output for C++ virtual function - c++

I got quite confused about the output of the following code. The output is
A::Fun
C::Do
Could anyone explain why this happened? Any help would be appreciated!
#include <iostream>
using namespace std;
class A {
private:
int nVal;
public:
void Fun()
{ cout << "A::Fun" << endl; }
void Do()
{ cout << "A::Do" << endl; }
};
class B:public A {
public:
virtual void Do()
{ cout << "B::Do" << endl; }
};
class C:public B {
public:
void Do( )
{ cout << "C::Do" <<endl; }
void Fun()
{ cout << "C::Fun" << endl; }
};
void Call(B & p) {
p.Fun(); p.Do();
}
int main() {
C c; Call(c);
return 0;
}

The Fun function is not virtual in any base-class. In the function Call all the compiler knows about is the A::Fun function, it doesn't know about the C class. All it knows is that you have a reference to a B object, and there is no B::Fun so it looks in the parent class and find the A::Fun function.

Related

C++: implement a bool template parameter in virtual function

A performance bottleneck of my program is frequent calls to functions like following update functions.
Given that flag parameter is always a bool literal, I want to "unroll" the update function to two versions, one with flag=true and one with flag=false, to avoid branch prediction failure.
for normal functions, a bool template parameter can solve this problem easily.
However, template cannot be applied to virtual functions.
I can create two virtual functions manually, but then I have to copy the long code part. It makes futher development harder.
Is there anyway allowing me to write two versions in one function, controlled by a compiling-time constant flag?
#include <iostream>
#include <random>
using std::cout;
using std::endl;
struct Base
{
virtual void update(bool flag) = 0;
};
struct Derived1 : public Base
{
void update(bool flag)
{
if (flag)
{
// some computations
cout << "Derived1 flag=true" << endl;
}
else
{
// some computations
cout << "Derived1 flag=false" << endl;
}
// long code containing several flag-conditioned blocks like the block above
cout << "Derived1" << endl;
}
};
struct Derived2 : public Base
{
void update(bool flag)
{
if (flag)
{
// some computations
cout << "Derived2 flag=true" << endl;
}
else
{
// some computations
cout << "Derived2 flag=false" << endl;
}
// long code containing several flag-conditioned blocks like the block above
cout << "Derived2" << endl;
}
};
int main()
{
Base *p;
srand(time(nullptr));
if (rand() % 2 == 1)
{
p = new Derived1();
}
else
{
p = new Derived2();
}
p->update(false);
p->update(true);
}
Unfortunately, there is no such thing as virtual templates. What can be done however is to create several virtual functions taking an integral (boolean in this particular case) constant, if the flag is really a compile time literal:
#include <iostream>
#include <random>
#include <type_traits>
#include <memory>
using std::cout;
struct Base
{
virtual void updateSeparate(std::true_type) = 0;
virtual void updateSeparate(std::false_type) = 0;
};
struct Derived1 : public Base
{
void updateSeparate(std::true_type)
{
cout << "Derived1 flag=true\n";
updateCommonImpl();
}
void updateSeparate(std::false_type)
{
cout << "Derived1 flag=false\n";
updateCommonImpl();
}
private:
void updateCommonImpl() //or just a static function inside implementation file if members are not used
{
cout << "Derived1\n";
}
};
struct Derived2 : public Base
{
void updateSeparate(std::true_type)
{
cout << "Derived2 flag=true\n";
updateCommonImpl();
}
void updateSeparate(std::false_type)
{
cout << "Derived2 flag=false\n";
updateCommonImpl();
}
private:
void updateCommonImpl() //or just a static function inside implementation file if members are not used
{
cout << "Derived2\n";
}
};
int main()
{
std::unique_ptr<Base> p;
srand(time(nullptr));
if (rand() % 2 == 1)
{
p = std::make_unique<Derived1>();
}
else
{
p = std::make_unique<Derived2>();
}
p->updateSeparate(std::bool_constant<false>{});
p->updateSeparate(std::bool_constant<true>{});
}
DEMO
However, I cannot tell if that will help or maybe hinder the performance even more by making the vtable lookup time even longer, you have to experiment with that by yourself I'm afraid.
I tried to implement a CRTP pattern with constexpr template parameter, please take a look
template<typename T>
struct Base {
template<bool flag>
int update() {
return static_cast<T*>(this)->template updateImpl<flag>();
}
};
struct Derived1 : public Base<Derived1> {
template<bool flag>
constexpr int updateImpl() {
if constexpr (flag) {
return 1;
} else {
return 2;
}
}
};
struct Derived2 : public Base<Derived2> {
template<bool flag>
constexpr int updateImpl() {
return 3;
}
};
int main() {
auto obj1 = new Derived1();
std::cout << obj1->update<true>(); // 1
std::cout << obj1->update<false>(); // 2
auto obj2 = new Derived2();
std::cout << obj2->update<true>(); // 3
std::cout << obj2->update<false>(); // 3
}

Can i use C++ function pointers like a C#'s Action?

In C ++, I first encountered function pointers.
I tried to use this to make it similar to Action and Delegate in C #.
However, when declaring a function pointer, it is necessary to specify the type of the class in which the function exists.
ex) void (A :: * F) ();
Can I use a function pointer that can store a member function of any class?
In general, function pointers are used as shown in the code below.
class A {
public:
void AF() { cout << "A::F" << endl; }
};
class B {
public:
void(A::*BF)();
};
int main()
{
A a;
B b;
b.BF = &A::AF;
(a.*b.BF)();
return 0;
}
I want to use it like the code below.
is this possible?
Or is there something else to replace the function pointer?
class A {
public:
void AF() { cout << "A::F" << endl; }
};
class B {
public:
void(* BF)();
};
int main()
{
A a;
B b;
b.BF = a.AF;
return 0;
}
I solved the question through the answer.
Thanks!
#include <functional>
#include <iostream>
class A {
public:
void AF() { std::cout << "A::F" << std::endl; }
};
class C {
public:
void CF() { std::cout << "C::F" << std::endl; }
};
class B {
public:
B(){}
std::function<void()> BF;
};
int main() {
A a;
C c;
B b;
b.BF = std::bind(&A::AF, &a);
b.BF();
b.BF = std::bind(&C::CF, &c);
b.BF();
int i;
std::cin >> i;
return 0;
}
What you want to do is probably something like this. You can use std::function to hold a pointer to a member function bound to a specific instance.
#include <functional>
#include <iostream>
class A {
public:
void AF() { std::cout << "A::F" << std::endl; }
};
class B {
public:
B(const std::function<void()>& bf) : BF(bf) {}
std::function<void()> BF;
};
int main() {
A a;
B b1(std::bind(&A::AF, &a)); // using std::bind
B b2([&a] { a.AF(); }); // using a lambda
b1.BF();
b2.BF();
return 0;
}
Here's a C# style implementation of the accepted answer, It is memory efficient and flexible as you can construct and delegate at different points of execution which a C# developer might expect to do:
#include <iostream>
#include <functional>
using namespace std;
class A {
public:
void AF() { cout << "A::F" << endl; }
void BF() { cout << "B::F" << endl; }
};
class B {
public:
std::function<void()> Delegate;
};
int main() {
A a;
B b;
b.Delegate = std::bind(&A::AF, &a);
b.Delegate();
b.Delegate = [&a] { a.BF(); };
b.Delegate();
return 0;
}

Private Data member is inaccessible in Friend Function

The private data member is inaccessible. Although i have declared function as friend of class.
Can anyone help me.
class ONE;
class TWO {
public:
void print(ONE& x);
};
class ONE {
private:
int a, b;
public:
friend void TWO::print(ONE& x);
ONE() : a(1), b(2) { }
};
void TWO::print(ONE& x) {
cout << "a is " << x.a << endl;
cout << "b is " << x.b << endl;
}
int main() {
ONE xobj;
TWO yobj;
yobj.print(xobj);
}
Error Picture is attached.

C++ How to call a derived base class function from main

I have three classes that each inherit from the other: A is inherited by B is inherited by C. I also have one virtual function in each of these classes. I want to create an A-class pointer holding a C-class object and call the B-class function like so:
class A
{
public:
virtual void doStuff() = 0;
};
class B : public A
{
public:
virtual void doStuff() override;
};
class C : public B
{
public:
void doStuff() override;
};
void B::doStuff()
{
std::cout << "Starting doStuff in B\n";
doStuff();
std::cout << "Ending doStuff in B\n";
}
void C::doStuff()
{
std::cout << "doStuff in C\n";
}
int main()
{
A *pointer = new C();
pointer->B::doStuff(); // This doesn't work
}
If I change my main slightly, I get the correct output:
int main()
{
B *pointer = new C(); // Changed A to B
pointer->B::doStuff();
}
Output
Starting doStuff in B
doStuff in C
Ending doStuff in B
How can I change my original code to use an A-class pointer and preferably only one function name?
The issue is that B::doStuff, which refers to the implementation of doStuff at class B, is not a member of A. If you are sure that the pointer is actually pointing to an instance of B or something derived from B, then you could write the following:
int main()
{
A *pointer = new C();
reinterpret_cast<B*>(pointer)->B::doStuff(); // This should work
}
If you cannot be sure about the instance type, use a dynamic_cast.
A pointer of type A can't know for certain that the B version of doStuff is accessible by default; you need to cast the pointer first.
int main()
{
A *pointer = new C();
if(B *b_ptr = dynamic_cast<B*>(pointer))
b_ptr->B::doStuff(); //Will only be executed if dynamic_cast was successful
}
Also, if you're going to use polymorphism like this, make sure you make A's destructor virtual as well, or cleanup won't behave.
class A
{
public:
virtual void doStuff() = 0;
virtual ~A() noexcept = default;
};
Here is some sample code to show why I want to do this. This code will output syntax similar to XML. Calling the "middle" class's function allows me to surround any derived class with the correct "IdentifiedRegion" tags.
#include <iostream>
#include <string>
#include <vector>
class Region
{
public:
virtual void doStuff(std::string tabs) = 0;
};
class IdentifiedRegion : public Region
{
public:
virtual void doStuff(std::string tabs) override;
};
class CircularRegion : public Region
{
public:
CircularRegion(int latitudeIn, int longitudeIn, int radiusIn) : latitude(latitudeIn), longitude(longitudeIn), radius(radiusIn) {}
void doStuff(std::string tabs) override;
private:
int latitude;
int longitude;
int radius;
};
class CountryRegion : public IdentifiedRegion
{
public:
CountryRegion(int countryCodeIn) : countryCode(countryCodeIn) {}
void doStuff(std::string tabs) override;
private:
int countryCode;
};
class StateRegion : public IdentifiedRegion
{
public:
void doStuff(std::string tabs) override;
StateRegion(std::string abbreviationIn) : abbreviation(abbreviationIn) {}
private:
std::string abbreviation;
};
void IdentifiedRegion::doStuff(std::string tabs)
{
std::cout << tabs << "<IdentifiedRegion>\n";
doStuff(tabs + "\t");
std::cout << tabs << "</IndentifiedRegion>\n";
}
void CircularRegion::doStuff(std::string tabs)
{
std::cout << tabs << "<CircularRegion>\n";
std::cout << tabs << "\t" << "<latitude>" << latitude << "</latitude>\n";
std::cout << tabs << "\t" << "<longitude>" << longitude << "</longitude>\n";
std::cout << tabs << "\t" << "<radius>" << radius << "</radius>\n";
std::cout << tabs << "</CircularRegion>\n";
}
void CountryRegion::doStuff(std::string tabs)
{
std::cout << tabs << "<CountryRegion>\n";
std::cout << tabs << "\t" << "CountryCode>" << std::to_string(countryCode) << "</CountryCode>\n";
std::cout << tabs << "</CountryRegion>\n";
}
void StateRegion::doStuff(std::string tabs)
{
std::cout << tabs << "<StateRegion>\n";
std::cout << tabs << "\t" << "<Abbreviation>" << abbreviation << "</Abbreviation>\n";
std::cout << tabs << "</StateRegion>\n";
}
int main()
{
Region *country = new CountryRegion(12);
Region *state = new StateRegion("WA");
Region *radius = new CircularRegion(10, 20, 30);
reinterpret_cast<IdentifiedRegion*>(country)->IdentifiedRegion::doStuff("");
reinterpret_cast<IdentifiedRegion*>(state)->IdentifiedRegion::doStuff("");
radius->doStuff("");
}

Strange way to call a method from an instance object...

digging some codes, I found a curiously manner to call a method from an instance object which I will show in the example code bellow:
class Example{
public:
void Print(){ std::cout << "Hello World" << std::endl;}
};
int main(){
Example ex;
ex.Example::Print(); // Why use this notation instead of just ex.Print();
return 0;
}
There is any behaviour difference between ex.Example::Print() and the standard way ex.Print()? Why the author' code used the former instead of the latter?
Thanks in advance
The difference is that ex.Example::Print() specifies that you want the version of Print() defined in the class Example. In this particular example, there's no difference. However, consider the following:
#include <iostream>
class One {
int i;
public:
One(int ii) : i(ii) {}
virtual void print() { std::cout << i << std::endl; }
};
class Two : public One {
int j;
public:
Two(int ii, int jj) : One(ii), j(jj) {}
void print() override {
One::print();
std::cout << j << std::endl;
}
};
class Three : public Two {
int k;
public:
Three(int ii, int jj, int kk) : Two(ii, jj), k(kk) {}
void print() override {
Two::print();
std::cout << k << std::endl;
}
};
int main() {
Three four(1, 2, 3);
four.print();
std::cout << std::endl;
four.One::print();
std::cout << std::endl;
four.Two::print();
std::cout << std::endl;
four.Three::print();
std::cout << std::endl;
}
The output will be:
1
2
3
1
1
2
1
2
3
ex.Example::Print(); // Why use this notation instead of just ex.Print();
Given the posted code, that is the same as:
ex.Print();
It will make a difference only if name hiding comes into play and you want to be explicit about calling a particular version of the function.
Ex:
struct Foo
{
void Print() const { std::cout << "Came to Foo::Print()\n"; }
};
struct Bar : Foo
{
void Print() const { std::cout << "Came to Bar::Print()\n"; }
};
int main()
{
Bar b;
b.Print(); // Calls Bar::Print()
b.Foo::Print(); // Calls Foo::Print()
}
That's just the mechanics of how things work. As a design choice, it will be better to use virtual functions:
struct Foo
{
virtual void Print() const { std::cout << "Came to Foo::Print()\n"; }
};
struct Bar : Foo
{
virtual void Print() const { std::cout << "Came to Bar::Print()\n"; }
};
No difference between calling ex.Example::Print() and ex.Print() in this example.
The only use/benefit of this invocation I can think of is with inheritance; You can explicitly call over-ridden method in parent class using this syntax from an instance of derived class.