN
NORM = ZERO
ELSE IF( N==1 )THEN
NORM = ABS( X( 1 ) )
ELSE
SCALE = ZERO
SSQ = ONE
DO IX = 1, 1 + ( N - 1 )*INCX, INCX
IF( X( IX )/=ZERO )THEN
ABSXI = ABS( X( IX ) )
IF( SCALE<ABSXI )THEN
SSQ = ONE + SSQ*( SCALE/ABSXI )**2
SCALE = ABSXI
ELSE
SSQ = SSQ + ( ABSXI/SCALE )**2
END IF
END IF
END DO
NORM = SCALE * SQRT( SSQ )
END IF
DNRM2 = NORM
RETURN
END FUNCTION DNRM2
end program test_norm
I am trying to find the first (smallest) k eigenvalues of a real symmetric tridiagonal matrix using the appropriate lapack routine.
I am new to both Fortran and lapack libraries, but (d)stemr seemd to me a good choice so I tried calling it but keep getting segmentation faults.
After some trials I noticed the problem was my input matrix, which has:
diagonal = 2 * (1 + order 1e-5 to 1e-3 small variable correction)
subdiagonal all equal -1 (if I use e.g. 0.95 instead everything works)
I reduced the code to a single M(not)WE program shown below.
So the question are:
why is stemr failing with such a matrix, while e.g. stev works?
why a segmentation fault?
program mwe
implicit none
integer, parameter :: n = 10
integer, parameter :: iu = 3
integer :: k
double precision :: d(n), e(n)
double precision :: vals(n), vecs(n,iu)
integer :: m, ldz, nzc, lwk, liwk, info
integer, allocatable :: isuppz(:), iwk(:)
double precision, allocatable :: wk(:)
do k = 1, n
d(k) = +2d0 + ((k-5.5d0)*1d-2)**2
e(k) = -1d0 ! e(n) not really needed
end do
ldz = n
nzc = iu
allocate(wk(1), iwk(1), isuppz(2*iu))
! ifort -mkl gives SIGSEGV at this call <----------------
call dstemr( &
'V', 'I', n, d, e, 0d0, 0d0, 1, iu, &
m, vals, vecs, ldz, -1, isuppz, .true., &
wk, -1, iwk, -1, info)
lwk = ceiling(wk(1)); deallocate(wk); allocate(wk(lwk))
liwk = iwk(1); deallocate(iwk); allocate(iwk(liwk))
print *, info, lwk, liwk ! ok with gfortran
! gfortran -llapack gives SIGSEGV at this call <---------
call dstemr( &
'V', 'I', n, d, e, 0d0, 0d0, 1, iu, &
m, vals, vecs, ldz, nzc, isuppz, .true., &
wk, lwk, iwk, liwk, info)
end program
Compilers are invoked via:
gfortran [(GCC) 9.2.0]: gfortran -llapack -o o.x mwe.f90
ifort [(IFORT) 19.0.5.281 20190815]: ifort -mkl -o o.x mwe.f90
According to the manual, one issue seems that the argument TRYRAC needs to be a variable (rather than a constant) because it can be overwritten by dstemr():
[in,out] TRYRAC : ... On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
does not define its eigenvalues to high relative accuracy.
So, for example, a modified code may look like:
logical :: tryrac
...
tryrac = .true.
call dstemr( &
'V', 'I', n, d, e, 0d0, 0d0, 1, iu, &
m, vals, vecs, ldz, -1, isuppz, tryrac, & !<--
wk, -1, iwk, -1, info)
...
tryrac = .true.
call dstemr( &
'V', 'I', n, d, e, 0d0, 0d0, 1, iu, &
m, vals, vecs, ldz, nzc, isuppz, tryrac, & !<--
wk, lwk, iwk, liwk, info)
I am interested in speeding up computation time for the subroutine compoundret which basically compounds a monthly return series over some holding period, say one month, three months, six months, etc.
I will be calling this subroutine from R as a dll. I have written a main function in the attached code snippet to get everything working in fortran.
subroutine compoundret(R_c, R, RF, horizons, Tn, N, M)
implicit none
! Arguments declarations
integer, intent(in) :: horizons(M), Tn, N, M
real*8, intent(in) :: RF(Tn), R(Tn, N, M)
real*8, intent(out) :: R_c(Tn, N, M)
! Intermediary Variables
integer :: t, j, k
real*8 :: RF_Temp(Tn, N, M)
R_c = 0.0
do t = 1, Tn
RF_Temp(t,:,:) = RF(t)
end do
!$acc data copyin(r(Tn,N,M), RF_Temp(Tn,N,M), horizons(M)), create(R_c(Tn,
N, M))
!$acc parallel loop
do k = 1, M
do j = 1, N
do t = 1, Tn - horizons(k) + 1
R_c( t, j, k) = PRODUCT( 1 + R( t:t + horizons(k) - 1, j, k) + &
RF_Temp( t:t + horizons(k) - 1, j, k)) - &
PRODUCT(1+ RF_Temp( t:t + horizons(k) - 1, j, k))
end do
end do
end do
!$acc end parallel
!$acc update host(R_c)
!$acc end data
end subroutine compoundret
Program main
implicit none
real*8 :: df(1000,5000, 6)
real*8 :: retdata(size(df,1),size(df,2),size(df,3)),RF(size(df,1))
integer :: horizons(6), Tn, N, M
Tn = size(df, 1)
N = size(df, 2)
M = size(df, 3)
df = 0.001
RF = 0.001
horizons(:) = (/1,3,6,12,24,48/)
call compoundret(retdata,df,RF,horizons, Tn, N, M)
print*, retdata(1, 1, 1:M)
end program
My target platform is a compute 6.0 device (GTX 1060).
I'd recommend collapsing the two outer loops and then adding "!$acc loop vector" on the "t" loop.
!$acc parallel loop collapse(2)
do k = 1, M
do j = 1, N
!$acc loop vector
do t = 1, Tn - horizons(k) + 1
R_c( t, j, k) = PRODUCT( 1 + R( t:t + horizons(k) - 1, j, k) + &
RF_Temp( t:t + horizons(k) - 1, j, k)) - &
PRODUCT(1+ RF_Temp( t:t + horizons(k) - 1, j, k))
end do
end do
end do
!$acc end parallel
Right now, you're only parallelizing the outer loop and since "M" is quite small, you're underutilizing the GPU.
Note that the PGI 2017 compilers have a bug which will prevent you from using OpenACC within a DLL (shared objects on Linux are fine). We're working on fixing this issue in the 18.1 compilers. You're current options are to either wait till 18.1 is released early next year or go back to the 16.10 compilers. If you're using the PGI Community edition, you'll need to wait for the 18.4 compilers in April.
Also, putting OpenACC in shared or dynamic libraries require the use of the "-ta=tesla:nordc" option.
I need to diagonalize a 2x2 Hermitian matrix that depends on a parameter x, which varies continuously. For diagonalization I use EISPACK. When I plot the real and imaginary components of eigenvectors as a function of x, I notice that they have discontinuities. The eigenvalues calculation is OK. When I plot the eigenvectors in Maxima, the solutions appear continuous. I need the continuous eigenvectors since in next step I will need to calculate their derivatives.
Below the f77 code I use as test (compiling with gfortran on mingw).
program Eigenvalue
implicit none
integer n, m
parameter (n=2)
integer ierr, matz, i, j
double precision x, dx, xf, amp, xin
double precision w(n)
double precision Ar(n,n), Ai(n,n)
double precision xr(n,n), xi(n,n)
double precision fm1(2,n) ! f77
double precision fv1(n) ! f77
double precision fv2(n) ! f77
double complex psi1a, psi1b, psi2a, psi2b
m = 51
xf = 10.d0
xin = 0.0d0
amp = 2.d0
dx = (xf - xin)/(m-1)
do i = 1, m
x = dx*(i-m) + xf
Ar(1,1) = dsin(x)**2
Ar(1,2) = amp*dcos(x)
Ar(2,1) = amp*dcos(x)
Ar(2,2) = dcos(x)**2
Ai(1,1) = 0.0d0
Ai(1,2) = amp*dsin(x)
Ai(2,1) = -amp*dsin(x)
Ai(2,2) = 0.0d0
matz = 1
call ch ( n, n, ar, ai, w, matz, xr, xi, fv1, fv2, fm1, ierr ) !f77
write(20,*) x, w(1), w(2)
write(21,*) x, xr(1,1), xi(1,1)
write(22,*) x, xr(2,1), xi(2,1)
write(23,*) x, xr(1,2), xi(1,2)
write(24,*) x, xr(2,2), xi(2,2)
! autovetor 1
psi1a = cmplx(xr(1,1),xi(1,1))
psi1b = cmplx(xr(1,2),xi(1,2))
! autovetor 2
psi2a = cmplx(xr(2,1),xi(2,1))
psi2b = cmplx(xr(2,2),xi(2,2))
end do
end
While not really an answer, what follows is the code I used with LAPACK.
I used the latest versions of LAPACK and BLAS, with the following compiler options:
gfortran -Og -std=f2008 -Wall -Wextra {location_of_lapack}/liblapack.a {location_of_blas}/blas_LINUX.a main.f90 -o main
I'm compiling on Mac OS X with gfortran 6.3.0 from homebrew.
As Ian mentioned above, things like dcos are replaced with cos and I have used the KIND= formulation to ensure the same precision.
Ian also mentioned above about the arbitrary phase.
This problem is answered here; I have translated this solution into my code below.
The "magic" happens after the call to ZHEEV.
With this fix, I see no discontinuities.
program Eigenvalue
!> This can be used with the f2008 call
use, intrinsic :: iso_fortran_env
implicit none
!> dp contains the kind value for double precision.
!> Use below if compiling to f2008
integer, parameter :: dp = REAL64
!> Use below if compiling with f95 up and comment out iso_fortran_env
!>integer, parameter :: dp = SELECTED_REAL_KIND(15, 300)
!> Set wp to the desired precision.
integer, parameter :: wp = dp
integer, parameter :: n = 2
integer :: i, j, k, m
real(kind=wp) x, dx, xf, amp, xin
real(kind=wp), dimension(n) :: w
real(kind=wp), dimension(n, n) :: Ar, Ai
complex(kind=wp), dimension(n, n) :: A
complex(kind=wp), dimension(max(1,2*n-1)) :: WORK
integer, parameter :: lwork = max(1,2*n-1)
real(kind=wp), dimension(max(1, 3*n-2)) :: RWORK
integer :: info
complex(kind=wp) :: psi1a, psi1b, psi2a, psi2b
real(kind=wp) :: mag
m = 51
xf = 10.0_wp
xin = 0.0_wp
amp = 2.0_wp
if (m .eq. 1) then
dx = 0.0_wp
else
dx = (xf - xin)/(m-1)
end if
do i = 1, m
x = dx*(i-m) + xf
Ar(1,1) = sin(x)**2
Ar(1,2) = amp*cos(x)
Ar(2,1) = amp*cos(x)
Ar(2,2) = cos(x)**2
Ai(1,1) = 0.0_wp
Ai(1,2) = amp*sin(x)
Ai(2,1) = -amp*sin(x)
Ai(2,2) = 0.0_wp
do j = 1, n
do k = 1, n
A(j, k) = cmplx(Ar(j, k), Ai(j, k), kind=wp)
end do
end do
call ZHEEV('V', 'U', N, A, N, W, WORK, LWORK, RWORK, INFO)
do j = 1, n
A(:, j) = A(:, j) / A(1, j)
mag = sqrt(real(A(1, j)*conjg(A(1, j)))+ real(A(2, j)*conjg(A(2, j))))
A(:, j) = A(:, j)/mag
end do
psi1a = A(1, 1)
psi1b = A(1, 2)
psi2a = A(2, 1)
psi2b = A(2, 2)
end do
end program Eigenvalue
I'm porting a program that I use in a chemistry classroom from Matlab (very forgiving) to Fortran (err, not so much). The problem I see is that if I include print statements in 1 subroutine, my code returns significantly different values than if I don't (the ones with the print statement included are correct).
After reading stack overflow, I removed the print statement, recompiled with gfortran and fcheck='bounds', and my program returned the correct results, and no errors during compile.
The subroutines stored in a module Basis_Subs, and called from the main program, which I've posted below. The problem appears in the 4 dimensional matrix Gabcd(nb,nb,nb,nb) which is constructed using the subroutine Build_Electron_Repulsion from the Basis_Subs module. That subroutine calculates the matrix elements of Gabcd, and uses 1 internal helper functions, Rntuv, and 1 internal subroutine Gprod_1D, both of which are also stored in the Basis_Subs module.
These functions/routines are used in another section of the program, and that portion of the program doesn't show any errors or funny array behavior. That leads me to think the problem must either be in Build_Electron_Repulsion, how I'm calling Build_Electron_Repulsion or how I'm calling the the helper functions from inside Build_Electron_Repulsion.
I've posted the main program, and the subroutines for Build_Electron_Repulsion, gprod_1D, and the function Rntuv. What I'm really wondering is if you have any tips on tracking down where the error might be.
I'm using a pico style editor and gfortran.
Main Program, Z.f08
program HF
use typedefs
use Basis_Subs
use SCF_Mod
implicit none
real(dp) :: output, start, finish
integer (kind=4) :: IFLAG , i, N, nb,j,k,l,natom
integer, allocatable, dimension(:) :: Z
real(dp), allocatable, dimension(:,:) :: AL, S,T, VAB, H0
real(dp), allocatable, dimension(:,:,:,:) :: Gabcd
real(dp), dimension(maxl) :: Ex=0
real(dp) :: Energy, Nuc
type(primitive) :: g1, Build_Primitive
type(Basis) :: b1
type(Basis), dimension(100) :: bases
character(LEN=20) :: fname
print *, 'Input the filename'
read (*,*), fname
open(unit=12, file=fname)
read(12,*) natom
allocate(Z(natom))
allocate(AL(natom,3))
read(12,*) Z
do i=1, natom
read(12,*) AL(i,1), AL(i,2), AL(i,3)
end do
print *, 'Atomic Coorinates = ', AL
print *, 'Z in the main routine = ', Z
call cpu_time(start)
%Calculate the energies that don't depend on electrons
call Nuclear_Repulsion(natom, Z, AL, Nuc)
N=Sum(Z)
%Build the atom specific basis set
call Build_Bases(Z, AL, nb, bases)
%Using nb, from Build_Basis, allocate matrices
allocate(S(nb,nb))
allocate(T(nb,nb))
allocate(VAB(nb,nb))
allocate(Gabcd(nb,nb,nb,nb))
call Build_Overlap(bases, nb, S)
call Build_Kinetic(bases, nb, T)
call Build_Nuclear_Attraction(Z, AL, bases, nb, VAB)
H0 = T+VAB
call Build_Electron_Repulsion(bases, nb, Gabcd)
call cpu_time(finish)
print *, 'Total time for Matrix Elements= ', finish - start
call SCF(N, nb, H0, S, Gabcd, Nuc, Energy)
end program HF
Build_Electron_Repulsion is located inside the module Basis_Subs:
subroutine Build_Electron_Repulsion(bases, nbases, Gabcd)
!!Calculate the 4 centered electron repulsion integrals. Loop over array of !!basis sets 1:nb 4 times. Each element of basis set is a defined type that !!includes and array of gaussian functions and contraction coefficients !!basis(a)%g(1:nga) and basis(a)%c(1:nga). For each gaussian in each basis set,
!!Calculate int(int(basis(a1)*basis(b1)*basis(c2)*basis(d2)*1/r12 dr1)dr2).
!!Uses helper function Rntuv listed below
implicit none
type(basis), dimension(100), intent(in) :: bases
integer, intent(in) :: nbases
real(dp), dimension(nbases, nbases,nbases,nbases), intent(out) :: Gabcd
integer :: a, b,c,d, nga, ngb, ngc, ngd, index, lx, ly, lz, llx, lly,llz
integer :: llxmax, llymax, llzmax, lxmax, lymax, lzmax, xmax, ymax, zmax
integer :: x, y, z
real(dp) :: p, q, midpoint, PX, PY, PZ, output
real(dp) :: pp, qq, midpoint2, PPX, PPY, PPZ, tmp
real(dp) :: alpha_a, alpha_b, alpha_c, alpha_d, alpha
real(dp) :: ax, ay, az, bx, by, bz, cx,cy,cz, dx,dy,dz
real(dp), dimension(maxl) ::EabX, EabY, EabZ, EcdX, EcdY, EcdZ
real(dp), dimension(2*maxl, 2*maxl, 2*maxl) :: R
R=0
Gabcd=0.0D0
print *, 'Calculating 4 centered integrals'
do a=1, nbases
do b=1, nbases
do c=1, nbases
do d=1, nbases
do nga = 1, bases(a)%n
do ngb = 1, bases(b)%n
alpha_a=bases(a)%g(nga)%alpha
alpha_b=bases(b)%g(ngb)%alpha
p=alpha_a + alpha_b
ax=bases(a)%g(nga)%x
ay=bases(a)%g(nga)%y
az=bases(a)%g(nga)%z
bx=bases(b)%g(ngb)%x
by=bases(b)%g(ngb)%y
bz=bases(b)%g(ngb)%z
PX=(alpha_a*ax + alpha_b*bx)/p
PY=(alpha_a*ay + alpha_b*by)/p
PZ=(alpha_a*az + alpha_b*bz)/p
call gprod_1D(ax, alpha_a, bases(a)%g(nga)%lx, bx, alpha_b, bases(b)%g(ngb)%lx, EabX)
call gprod_1D(ay, alpha_a, bases(a)%g(nga)%ly, by, alpha_b, bases(b)%g(ngb)%ly, EabY)
call gprod_1D(az, alpha_a, bases(a)%g(nga)%lz, bz, alpha_b, bases(b)%g(ngb)%lz, EabZ)
lxmax=bases(a)%g(nga)%lx + bases(b)%g(ngb)%lx
lymax=bases(a)%g(nga)%ly + bases(b)%g(ngb)%ly
lzmax=bases(a)%g(nga)%lz + bases(b)%g(ngb)%lz
do ngc= 1, bases(c)%n
do ngd = 1, bases(d)%n
alpha_c=bases(c)%g(ngc)%alpha
alpha_d=bases(d)%g(ngd)%alpha
pp=alpha_c + alpha_d
cx=bases(c)%g(ngc)%x
cy=bases(c)%g(ngc)%y
cz=bases(c)%g(ngc)%z
dx=bases(d)%g(ngd)%x
dx=bases(d)%g(ngd)%y
dz=bases(d)%g(ngd)%z
PPX=(alpha_c*cx + alpha_d*dx)/pp
PPY=(alpha_c*cy + alpha_d*dy)/pp
PPZ=(alpha_c*cz + alpha_d*dz)/pp
llxmax=bases(c)%g(ngc)%lx + bases(d)%g(ngd)%lx
llymax=bases(c)%g(ngc)%ly + bases(d)%g(ngd)%ly
llzmax=bases(c)%g(ngc)%lz + bases(d)%g(ngd)%lz
call gprod_1D(cx, alpha_c, bases(c)%g(ngc)%lx, dx, alpha_d, bases(d)%g(ngd)%lx, EcdX)
call gprod_1D(cy, alpha_c, bases(c)%g(ngc)%ly, dy, alpha_d, bases(d)%g(ngd)%ly, EcdY)
call gprod_1D(cz, alpha_c, bases(c)%g(ngc)%lz, dz, alpha_d, bases(d)%g(ngd)%lz, EcdZ)
alpha=p*pp/(p+pp)
tmp=0
xmax= lxmax + llxmax
ymax = lymax + llymax
zmax = lzmax + llzmax
do x = 0, xmax
do y =0, ymax
do z=0, zmax
R(x+1,y+1,z+1)=Rntuv(0,x,y,z,alpha, PX, PY, PZ, PPX, PPY, PPZ)
end do
end do
end do
!if (a ==1 .and. b==1 .and. c ==1 .and. d==1) then
! print *,' R = ', R(1,1,1)
!print *, xmax, ymax, zmax
!print *,a,b,c,d,nga,ngb,ngc,ngd, 'R = ', R(1,1,1)
!end if
! if (PZ ==PPZ) then
! ! print *, R(1,1,1)
! output = Rntuv(0,0,0,0,alpha, PX, PY, PZ, PPX, PPY, PPZ)
! print *, output
! print *, a,b,c,d , PY, PPY
!
! end if
do lx = 0, lxmax
do ly = 0, lymax
do lz = 0, lzmax
do llx= 0, llxmax
do lly= 0, llymax
do llz= 0, llzmax
tmp = tmp + EabX(lx+1)*EabY(ly+1)*EabZ(lz+1)*(-1.0D0)**(llx + lly + llz) * &
EcdX(llx+1)*EcdY(lly+1)*EcdZ(llz+1)*R(lx+ llx+1, ly+lly+1, lz+llz+1)
end do
end do
end do
end do
end do
end do
Gabcd(a,b,c,d) = Gabcd(a,b,c,d) + 2.0D0*pi**2.5D0/(p*pp*sqrt(p + pp))*tmp*bases(a)%g(nga)%N &
* bases(b)%g(ngb)%N * bases(c)%g(ngc)%N * bases(d)%g(ngd)%N * bases(a)%c(nga) &
* bases(b)%c(ngb) * bases(c)%c(ngc) * bases(d)%c(ngd)
end do
end do
end do
end do
end do
end do
end do
end do
end subroutine Build_Electron_Repulsion
real(dp) function Rntuv(n, tmax, umax, vmax, p, Px, Py, Pz, Ax, Ay, Az) result(out)
!Rntuv(n, t,u,v,p,P,A)Determine the helper integral Rntuv for the coulomb
!integral of order n, the t,u,v th Hermite polynomial with exponent p
!centered at [Px Py Pz] and charge centered at location [Ax Ay Az];
implicit none
integer, intent(in) :: n, tmax, umax, vmax
real(dp), intent(in) :: Px, Py, Pz, Ax, Ay, Az, p
real(dp) :: PA2, output
real(dp), dimension(n+tmax+umax+vmax+2, tmax+1, umax+1, vmax+1) :: R
integer :: nmax, t, u, v
integer :: i, IFLAG
R=0
nmax = n+ tmax + umax + vmax + 2
PA2 = (Px-Ax)**2.0D0 + (Py-Ay)**2.0D0 + (Pz-Az)**2.0D0
do i = 0, nmax-1
output=Boys(i, p*PA2)
R(i+1,1,1,1)= (-2*p)**(1.0D0*i)*Boys(i, p*PA2)
end do
do t=1, tmax
if (t==1) then
do i=1,nmax-1
R(i,2,1,1)=(Px - Ax)*R(i+1,1,1,1)
end do
else
do i=1,nmax-1
R(i,t+1,1,1)=(t-1)*R(i+1,t-1,1,1)+ (Px-Ax)*R(i+1,t,1,1)
end do
end if
end do
do u = 1,umax
if (u==1) then
do i = 1,nmax-1
R(i,tmax+1,2,1)=(Py-Ay)*R(i+1,tmax+1,1,1)
end do
else
do i = 1,nmax-1
R(i,tmax+1,u+1,1)=(u-1)*R(i+1,tmax+1,u-1,1) + (Py-Ay)*R(i+1,tmax+1,u,1)
end do
end if
end do
do v=1,vmax
if (v==1) then
do i = 1, nmax-1
R(i,tmax+1,umax+1,2)=(Pz-Az)*R(i+1,tmax+1,umax+1,1)
end do
else
do i = 1, nmax-1
R(i,tmax+1,umax+1,v+1)=(v-1)*R(i+1,tmax+1,umax+1,v-1) + (Pz-Az)*R(i+1,tmax+1,umax+1,v)
end do
end if
end do
out = R(n+1,tmax+1,umax+1,vmax+1)
end function Rntuv
subroutine gprod_1D(x1, alpha1, lx1, x2, alpha2, lx2, Ex)
real(dp), intent(in) :: x1, alpha1, x2, alpha2
integer, intent(in) :: lx1, lx2
integer :: tmax, i, j ,t, qint
real(dp) :: p, q, midpoint, weighted_middle, KAB
real(dp), dimension(maxl), intent(inout) :: Ex
real(dp), dimension(maxl, maxl, 2*maxl) ::coefficients
coefficients=0.0D0
tmax=lx1 + lx2
Ex=0
p=alpha1 + alpha2
q=alpha1*alpha2/p
midpoint = x1 - x2
weighted_middle=(alpha1*x1 + alpha2*x2)/p
KAB= e**(-q*midpoint**2.0D0)
coefficients(1,1,1) = KAB
i=0
j=0
do while (i < lx1)
do t= 0, i+j+1
if (t==0) then
coefficients(i+2,j+1,t+1)=(weighted_middle - x1)*coefficients(i+1,j+1,t+1) + (t+1)*coefficients(i+1,j+1,t+2)
else
coefficients(i+2,j+1,t+1)=1/(2*p)*coefficients(i+1,j+1,t) + (weighted_middle-x1)*coefficients(i+1,j+1,t+1) + &
(t+1)*coefficients(i+1,j+1,t+2)
end if
end do
i=i+1
end do
do while (j < lx2)
do t=0, i+j+1
if (t==0) then
coefficients(i+1,j+2,t+1) = (weighted_middle - x2)*coefficients(i+1,j+1,t+1) + (dble(t)+1.0d0)*coefficients(i+1,j+1,t+2)
else
coefficients(i+1,j+2,t+1)=1/(2*p)*coefficients(i+1,j+1,t) + (weighted_middle - x2)*coefficients(i+1,j+1,t+1) + &
(t+1)*coefficients(i+1,j+1,t+2)
end if
end do
j=j+1
end do
do qint=1, i+j+1
Ex(qint) = coefficients(i+1,j+1,qint)
end do
end subroutine gprod_1D