Binding OpenGL texture to OpenCL buffer - opengl

I am working on some project with require of some rendering using OpenGL, and then passing output texture for OpenCL post-processing. The problem is that our kernels work with buffers, not images, and the final output also should be buffer, so changing kernels for work with image2d instead of buffers is not an option.
Of course, mapping OpenGL buffer/texture to the same type on OpenCL is an easy task, but it seems that there are no direct way to map OpenGL output (both texture or renderbuffer objects) to OpenCL buffer without additional steps/memory allocation as copying GL texture data to PBO or CL image to buffer etc. Ability to bind GL buffer objects as framebuffer output would be nice, but I haven't found anything like this so far. I thought about GL_TEXTURE_BUFFER as rendering target, but OpenGL prohibits to use it with framebuffer.
So, the question is - is there any way to directly render with OpenGL into vertex buffer object, and if no - what is the most efficient (time/memory) way to convert OpenGL texture into OpenCL buffer?

Related

Get data back from OpenGL shader?

My computer doesn't support OpenCL on the GPU or OpenGL compute shaders so I was wondering if it would be a straight forward process to get data from a vertex or fragment shader?
My goal is to pass 2 textures to the shader and have the shader computer the locations where one texture exists in the other. Where there is a pixel match. I need to retrieve the locations of possible matches from the shader.
Is this plausible? If so, how would I go about it? I have the basic OpenGL knowledge, I have set up a program that draws polygons with colors. I really just need a way to get position values back from the shader.
You can render to memory instead of to screen, and then fetch data from it.
Create and bind a Framebuffer Object
Create a Renderbuffer Object and attach it to the Framebuffer Object
Render your scene. The result will end up in the bound Framebuffer Object instead of on the screen.
Use glReadPixels to pull data from the Framebuffer Object.
Be aware that glReadPixels, like most methods of fetching data from GPU memory back to main memory, is slow and likely unsuitable for real-time applications. But it's the best you can do if you don't have features intended for that, like Compute Shaders, or are willing to do it asynchronously with Pixel Buffer Objects.
You can read more about Framebuffers here.

How to draw Renderbuffer as Texturebuffer in FBO?

I succeeded in render to texture with Texturebuffer, using VAO and shaders.
But FBO has another options for color buffer, it's Renderbuffer. I searched a lot on the internet, but cannot found any example related to draw Renderbuffer as Texturebuffer with shaders
If I ain't wrong, Renderbuffer is released in OpenGL 3.30, and it's faster than Texturebuffer.
Can I use Renderbuffer as Texturebuffer? (stupid question huh? I think it should be absolutely, isn't it?)
If yes, please lead me or give any example to draw render buffer as texture buffer.
My target is just for study, but I'd like to know is that a better way to draw textures? Should we use it frequently?
First of all, don't use the term "texture buffer" when you really just mean texture. A "buffer texture"/"texture buffer object" is a different conecpt, completely unrelated here.
If I ain't wrong, Renderbuffer is released in OpenGL 3.30, and it's faster than Texturebuffer.
No. Renderbuffers were there when FBOs were first invented. One being faster than the other is not generally true either, but these are implementation details. But it is also irrelevant.
Can I use Renderbuffer as Texturebuffer? (stupid question huh? I think it should be absolutely, isn't it?)
Nope. You cant use the contents of a renderbuffer directly as a source for texture mapping. Renderbuffesr are just abstract memory regions the GPU renders to, and they are not in the format required for texturing. You can read back the results to the CPU using glReadPixels, our you could copy the data into a texture object, e.g. via glCopyTexSubImage - but that would be much slower than directly rendering into textures.
So renderbuffers are good for a different set of use cases:
offscreen rendering (e.g. where the image results will be written to a file, or encoded to a video)
as helper buffers during rendering, like the depth buffer or stencil buffer, where you do not care anbout the final contents of these buffers anyway
as intermediate buffer when the image data can't be directly used by the follwoing steps, e.g. when using multisampling, and copying the result to a non-multisampled framebuffer or texture
It appears that you have your terminology mixed up.
You attach images to Framebuffer Objects. Those images can either be a Renderbuffer Object (this is an offscreen surface that has very few uses besides attaching and blitting) or they can be part of a Texture Object.
Use whichever makes sense. If you need to read the results of your drawing in a shader then obviously you should attach a texture. If you just need a depth buffer, but never need to read it back, a renderbuffer might be fine. Some older hardware does not support multisampled textures, so that is another situation where you might favor renderbuffers over textures.
Performance wise, do not make any assumptions. You might think that since renderbuffers have a lot fewer uses they would somehow be quicker, but that's not always the case. glBlitFramebuffer (...) can be slower than drawing a textured quad.

Separate Frame Buffer and Depth Buffer in OpenGL

In DirectX you are able to have separate render targets and depth buffers, so you can bind a render target and a depth buffer, do some rendering, remove the depth buffer and then do more rendering using the old depth buffer as a texture.
How would you go about this in opengl? From my understanding, you have a framebuffer object that contains both the color buffer(s) and an optional depth buffer. I don't think I can bind several framebuffer objects at the same time, would I have to recreate the framebuffer object every time it changes(probably several times a frame)? How do normal opengl programs do this?
A Framebuffer Object is nothing more than a series of references to images. These can be images in Textures (such as a mipmap layer of a 2D texture) or Renderbuffers (which can't be used as textures).
There is nothing stopping you from assembling an FBO that uses a texture's image for its color buffer and a texture's image for its depth buffer. Nor is there anything stopping you from later (so long as you're not rendering to that FBO while doing this) sampling from the texture as a depth texture. The FBO does not suddenly own these images exclusively or something.
In all likelihood, what has happened is that you've misunderstood the difference between an FBO and OpenGL's Default Framebuffer. The default framebuffer (ie: the window) is unchangeable. You can't take it's depth buffer and use it as a texture or something. What you do with an FBO is your own business, but OpenGL won't let you play with its default framebuffer in the same way.
You can bind multiple render targets to a single FBO, which should to the trick. Also since OpenGL is a state machine you can change the binding and number of targets anytime it is required.

How to render/draw buffer object to framebuffer without glDrawPixels

According to opengl spec 4.0 glDrawPixels is deprecated.
For cuda interoperability it seems best to use "opengl buffer objects". (An alternative could be textures or surfaces but these have caching/concurrency issues and are therefore unusable for my cuda kernel).
I simply want to create a cuda kernel which uses this mapped opengl buffer object and uses it as a "pixel array" or a piece of memory holding pixels, later the buffer is unmapped.
I then want the opengl program to draw the buffer object to the framebuffer. I would like to use an opengl api which is not deprecated.
What other ways/apis are there to draw a buffer object to the frame buffer ? (Also render buffers cannot be used since they probably have same issue as cuda arrays/caching issues, so this rules out framebuffer object/extension ?!?).
Is there a gap/missing functionality in opengl 4.0 now that glDrawPixels is deprecated ? Or is there an alternative ?
glDrawPixels has been removed from GL 3.2 and above (it is not deprecated. Deprecated means "available but to be removed in the future"). It was removed because it's generally not a fast way to draw pixel data to the screen.
Your best bet is to use glTexSubImage2D to upload it to a texture, then draw that to the screen. Or blit it from the texture with glBlitFramebuffer.

What are the differences between a Frame Buffer Object and a Pixel Buffer Object in OpenGL?

What is the difference between FBO and PBO? Which one should I use for off-screen rendering?
What is the difference between FBO and PBO?
A better question is how are they similar. The only thing that is similar about them is their names.
A Framebuffer Object (note the capitalization: framebuffer is one word, not two) is an object that contains multiple images which can be used as render targets.
A Pixel Buffer Object is:
A Buffer Object. FBOs are not buffer objects. Again: framebuffer is one word.
A buffer object that is used for asynchronous uploading/downloading of pixel data to/from images.
If you want to render to a texture or just a non-screen framebuffer, then you use FBOs. If you're trying to read pixel data back to your application asynchronously, or you're trying to transfer pixel data to OpenGL images asynchronously, then you use PBOs.
They're nothing alike.
A FBO (Framebuffer object) is a target where you can render images other than the default frame buffer or screen.
A PBO (Pixel Buffer Object) allows asynchronous transfers of pixel data to and from the device. This can be helpful to improve overall performance when rendering if you have other things that can be done while waiting for the pixel transfer.
I would read VBOs, PBOs and FBOs:
Apple has posted two very nice bits of
sample code demonstrating PBOs and
FBOs. Even though these are
Mac-specific, as sample code they're
good on any platoform because PBOs and
FBOs are OpenGL extensions, not
windowing system extensions.
So what are all these objects? Here's
the situation:
I want to highlight something.
FBO it not memory block. I think it look like struct of pointer. You Must attach Texture to FBO to use it. After attach Texture you now can draw to it for offscreen render or for second pass effect.
struct FBO{
AttachColor0 *ptr0;
AttachColor1 *ptr1;
AttachColor2 *ptr2;
AttachDepth *ptr3;
};
In the other hand, PBO is memory block "block to hold type of memory. "Try to think of it as malloc of x size, then you can use memcpy to copy data from it to texture/FBO or to it".
Why to use PBO?
Create intermediate memory buffer to interface with Host memory and not stop OpenGL drawing will upload texture to or from host.