Is it necessary to include GameObjects whose physics are deterministic in worldUpdate? - multiplayer

In order to reduce data transfer size and the computational time for serializing world objects for each worldUpdate, I was wondering if it is possible to omit syncs for objects whose physics can be entirely, faithfully simulated on the client-side gameEngine (they are not playerObjects so playerInput does not affect them directly, and their physics are entirely deterministic). Interactions with these GameObjects would be entirely handled by GameEvents that are much less frequent. I feel like this should be possible if the client is running the same physics as the server and has access to the same initial conditions.
When I try to omit GameObjects from subsequent worldUpdates, I see that their motion becomes more choppy and they move faster than if they were not omitted; however, when I stop the game server while keeping the client open, their motion is more like what I would expect if I hadn't omitted them. This is all on my local machine with extrapolation synchronization.

The short answer is that the latest version of Lance (1.0.8 at the time of this writing) doesn't support user omission of game objects from world updates, but it does implement a diffing mechanism that omits objects from the update if their netScheme properties haven't changed, saving up on bandwidth.
This means that if you have static objects, like walls, for example, they will only get transmitted once for each player. Not transmitting this at all is an interesting feature to have.
If objects you're referring to are not static, then there is no real way to know their position deterministically. You might have considered using the world step count, but different clients process different world steps at different times due to the web's inherent latency. A client can't know what is the true step being handled by the server at a given point in time, so it cannot deterministically decide on such an object's position. This is why Lance uses the Authoritative server model - to allow one single source of truth, and make sure clients are synched up.
If you still want to manually avoid sending updates for an object, you can edit its netScheme so that it doesn't return anything but its id, for example:
static get netScheme() {
return {
id: { type: Serializer.TYPES.INT32 }
};
}
Though it's not a typical use due to the aforementioned reasons, so if you encounter specific sync issues and this is still a feature you're interested in, it's best if you submit a feature request in the Lance issue tracker. Make sure to include details on your use case to promote a healthy discussion

Related

Algorithm or data structure for broadcast messages in 3D

Let's say some threads produce data and every piece of data has associated 3D coordinate. And other threads consumes these data and every consumer thread has cubic volume of interest described by center and "radius" (size of the cube). Consumer threads can update their cube of interest parameter (like move it) from time to time. Every piece of data is broadcasted - a copy of it should be received by every thread which has cube of interest which includes this coordinate.
What multi-threaded data structure can be used for this with the best performance? I am using C++, but generic algorithm pointer is fine too.
Bonus: it would be nice if an algorithm will have possibility to generalize to multiple network nodes (some nodes produce data and some consumes with the same rules as threads).
Extra information: there are more consumers than producers, there are much more data broadcasts than cube of interest changes (cube size changes are very rare, but moving is quite common event). It's okay if consumer will start receiving data from the new cube of interest after some delay after changing it (but before that it should continue receive data from the previous cube).
Your terminology is problematic. A cube by definition does not have a radius; a sphere does. A broadcast by definition is received by everyone, it is not received only by those who are interested; a multicast is.
I have encountered this problem in the development of an MMORPG. The approach taken in the development of that MMORPG was a bit wacky, but in the decade that followed my thinking has evolved so I have a much better idea of how to go about it now.
The solution is a bit involved, but it does not require any advanced notions like space partitioning, and it is reusable for all kinds of information that the consumers will inevitably need besides just 3D coordinates. Furthermore, it is reusable for entirely different projects.
We begin by building a light-weight data modelling framework which allows us to describe, instantiate, and manipulate finite, self-contained sets of inter-related observable data known as "Entities" in memory and perform various operations on them in an application-agnostic way.
Description can be done in simple object-relational terms. ("Object-relational" means relational with inheritance.)
Instantiation means that given a schema, the framework creates a container (an "EntitySpace") to hold, during runtime, instances of entities described by the schema.
Manipulation means being able to read and write properties of those entities.
Self-contained means that although an entity may contain a property which is a reference to another entity, the other entity must reside within the same EntitySpace.
Observable means that when the value of a property changes, a notification is issued by the EntitySpace, telling us which property of which entity has changed. Anyone can register for notifications from an EntitySpace, and receives all of them.
Once you have such a framework, you can build lots of useful functionality around it in an entirely application-agnostic way. For example:
Serialization: you can serialize and de-serialize an EntitySpace to and from markup.
Filtering: you can create a special kind of EntitySpace which does not contain storage, and instead acts as a view into a subset of another EntitySpace, filtering entities based on the values of certain properties.
Mirroring: You can keep an EntitySpace in sync with another, by responding to each property-changed notification from one and applying the change to the other, and vice versa.
Remoting: You can interject a transport layer between the two mirrored parts, thus keeping them mirrored while they reside on different threads or on different physical machines.
Every node in the network must have a corresponding "agent" object running inside every node that it needs data from. If you have a centralized architecture, (and I will continue under this hypothesis,) this means that within the server you will have one agent object for each client connected to that server. The agent represents the client, so the fact that the client is remote becomes irrelevant. The agent is only responsible for filtering and sending data to the client that it represents, so multi-threading becomes irrelevant, too.
An agent registers for notifications from the server's EntitySpace and filters them based on whatever criteria you choose. One such criterion for an Entity which contains a 3D-coordinate property can be whether that 3D-coordinate is within the client's area of interest. The center-of-sphere-and-radius approach will work, the center-of-cube-and-size approach will probably work even better. (No need for calculating a square.)

ECS and appropriate usage in games

I've been reading about Entity-Component-Systems and i think i understand the basic concept:
Entities are just IDs with their Components stored in Arrays to reduce cache misses. Systems then iterate over one or more of these Arrays and process the data contained in the Components.
But i don't quite understand how these systems are supposed to efficently and cleanly interact with one and another.
1: If my entity has a health component, how would i go about damaging it?
Just doing health -= damage wouldn't account for dying if health goes below or equal 0. But adding a damage() function to the component would defy the point of components being only data. Basically: How do systems process components which need to respond to their changes and change other components based on their changes? (Without copy-and-pasting the damage code into each system which can possibly inflict damage)
2: Components are supposed to be data-only structs with no functions. How do i best approach entity-specific behaviour like exploding on death. It seems unpractical to fill the Health component with memory-wasting data like explodesOnDeath=false when only one or two out of many entities will actually explode on death. I am not sure how to solve this elegantly.
Is there a common approach to these problems?
Ease of modification (for ex with Lua scripts) and high chances of compatibility are important to me, as i really like games with high modding potential. :)
Used Language: C++
I am also new to the field, but here are my experiences with ECS models:
How do systems process components which need to respond to their changes and change other components based on their changes?
As you correctly pointed out, the components are just containers of data, so don't give them functions. All the logic is handled by the systems and each new piece of logic is handled by a different system. So its a good choice to seperate the logic of "dealing damage" from "killing an entity". The comminication
between the DamageSystem and the DeathSystem (with other words, when should an entity be killed) can the be based on the HealthComponent.
Possible implementation:
You typically have one system (The DamageSystem) that calculates the new health of an entity. For this purpose, it can use all sorts of information (components) about the entity (maybe your entities have some shield to protect them, etc.). If the health falls below 0, the DamageSystem does not care, as its only purpose is to contain the logic of dealing damage.
Besides the DamageSystem, you also want to have some sort of DeathSystem, that checks for each entity if the health is below 0. If this is the case, some action is taken. As every entity does sth on their death (which is the reason why your explodesOnDeath=false is not a bad idea), it is usefull to have a DeathComponent that stores some kind of enum for the death animation (e.g. exploding or just vanishing), a path to a sound file (e.g. a fancy exploding sound) and other stuff you need.
With this approach, all the damage calculation is located at one place and seperated from e.g. the logic of the death of an entity.
Hope this helps!

Compiling an application for use in highly radioactive environments

We are compiling an embedded C++ application that is deployed in a shielded device in an environment bombarded with ionizing radiation. We are using GCC and cross-compiling for ARM. When deployed, our application generates some erroneous data and crashes more often than we would like. The hardware is designed for this environment, and our application has run on this platform for several years.
Are there changes we can make to our code, or compile-time improvements that can be made to identify/correct soft errors and memory-corruption caused by single event upsets? Have any other developers had success in reducing the harmful effects of soft errors on a long-running application?
Working for about 4-5 years with software/firmware development and environment testing of miniaturized satellites*, I would like to share my experience here.
*(miniaturized satellites are a lot more prone to single event upsets than bigger satellites due to its relatively small, limited sizes for its electronic components)
To be very concise and direct: there is no mechanism to recover from detectable, erroneous
situation by the software/firmware itself without, at least, one
copy of minimum working version of the software/firmware somewhere for recovery purpose - and with the hardware supporting the recovery (functional).
Now, this situation is normally handled both in the hardware and software level. Here, as you request, I will share what we can do in the software level.
...recovery purpose.... Provide ability to update/recompile/reflash your software/firmware in real environment. This is an almost must-have feature for any software/firmware in highly ionized environment. Without this, you could have redundant software/hardware as many as you want but at one point, they are all going to blow up. So, prepare this feature!
...minimum working version... Have responsive, multiple copies, minimum version of the software/firmware in your code. This is like Safe mode in Windows. Instead of having only one, fully functional version of your software, have multiple copies of the minimum version of your software/firmware. The minimum copy will usually having much less size than the full copy and almost always have only the following two or three features:
capable of listening to command from external system,
capable of updating the current software/firmware,
capable of monitoring the basic operation's housekeeping data.
...copy... somewhere... Have redundant software/firmware somewhere.
You could, with or without redundant hardware, try to have redundant software/firmware in your ARM uC. This is normally done by having two or more identical software/firmware in separate addresses which sending heartbeat to each other - but only one will be active at a time. If one or more software/firmware is known to be unresponsive, switch to the other software/firmware. The benefit of using this approach is we can have functional replacement immediately after an error occurs - without any contact with whatever external system/party who is responsible to detect and to repair the error (in satellite case, it is usually the Mission Control Centre (MCC)).
Strictly speaking, without redundant hardware, the disadvantage of doing this is you actually cannot eliminate all single point of failures. At the very least, you will still have one single point of failure, which is the switch itself (or often the beginning of the code). Nevertheless, for a device limited by size in a highly ionized environment (such as pico/femto satellites), the reduction of the single point of failures to one point without additional hardware will still be worth considering. Somemore, the piece of code for the switching would certainly be much less than the code for the whole program - significantly reducing the risk of getting Single Event in it.
But if you are not doing this, you should have at least one copy in your external system which can come in contact with the device and update the software/firmware (in the satellite case, it is again the mission control centre).
You could also have the copy in your permanent memory storage in your device which can be triggered to restore the running system's software/firmware
...detectable erroneous situation.. The error must be detectable, usually by the hardware error correction/detection circuit or by a small piece of code for error correction/detection. It is best to put such code small, multiple, and independent from the main software/firmware. Its main task is only for checking/correcting. If the hardware circuit/firmware is reliable (such as it is more radiation hardened than the rests - or having multiple circuits/logics), then you might consider making error-correction with it. But if it is not, it is better to make it as error-detection. The correction can be by external system/device. For the error correction, you could consider making use of a basic error correction algorithm like Hamming/Golay23, because they can be implemented more easily both in the circuit/software. But it ultimately depends on your team's capability. For error detection, normally CRC is used.
...hardware supporting the recovery Now, comes to the most difficult aspect on this issue. Ultimately, the recovery requires the hardware which is responsible for the recovery to be at least functional. If the hardware is permanently broken (normally happen after its Total ionizing dose reaches certain level), then there is (sadly) no way for the software to help in recovery. Thus, hardware is rightly the utmost importance concern for a device exposed to high radiation level (such as satellite).
In addition to the suggestion for above anticipating firmware's error due to single event upset, I would also like to suggest you to have:
Error detection and/or error correction algorithm in the inter-subsystem communication protocol. This is another almost must have in order to avoid incomplete/wrong signals received from other system
Filter in your ADC reading. Do not use the ADC reading directly. Filter it by median filter, mean filter, or any other filters - never trust single reading value. Sample more, not less - reasonably.
NASA has a paper on radiation-hardened software. It describes three main tasks:
Regular monitoring of memory for errors then scrubbing out those errors,
robust error recovery mechanisms, and
the ability to reconfigure if something no longer works.
Note that the memory scan rate should be frequent enough that multi-bit errors rarely occur, as most ECC memory can recover from single-bit errors, not multi-bit errors.
Robust error recovery includes control flow transfer (typically restarting a process at a point before the error), resource release, and data restoration.
Their main recommendation for data restoration is to avoid the need for it, through having intermediate data be treated as temporary, so that restarting before the error also rolls back the data to a reliable state. This sounds similar to the concept of "transactions" in databases.
They discuss techniques particularly suitable for object-oriented languages such as C++. For example
Software-based ECCs for contiguous memory objects
Programming by Contract: verifying preconditions and postconditions, then checking the object to verify it is still in a valid state.
And, it just so happens, NASA has used C++ for major projects such as the Mars Rover.
C++ class abstraction and encapsulation enabled rapid development and testing among multiple projects and developers.
They avoided certain C++ features that could create problems:
Exceptions
Templates
Iostream (no console)
Multiple inheritance
Operator overloading (other than new and delete)
Dynamic allocation (used a dedicated memory pool and placement new to avoid the possibility of system heap corruption).
Here are some thoughts and ideas:
Use ROM more creatively.
Store anything you can in ROM. Instead of calculating things, store look-up tables in ROM. (Make sure your compiler is outputting your look-up tables to the read-only section! Print out memory addresses at runtime to check!) Store your interrupt vector table in ROM. Of course, run some tests to see how reliable your ROM is compared to your RAM.
Use your best RAM for the stack.
SEUs in the stack are probably the most likely source of crashes, because it is where things like index variables, status variables, return addresses, and pointers of various sorts typically live.
Implement timer-tick and watchdog timer routines.
You can run a "sanity check" routine every timer tick, as well as a watchdog routine to handle the system locking up. Your main code could also periodically increment a counter to indicate progress, and the sanity-check routine could ensure this has occurred.
Implement error-correcting-codes in software.
You can add redundancy to your data to be able to detect and/or correct errors. This will add processing time, potentially leaving the processor exposed to radiation for a longer time, thus increasing the chance of errors, so you must consider the trade-off.
Remember the caches.
Check the sizes of your CPU caches. Data that you have accessed or modified recently will probably be within a cache. I believe you can disable at least some of the caches (at a big performance cost); you should try this to see how susceptible the caches are to SEUs. If the caches are hardier than RAM then you could regularly read and re-write critical data to make sure it stays in cache and bring RAM back into line.
Use page-fault handlers cleverly.
If you mark a memory page as not-present, the CPU will issue a page fault when you try to access it. You can create a page-fault handler that does some checking before servicing the read request. (PC operating systems use this to transparently load pages that have been swapped to disk.)
Use assembly language for critical things (which could be everything).
With assembly language, you know what is in registers and what is in RAM; you know what special RAM tables the CPU is using, and you can design things in a roundabout way to keep your risk down.
Use objdump to actually look at the generated assembly language, and work out how much code each of your routines takes up.
If you are using a big OS like Linux then you are asking for trouble; there is just so much complexity and so many things to go wrong.
Remember it is a game of probabilities.
A commenter said
Every routine you write to catch errors will be subject to failing itself from the same cause.
While this is true, the chances of errors in the (say) 100 bytes of code and data required for a check routine to function correctly is much smaller than the chance of errors elsewhere. If your ROM is pretty reliable and almost all the code/data is actually in ROM then your odds are even better.
Use redundant hardware.
Use 2 or more identical hardware setups with identical code. If the results differ, a reset should be triggered. With 3 or more devices you can use a "voting" system to try to identify which one has been compromised.
You may also be interested in the rich literature on the subject of algorithmic fault tolerance. This includes the old assignment: Write a sort that correctly sorts its input when a constant number of comparisons will fail (or, the slightly more evil version, when the asymptotic number of failed comparisons scales as log(n) for n comparisons).
A place to start reading is Huang and Abraham's 1984 paper "Algorithm-Based Fault Tolerance for Matrix Operations". Their idea is vaguely similar to homomorphic encrypted computation (but it is not really the same, since they are attempting error detection/correction at the operation level).
A more recent descendant of that paper is Bosilca, Delmas, Dongarra, and Langou's "Algorithm-based fault tolerance applied to high performance computing".
Writing code for radioactive environments is not really any different than writing code for any mission-critical application.
In addition to what has already been mentioned, here are some miscellaneous tips:
Use everyday "bread & butter" safety measures that should be present on any semi-professional embedded system: internal watchdog, internal low-voltage detect, internal clock monitor. These things shouldn't even need to be mentioned in the year 2016 and they are standard on pretty much every modern microcontroller.
If you have a safety and/or automotive-oriented MCU, it will have certain watchdog features, such as a given time window, inside which you need to refresh the watchdog. This is preferred if you have a mission-critical real-time system.
In general, use a MCU suitable for these kind of systems, and not some generic mainstream fluff you received in a packet of corn flakes. Almost every MCU manufacturer nowadays have specialized MCUs designed for safety applications (TI, Freescale, Renesas, ST, Infineon etc etc). These have lots of built-in safety features, including lock-step cores: meaning that there are 2 CPU cores executing the same code, and they must agree with each other.
IMPORTANT: You must ensure the integrity of internal MCU registers. All control & status registers of hardware peripherals that are writeable may be located in RAM memory, and are therefore vulnerable.
To protect yourself against register corruptions, preferably pick a microcontroller with built-in "write-once" features of registers. In addition, you need to store default values of all hardware registers in NVM and copy-down those values to your registers at regular intervals. You can ensure the integrity of important variables in the same manner.
Note: always use defensive programming. Meaning that you have to setup all registers in the MCU and not just the ones used by the application. You don't want some random hardware peripheral to suddenly wake up.
There are all kinds of methods to check for errors in RAM or NVM: checksums, "walking patterns", software ECC etc etc. The best solution nowadays is to not use any of these, but to use a MCU with built-in ECC and similar checks. Because doing this in software is complex, and the error check in itself could therefore introduce bugs and unexpected problems.
Use redundancy. You could store both volatile and non-volatile memory in two identical "mirror" segments, that must always be equivalent. Each segment could have a CRC checksum attached.
Avoid using external memories outside the MCU.
Implement a default interrupt service routine / default exception handler for all possible interrupts/exceptions. Even the ones you are not using. The default routine should do nothing except shutting off its own interrupt source.
Understand and embrace the concept of defensive programming. This means that your program needs to handle all possible cases, even those that cannot occur in theory. Examples.
High quality mission-critical firmware detects as many errors as possible, and then handles or ignores them in a safe manner.
Never write programs that rely on poorly-specified behavior. It is likely that such behavior might change drastically with unexpected hardware changes caused by radiation or EMI. The best way to ensure that your program is free from such crap is to use a coding standard like MISRA, together with a static analyser tool. This will also help with defensive programming and with weeding out bugs (why would you not want to detect bugs in any kind of application?).
IMPORTANT: Don't implement any reliance of the default values of static storage duration variables. That is, don't trust the default contents of the .data or .bss. There could be any amount of time between the point of initialization to the point where the variable is actually used, there could have been plenty of time for the RAM to get corrupted. Instead, write the program so that all such variables are set from NVM in run-time, just before the time when such a variable is used for the first time.
In practice this means that if a variable is declared at file scope or as static, you should never use = to initialize it (or you could, but it is pointless, because you cannot rely on the value anyhow). Always set it in run-time, just before use. If it is possible to repeatedly update such variables from NVM, then do so.
Similarly in C++, don't rely on constructors for static storage duration variables. Have the constructor(s) call a public "set-up" routine, which you can also call later on in run-time, straight from the caller application.
If possible, remove the "copy-down" start-up code that initializes .data and .bss (and calls C++ constructors) entirely, so that you get linker errors if you write code relying on such. Many compilers have the option to skip this, usually called "minimal/fast start-up" or similar.
This means that any external libraries have to be checked so that they don't contain any such reliance.
Implement and define a safe state for the program, to where you will revert in case of critical errors.
Implementing an error report/error log system is always helpful.
It may be possible to use C to write programs that behave robustly in such environments, but only if most forms of compiler optimization are disabled. Optimizing compilers are designed to replace many seemingly-redundant coding patterns with "more efficient" ones, and may have no clue that the reason the programmer is testing x==42 when the compiler knows there's no way x could possibly hold anything else is because the programmer wants to prevent the execution of certain code with x holding some other value--even in cases where the only way it could hold that value would be if the system received some kind of electrical glitch.
Declaring variables as volatile is often helpful, but may not be a panacea.
Of particular importance, note that safe coding often requires that dangerous
operations have hardware interlocks that require multiple steps to activate,
and that code be written using the pattern:
... code that checks system state
if (system_state_favors_activation)
{
prepare_for_activation();
... code that checks system state again
if (system_state_is_valid)
{
if (system_state_favors_activation)
trigger_activation();
}
else
perform_safety_shutdown_and_restart();
}
cancel_preparations();
If a compiler translates the code in relatively literal fashion, and if all
the checks for system state are repeated after the prepare_for_activation(),
the system may be robust against almost any plausible single glitch event,
even those which would arbitrarily corrupt the program counter and stack. If
a glitch occurs just after a call to prepare_for_activation(), that would imply
that activation would have been appropriate (since there's no other reason
prepare_for_activation() would have been called before the glitch). If the
glitch causes code to reach prepare_for_activation() inappropriately, but there
are no subsequent glitch events, there would be no way for code to subsequently
reach trigger_activation() without having passed through the validation check or calling cancel_preparations first [if the stack glitches, execution might proceed to a spot just before trigger_activation() after the context that called prepare_for_activation() returns, but the call to cancel_preparations() would have occurred between the calls to prepare_for_activation() and trigger_activation(), thus rendering the latter call harmless.
Such code may be safe in traditional C, but not with modern C compilers. Such compilers can be very dangerous in that sort of environment because aggressive they strive to only include code which will be relevant in situations that could come about via some well-defined mechanism and whose resulting consequences would also be well defined. Code whose purpose would be to detect and clean up after failures may, in some cases, end up making things worse. If the compiler determines that the attempted recovery would in some cases invoke undefined behavior, it may infer that the conditions that would necessitate such recovery in such cases cannot possibly occur, thus eliminating the code that would have checked for them.
This is an extremely broad subject. Basically, you can't really recover from memory corruption, but you can at least try to fail promptly. Here are a few techniques you could use:
checksum constant data. If you have any configuration data which stays constant for a long time (including hardware registers you have configured), compute its checksum on initialization and verify it periodically. When you see a mismatch, it's time to re-initialize or reset.
store variables with redundancy. If you have an important variable x, write its value in x1, x2 and x3 and read it as (x1 == x2) ? x2 : x3.
implement program flow monitoring. XOR a global flag with a unique value in important functions/branches called from the main loop. Running the program in a radiation-free environment with near-100% test coverage should give you the list of acceptable values of the flag at the end of the cycle. Reset if you see deviations.
monitor the stack pointer. In the beginning of the main loop, compare the stack pointer with its expected value. Reset on deviation.
What could help you is a watchdog. Watchdogs were used extensively in industrial computing in the 1980s. Hardware failures were much more common then - another answer also refers to that period.
A watchdog is a combined hardware/software feature. The hardware is a simple counter that counts down from a number (say 1023) to zero. TTL or other logic could be used.
The software has been designed as such that one routine monitors the correct operation of all essential systems. If this routine completes correctly = finds the computer running fine, it sets the counter back to 1023.
The overall design is so that under normal circumstances, the software prevents that the hardware counter will reach zero. In case the counter reaches zero, the hardware of the counter performs its one-and-only task and resets the entire system. From a counter perspective, zero equals 1024 and the counter continues counting down again.
This watchdog ensures that the attached computer is restarted in a many, many cases of failure. I must admit that I'm not familiar with hardware that is able to perform such a function on today's computers. Interfaces to external hardware are now a lot more complex than they used to be.
An inherent disadvantage of the watchdog is that the system is not available from the time it fails until the watchdog counter reaches zero + reboot time. While that time is generally much shorter than any external or human intervention, the supported equipment will need to be able to proceed without computer control for that timeframe.
This answer assumes you are concerned with having a system that works correctly, over and above having a system that is minimum cost or fast; most people playing with radioactive things value correctness / safety over speed / cost
Several people have suggested hardware changes you can make (fine - there's lots of good stuff here in answers already and I don't intend repeating all of it), and others have suggested redundancy (great in principle), but I don't think anyone has suggested how that redundancy might work in practice. How do you fail over? How do you know when something has 'gone wrong'? Many technologies work on the basis everything will work, and failure is thus a tricky thing to deal with. However, some distributed computing technologies designed for scale expect failure (after all with enough scale, failure of one node of many is inevitable with any MTBF for a single node); you can harness this for your environment.
Here are some ideas:
Ensure that your entire hardware is replicated n times (where n is greater than 2, and preferably odd), and that each hardware element can communicate with each other hardware element. Ethernet is one obvious way to do that, but there are many other far simpler routes that would give better protection (e.g. CAN). Minimise common components (even power supplies). This may mean sampling ADC inputs in multiple places for instance.
Ensure your application state is in a single place, e.g. in a finite state machine. This can be entirely RAM based, though does not preclude stable storage. It will thus be stored in several place.
Adopt a quorum protocol for changes of state. See RAFT for example. As you are working in C++, there are well known libraries for this. Changes to the FSM would only get made when a majority of nodes agree. Use a known good library for the protocol stack and the quorum protocol rather than rolling one yourself, or all your good work on redundancy will be wasted when the quorum protocol hangs up.
Ensure you checksum (e.g. CRC/SHA) your FSM, and store the CRC/SHA in the FSM itself (as well as transmitting in the message, and checksumming the messages themselves). Get the nodes to check their FSM regularly against these checksum, checksum incoming messages, and check their checksum matches the checksum of the quorum.
Build as many other internal checks into your system as possible, making nodes that detect their own failure reboot (this is better than carrying on half working provided you have enough nodes). Attempt to let them cleanly remove themselves from the quorum during rebooting in case they don't come up again. On reboot have them checksum the software image (and anything else they load) and do a full RAM test before reintroducing themselves to the quorum.
Use hardware to support you, but do so carefully. You can get ECC RAM, for instance, and regularly read/write through it to correct ECC errors (and panic if the error is uncorrectable). However (from memory) static RAM is far more tolerant of ionizing radiation than DRAM is in the first place, so it may be better to use static DRAM instead. See the first point under 'things I would not do' as well.
Let's say you have an 1% chance of failure of any given node within one day, and let's pretend you can make failures entirely independent. With 5 nodes, you'll need three to fail within one day, which is a .00001% chance. With more, well, you get the idea.
Things I would not do:
Underestimate the value of not having the problem to start off with. Unless weight is a concern, a large block of metal around your device is going to be a far cheaper and more reliable solution than a team of programmers can come up with. Ditto optical coupling of inputs of EMI is an issue, etc. Whatever, attempt when sourcing your components to source those rated best against ionizing radiation.
Roll your own algorithms. People have done this stuff before. Use their work. Fault tolerance and distributed algorithms are hard. Use other people's work where possible.
Use complicated compiler settings in the naive hope you detect more failures. If you are lucky, you may detect more failures. More likely, you will use a code-path within the compiler which has been less tested, particularly if you rolled it yourself.
Use techniques which are untested in your environment. Most people writing high availability software have to simulate failure modes to check their HA works correctly, and miss many failure modes as a result. You are in the 'fortunate' position of having frequent failures on demand. So test each technique, and ensure its application actual improves MTBF by an amount that exceeds the complexity to introduce it (with complexity comes bugs). Especially apply this to my advice re quorum algorithms etc.
Since you specifically ask for software solutions, and you are using C++, why not use operator overloading to make your own, safe datatypes? For example:
Instead of using uint32_t (and double, int64_t etc), make your own SAFE_uint32_t which contains a multiple (minimum of 3) of uint32_t. Overload all of the operations you want (* + - / << >> = == != etc) to perform, and make the overloaded operations perform independently on each internal value, ie don't do it once and copy the result. Both before and after, check that all of the internal values match. If values don't match, you can update the wrong one to the value with the most common one. If there is no most-common value, you can safely notify that there is an error.
This way it doesn't matter if corruption occurs in the ALU, registers, RAM, or on a bus, you will still have multiple attempts and a very good chance of catching errors. Note however though that this only works for the variables you can replace - your stack pointer for example will still be susceptible.
A side story: I ran into a similar issue, also on an old ARM chip. It turned out to be a toolchain which used an old version of GCC that, together with the specific chip we used, triggered a bug in certain edge cases that would (sometimes) corrupt values being passed into functions. Make sure your device doesn't have any problems before blaming it on radio-activity, and yes, sometimes it is a compiler bug =)
Disclaimer: I'm not a radioactivity professional nor worked for this kind of application. But I worked on soft errors and redundancy for long term archival of critical data, which is somewhat linked (same problem, different goals).
The main problem with radioactivity in my opinion is that radioactivity can switch bits, thus radioactivity can/will tamper any digital memory. These errors are usually called soft errors, bit rot, etc.
The question is then: how to compute reliably when your memory is unreliable?
To significantly reduce the rate of soft errors (at the expense of computational overhead since it will mostly be software-based solutions), you can either:
rely on the good old redundancy scheme, and more specifically the more efficient error correcting codes (same purpose, but cleverer algorithms so that you can recover more bits with less redundancy). This is sometimes (wrongly) also called checksumming. With this kind of solution, you will have to store the full state of your program at any moment in a master variable/class (or a struct?), compute an ECC, and check that the ECC is correct before doing anything, and if not, repair the fields. This solution however does not guarantee that your software can work (simply that it will work correctly when it can, or stops working if not, because ECC can tell you if something is wrong, and in this case you can stop your software so that you don't get fake results).
or you can use resilient algorithmic data structures, which guarantee, up to a some bound, that your program will still give correct results even in the presence of soft errors. These algorithms can be seen as a mix of common algorithmic structures with ECC schemes natively mixed in, but this is much more resilient than that, because the resiliency scheme is tightly bounded to the structure, so that you don't need to encode additional procedures to check the ECC, and usually they are a lot faster. These structures provide a way to ensure that your program will work under any condition, up to the theoretical bound of soft errors. You can also mix these resilient structures with the redundancy/ECC scheme for additional security (or encode your most important data structures as resilient, and the rest, the expendable data that you can recompute from the main data structures, as normal data structures with a bit of ECC or a parity check which is very fast to compute).
If you are interested in resilient data structures (which is a recent, but exciting, new field in algorithmics and redundancy engineering), I advise you to read the following documents:
Resilient algorithms data structures intro by Giuseppe F.Italiano, Universita di Roma "Tor Vergata"
Christiano, P., Demaine, E. D., & Kishore, S. (2011). Lossless fault-tolerant data structures with additive overhead. In Algorithms and Data Structures (pp. 243-254). Springer Berlin Heidelberg.
Ferraro-Petrillo, U., Grandoni, F., & Italiano, G. F. (2013). Data structures resilient to memory faults: an experimental study of dictionaries. Journal of Experimental Algorithmics (JEA), 18, 1-6.
Italiano, G. F. (2010). Resilient algorithms and data structures. In Algorithms and Complexity (pp. 13-24). Springer Berlin Heidelberg.
If you are interested in knowing more about the field of resilient data structures, you can checkout the works of Giuseppe F. Italiano (and work your way through the refs) and the Faulty-RAM model (introduced in Finocchi et al. 2005; Finocchi and Italiano 2008).
/EDIT: I illustrated the prevention/recovery from soft-errors mainly for RAM memory and data storage, but I didn't talk about computation (CPU) errors. Other answers already pointed at using atomic transactions like in databases, so I will propose another, simpler scheme: redundancy and majority vote.
The idea is that you simply do x times the same computation for each computation you need to do, and store the result in x different variables (with x >= 3). You can then compare your x variables:
if they all agree, then there's no computation error at all.
if they disagree, then you can use a majority vote to get the correct value, and since this means the computation was partially corrupted, you can also trigger a system/program state scan to check that the rest is ok.
if the majority vote cannot determine a winner (all x values are different), then it's a perfect signal for you to trigger the failsafe procedure (reboot, raise an alert to user, etc.).
This redundancy scheme is very fast compared to ECC (practically O(1)) and it provides you with a clear signal when you need to failsafe. The majority vote is also (almost) guaranteed to never produce corrupted output and also to recover from minor computation errors, because the probability that x computations give the same output is infinitesimal (because there is a huge amount of possible outputs, it's almost impossible to randomly get 3 times the same, even less chances if x > 3).
So with majority vote you are safe from corrupted output, and with redundancy x == 3, you can recover 1 error (with x == 4 it will be 2 errors recoverable, etc. -- the exact equation is nb_error_recoverable == (x-2) where x is the number of calculation repetitions because you need at least 2 agreeing calculations to recover using the majority vote).
The drawback is that you need to compute x times instead of once, so you have an additional computation cost, but's linear complexity so asymptotically you don't lose much for the benefits you gain. A fast way to do a majority vote is to compute the mode on an array, but you can also use a median filter.
Also, if you want to make extra sure the calculations are conducted correctly, if you can make your own hardware you can construct your device with x CPUs, and wire the system so that calculations are automatically duplicated across the x CPUs with a majority vote done mechanically at the end (using AND/OR gates for example). This is often implemented in airplanes and mission-critical devices (see triple modular redundancy). This way, you would not have any computational overhead (since the additional calculations will be done in parallel), and you have another layer of protection from soft errors (since the calculation duplication and majority vote will be managed directly by the hardware and not by software -- which can more easily get corrupted since a program is simply bits stored in memory...).
One point no-one seems to have mentioned. You say you're developing in GCC and cross-compiling onto ARM. How do you know that you don't have code which makes assumptions about free RAM, integer size, pointer size, how long it takes to do a certain operation, how long the system will run for continuously, or various stuff like that? This is a very common problem.
The answer is usually automated unit testing. Write test harnesses which exercise the code on the development system, then run the same test harnesses on the target system. Look for differences!
Also check for errata on your embedded device. You may find there's something about "don't do this because it'll crash, so enable that compiler option and the compiler will work around it".
In short, your most likely source of crashes is bugs in your code. Until you've made pretty damn sure this isn't the case, don't worry (yet) about more esoteric failure modes.
You want 3+ slave machines with a master outside the radiation environment. All I/O passes through the master which contains a vote and/or retry mechanism. The slaves must have a hardware watchdog each and the call to bump them should be surrounded by CRCs or the like to reduce the probability of involuntary bumping. Bumping should be controlled by the master, so lost connection with master equals reboot within a few seconds.
One advantage of this solution is that you can use the same API to the master as to the slaves, so redundancy becomes a transparent feature.
Edit: From the comments I feel the need to clarify the "CRC idea." The possibilty of the slave bumping it's own watchdog is close to zero if you surround the bump with CRC or digest checks on random data from the master. That random data is only sent from master when the slave under scrutiny is aligned with the others. The random data and CRC/digest are immediately cleared after each bump. The master-slave bump frequency should be more than double the watchdog timeout. The data sent from the master is uniquely generated every time.
How about running many instances of your application. If crashes are due to random memory bit changes, chances are some of your app instances will make it through and produce accurate results. It's probably quite easy (for someone with statistical background) to calculate how many instances do you need given bit flop probability to achieve as tiny overall error as you wish.
What you ask is quite complex topic - not easily answerable. Other answers are ok, but they covered just a small part of all the things you need to do.
As seen in comments, it is not possible to fix hardware problems 100%, however it is possible with high probabily to reduce or catch them using various techniques.
If I was you, I would create the software of the highest Safety integrity level level (SIL-4). Get the IEC 61513 document (for the nuclear industry) and follow it.
Someone mentioned using slower chips to prevent ions from flipping bits as easily. In a similar fashion perhaps use a specialized cpu/ram that actually uses multiple bits to store a single bit. Thus providing a hardware fault tolerance because it would be very unlikely that all of the bits would get flipped. So 1 = 1111 but would need to get hit 4 times to actually flipped. (4 might be a bad number since if 2 bits get flipped its already ambiguous). So if you go with 8, you get 8 times less ram and some fraction slower access time but a much more reliable data representation. You could probably do this both on the software level with a specialized compiler(allocate x amount more space for everything) or language implementation (write wrappers for data structures that allocate things this way). Or specialized hardware that has the same logical structure but does this in the firmware.
Perhaps it would help to know does it mean for the hardware to be "designed for this environment". How does it correct and/or indicates the presence of SEU errors ?
At one space exploration related project, we had a custom MCU, which would raise an exception/interrupt on SEU errors, but with some delay, i.e. some cycles may pass/instructions be executed after the one insn which caused the SEU exception.
Particularly vulnerable was the data cache, so a handler would invalidate the offending cache line and restart the program. Only that, due to the imprecise nature of the exception, the sequence of insns headed by the exception raising insn may not be restartable.
We identified the hazardous (not restartable) sequences (like lw $3, 0x0($2), followed by an insn, which modifies $2 and is not data-dependent on $3), and I made modifications to GCC, so such sequences do not occur (e.g. as a last resort, separating the two insns by a nop).
Just something to consider ...
If your hardware fails then you can use mechanical storage to recover it. If your code base is small and have some physical space then you can use a mechanical data store.
There will be a surface of material which will not be affected by radiation. Multiple gears will be there. A mechanical reader will run on all the gears and will be flexible to move up and down. Down means it is 0 and up means it is 1. From 0 and 1 you can generate your code base.
Use a cyclic scheduler. This gives you the ability to add regular maintenance times to check the correctness of critical data. The problem most often encountered is corruption of the stack. If your software is cyclical you can reinitialize the stack between cycles. Do not reuse the stacks for interrupt calls, setup a separate stack of each important interrupt call.
Similar to the Watchdog concept is deadline timers. Start a hardware timer before calling a function. If the function does not return before the deadline timer interrupts then reload the stack and try again. If it still fails after 3/5 tries you need reload from ROM.
Split your software into parts and isolate these parts to use separate memory areas and execution times (Especially in a control environment). Example: signal acquisition, prepossessing data, main algorithm and result implementation/transmission. This means a failure in one part will not cause failures through the rest of the program. So while we are repairing the signal acquisition the rest of tasks continues on stale data.
Everything needs CRCs. If you execute out of RAM even your .text needs a CRC. Check the CRCs regularly if you using a cyclical scheduler. Some compilers (not GCC) can generate CRCs for each section and some processors have dedicated hardware to do CRC calculations, but I guess that would fall out side of the scope of your question. Checking CRCs also prompts the ECC controller on the memory to repair single bit errors before it becomes a problem.
Use watchdogs for bootup no just once operational. You need hardware help if your bootup ran into trouble.
Firstly, design your application around failure. Ensure that as part of normal flow operation, it expects to reset (depending on your application and the type of failure either soft or hard). This is hard to get perfect: critical operations that require some degree of transactionality may need to be checked and tweaked at an assembly level so that an interruption at a key point cannot result in inconsistent external commands.
Fail fast as soon as any unrecoverable memory corruption or control flow deviation is detected. Log failures if possible.
Secondly, where possible, correct corruption and continue. This means checksumming and fixing constant tables (and program code if you can) often; perhaps before each major operation or on a timed interrupt, and storing variables in structures that autocorrect (again before each major op or on a timed interrupt take a majority vote from 3 and correct if is a single deviation). Log corrections if possible.
Thirdly, test failure. Set up a repeatable test environment that flips bits in memory psuedo-randomly. This will allow you to replicate corruption situations and help design your application around them.
Given supercat's comments, the tendencies of modern compilers, and other things, I'd be tempted to go back to the ancient days and write the whole code in assembly and static memory allocations everywhere. For this kind of utter reliability I think assembly no longer incurs a large percentage difference of the cost.
Here are huge amount of replies, but I'll try to sum up my ideas about this.
Something crashes or does not work correctly could be result of your own mistakes - then it should be easily to fix when you locate the problem. But there is also possibility of hardware failures - and that's difficult if not impossible to fix in overall.
I would recommend first to try to catch the problematic situation by logging (stack, registers, function calls) - either by logging them somewhere into file, or transmitting them somehow directly ("oh no - I'm crashing").
Recovery from such error situation is either reboot (if software is still alive and kicking) or hardware reset (e.g. hw watchdogs). Easier to start from first one.
If problem is hardware related - then logging should help you to identify in which function call problem occurs and that can give you inside knowledge of what is not working and where.
Also if code is relatively complex - it makes sense to "divide and conquer" it - meaning you remove / disable some function calls where you suspect problem is - typically disabling half of code and enabling another half - you can get "does work" / "does not work" kind of decision after which you can focus into another half of code. (Where problem is)
If problem occurs after some time - then stack overflow can be suspected - then it's better to monitor stack point registers - if they constantly grows.
And if you manage to fully minimize your code until "hello world" kind of application - and it's still failing randomly - then hardware problems are expected - and there needs to be "hardware upgrade" - meaning invent such cpu / ram / ... -hardware combination which would tolerate radiation better.
Most important thing is probably how you get your logs back if machine fully stopped / resetted / does not work - probably first thing bootstap should do - is a head back home if problematic situation is entcovered.
If it's possible in your environment also to transmit a signal and receive response - you could try out to construct some sort of online remote debugging environment, but then you must have at least of communication media working and some processor/ some ram in working state. And by remote debugging I mean either GDB / gdb stub kind of approach or your own implementation of what you need to get back from your application (e.g. download log files, download call stack, download ram, restart)
I've really read a lot of great answers!
Here is my 2 cent: build a statistical model of the memory/register abnormality, by writing a software to check the memory or to perform frequent register comparisons. Further, create an emulator, in the style of a virtual machine where you can experiment with the issue. I guess if you vary junction size, clock frequency, vendor, casing, etc would observe a different behavior.
Even our desktop PC memory has a certain rate of failure, which however doesn't impair the day to day work.

C++ Networked Program Design: Boost Asio, Serialization, and OStream

Background Info:
I am beginning to learn about networking for a small demo project that I'm working on. I have a server with a bunch of Ball objects that have a variety of parameters (size, color, velocity, acceleration, etc.). I would like the server to be able to do 2 things
Send all of the parameters to the client so that the client can create a new Ball object that's exactly like how it is on the server.
Be able to periodically send smaller updates about the ball that only change some of its parameters (usually position and velocity). The idea is to not redundantly send information.
I'm a little overwhelmed at how to approach this, since there is so much to deal with. My idea was to create a class called ClientUpdate that would be an abstract base class for specific update types that I might want to send.
class ClientUpdate
{
protected:
UpdateTypes type;
public:
ClientUpdate(){};
void setType(UpdateTypes t){ type = t; }
virtual void print(ostream& where)const;
friend std::ostream& operator<<(std::ostream& os, const ClientUpdate & obj)
{
obj.print(os);
return os;
}
};
Then for every event that might occur on the server, like when the a ball changes color or changes its state from frozen to not-frozen, I would create a subclass of ClientUpdate to describe the event. The subclasses would have simple variables (strings, integers, booleans) that I would write to the ostream with the print function.
Finally, I would store all of the updates that happen in a certain area of my game (such as a room) in each update cycle, and then for any clients who are subscribed to that area, I would send 1 large byte array of client updates that would have the form UPDATETYPE_DATA_UPDATETYPE_DATA_....etc. The client would parse the input stream and re-create the update class from it (I haven't written this code yet, but I assume it won't be difficult).
I'm using Boost::Asio for the networking code, and I'm following the tutorials here : http://www.gamedev.net/blog/950/entry-2249317-a-guide-to-getting-started-with-boostasio/?pg=10. I just mention this because I'm pretty sure I want to stick with boost asio, since I'm trying to very comfortable with boost and modern c++ in general.
Question:
(1) The basic question is "is this a reasonable way of approaching my problem?" I feel very confident that I could at least make it work, but as a novice at anything network-related, I'm not sure if I am re-inventing wheels or wasting time when there are simpler ways of doing things. In particular, is it inefficient to gather all of the "update" objects together and send them with 1 large write or should I send the individual updates with separate writes to the socket?
(2) For example, I've read about Boost::Serialize, and it seems to be very similar to what I'm doing. However, I am more interested in updating certain member variables of objects that should be almost the same on both the client and server. Is Boost::serialize good for this, or is it more for sending whole objects? Are there any other libraries that do things similar to what I'm describing?
The trade offs are hard to judge from here.
I can see a few approaches (disclaimer, I didn't try to be exhaustive, just thinking aloud):
every mutation to game state is an "event"; you "journal" events and every once in a while you send a batch of these to the other side. The other side applies them and sends back a checksum verifying that the resulting state matches that on the sending side (at the time of the sending).
alternatively, you treat the whole game state as a "document". Every once in xxx milliseconds, you snapshot the gamestate, and send it to the other party. The other party replaces its gamestate with that from the document. The server could optimize bandwidth by differencing the gamestate to the former (by saving the previously sent snapshot) and sending only the delta.
In that last respect there might be a similarity to the first approach, but there is a fundamental difference: in the first approach, the mutations sent to the other side are exactly the same as they happened on the source system; In the second approach, the 'delta' mutations are synthesized from the effective difference to the last snapshot: they have no relation to the sequence of events that actually lead to the current game state.
Now, the trade-offs are plentiful and depend on such factors as:
how big is the ful gamestate (a chess board is trivially encoded in few bytes, a 3D shooter cannot afford to send whole snapshots, and may not even be able to afford keeping a snapshot for differencing)
how many balls are there, and how are they stored; if they're in a node-based data structure, replacing the replacing the whole game state may become expensive (since there might be many allocations).
how many distinct state mutations are there (how complex would the command language get; would it make sense to devise a "command language" for the journal, or would it become too complicated?)
how many events will occur per second (is the number of triggers solely input based? E.g. in chess, there will be a move once every n seconds, but in a balancing game there maybe hundreds of inputs each second, if not more).
Etc. All these questions will make certain approaches more attractive and others less.
One crucial question that you didn't address is: will there be "inputs" on both sides? If so, could there be conflicting inputs? Could there be consequences of changes on one side that lead to a different outcome if the inputs from the other side have been received slightly later?
I won't go into this for now. If you need bi-directional synchronization, you will become very dependent on low latency and frequent updates, so that you can correct divergent gamestates before the difference becomes humanly noticeable and annoying.
I also won't go into how you should send the data, as it depends very much on the chosen approach. If you send full documents, as you've noticed, Boost Serialization would look like a good candidate.

Advice for converting a large monolithic singlethreaded application to a multithreaded architecture?

My company's main product is a large monolithic C++ application, used for scientific data processing and visualisation. Its codebase goes back maybe 12 or 13 years, and while we have put work into upgrading and maintaining it (use of STL and Boost - when I joined most containers were custom, for example - fully upgraded to Unicode and the 2010 VCL, etc) there's one remaining, very significant problem: it's fully singlethreaded. Given it's a data processing and visualisation program, this is becoming more and more of a handicap.
I'm both a developer and the project manager for the next release where we want to tackle this, and this is going to be a difficult job in both areas. I'm seeking concrete, practical, and architectural advice on how to tackle the problem.
The program's data flow might go something like this:
a window needs to draw data
In the paint method, it will call a GetData method, often hundreds of times for hundreds of bits of data in one paint operation
This will go and calculate or read from file or whatever else is required (often quite a complex data flow - think of this as data flowing through a complex graph, each node of which performs operations)
Ie, the paint message handler will block while processing is done, and if the data hasn't already been calculated and cached, this can be a long time. Sometimes this is minutes. Similar paths occur for other parts of the program that perform lengthy processing operations - the program is unresponsive for the entire time, sometimes hours.
I'm seeking advice on how to approach changing this. Practical ideas. Perhaps things like:
design patterns for asynchronously requesting data?
storing large collections of objects such that threads can read and write safely?
handling invalidation of data sets while something is trying to read it?
are there patterns and techniques for this sort of problem?
what should I be asking that I haven't thought of?
I haven't done any multithreaded programming since my Uni days a few years ago, and I think the rest of my team is in a similar position. What I knew was academic, not practical, and is nowhere near enough to have confidence approaching this.
The ultimate objective is to have a fully responsive program, where all calculations and data generation is done in other threads and the UI is always responsive. We might not get there in a single development cycle :)
Edit: I thought I should add a couple more details about the app:
It's a 32-bit desktop application for Windows. Each copy is licensed. We plan to keep it a desktop, locally-running app
We use Embarcadero (formerly Borland) C++ Builder 2010 for development. This affects the parallel libraries we can use, since most seem (?) to be written for GCC or MSVC only. Luckily they're actively developing it and its C++ standards support is much better than it used to be. The compiler supports these Boost components.
Its architecture is not as clean as it should be and components are often too tightly coupled. This is another problem :)
Edit #2: Thanks for the replies so far!
I'm surprised so many people have recommended a multi-process architecture (it's the top-voted answer at the moment), not multithreading. My impression is that's a very Unix-ish program structure, and I don't know anything about how it's designed or works. Are there good resources available about it, on Windows? Is it really that common on Windows?
In terms of concrete approaches to some of the multithreading suggestions, are there design patterns for asynchronous request and consuming of data, or threadaware or asynchronous MVP systems, or how to design a task-oriented system, or articles and books and post-release deconstructions illustrating things that work and things that don't work? We can develop all this architecture ourselves, of course, but it's good to work from what others have done before and know what mistakes and pitfalls to avoid.
One aspect that isn't touched on in any answers is project managing this. My impression is estimating how long this will take and keeping good control of the project when doing something as uncertain as this may be hard. That's one reason I'm after recipes or practical coding advice, I guess, to guide and restrict coding direction as much as possible.
I haven't yet marked an answer for this question - this is not because of the quality of the answers, which is great (and thankyou) but simply that because of the scope of this I'm hoping for more answers or discussion. Thankyou to those who have already replied!
You have a big challenge ahead of you. I had a similar challenge ahead of me -- 15 year old monolithic single threaded code base, not taking advantage of multicore, etc. We expended a great deal of effort in trying to find a design and solution that was workable and would work.
Bad news first. It will be somewhere between impractical and impossible to make your single-threaded app multithreaded. A single threaded app relies on it's singlethreaded-ness is ways both subtle and gross. One example is if the computation portion requires input from the GUI portion. The GUI must run in the main thread. If you try to get this data directly from the computation engine, you will likely run in to deadlock and race conditions that will require major redesigns to fix. Many of these reliances will not crop up during the design phase, or even during the development phase, but only after a release build is put in a harsh environment.
More bad news. Programming multithreaded applications is exceptionally hard. It might seem fairly straightforward to just lock stuff and do what you have to do, but it is not. First of all if you lock everything in sight you end up serializing your application, negating every benefit of mutithreading in the first place while still adding in all the complexity. Even if you get beyond this, writing a defect-free MP application is hard enough, but writing a highly-performant MP application is that much more difficult. You could learn on the job in a kind of baptismal by fire. But if you are doing this with production code, especially legacy production code, you put your buisness at risk.
Now the good news. You do have options that don't involve refactoring your whole app and will give you most of what you seek. One option in particular is easy to implement (in relative terms), and much less prone to defects than making your app fully MP.
You could instantiate multiple copies of your application. Make one of them visible, and all the others invisible. Use the visible application as the presentation layer, but don't do the computational work there. Instead, send messages (perhaps via sockets) to the invisible copies of your application which do the work and send the results back to the presentation layer.
This might seem like a hack. And maybe it is. But it will get you what you need without putting the stability and performance of your system at such great risk. Plus there are hidden benefits. One is that the invisible engine copies of your app will have access to their own virtual memory space, making it easier to leverage all the resources of the system. It also scales nicely. If you are running on a 2-core box, you could spin off 2 copies of your engine. 32 cores? 32 copies. You get the idea.
So, there's a hint in your description of the algorithm as to how to proceed:
often quite a complex data flow - think of this as data flowing through a complex graph, each node of which performs operations
I'd look into making that data-flow graph be literally the structure that does the work. The links in the graph can be thread-safe queues, the algorithms at each node can stay pretty much unchanged, except wrapped in a thread that picks up work items from a queue and deposits results on one. You could go a step further and use sockets and processes rather than queues and threads; this will let you spread across multiple machines if there is a performance benefit in doing this.
Then your paint and other GUI methods need split in two: one half to queue the work, and the other half to draw or use the results as they come out of the pipeline.
This may not be practical if the app presumes that data is global. But if it is well contained in classes, as your description suggests it may be, then this could be the simplest way to get it parallelised.
Don't attempt to multithread everything in the old app. Multithreading for the sake of saying it's multithreaded is a waste of time and money. You're building an app that does something, not a monument to yourself.
Profile and study your execution flows to figure out where the app spends most of its time. A profiler is a great tool for this, but so is just stepping through the code in the debugger. You find the most interesting things in random walks.
Decouple the UI from long-running computations. Use cross-thread communications techniques to send updates to the UI from the computation thread.
As a side-effect of #3: think carefully about reentrancy: now that the compute is running in the background and the user can smurf around in the UI, what things in the UI should be disabled to prevent conflicts with the background operation? Allowing the user to delete a dataset while a computation is running on that data is probably a bad idea. (Mitigation: computation makes a local snapshot of the data) Does it make sense for the user to spool up multiple compute operations concurrently? If handled well, this could be a new feature and help rationalize the app rework effort. If ignored, it will be a disaster.
Identify specific operations that are candidates to be shoved into a background thread. The ideal candidate is usually a single function or class that does a lot of work (requires a "lot of time" to complete - more than a few seconds) with well defined inputs and outputs, that makes use of no global resources, and does not touch the UI directly. Evaluate and prioritize candidates based on how much work would be required to retrofit to this ideal.
In terms of project management, take things one step at a time. If you have multiple operations that are strong candidates to be moved to a background thread, and they have no interaction with each other, these might be implemented in parallel by multiple developers. However, it would be a good exercise to have everybody participate in one conversion first so that everyone understands what to look for and to establish your patterns for UI interaction, etc. Hold an extended whiteboard meeting to discuss the design and process of extracting the one function into a background thread. Go implement that (together or dole out pieces to individuals), then reconvene to put it all together and discuss discoveries and pain points.
Multithreading is a headache and requires more careful thought than straight up coding, but splitting the app into multiple processes creates far more headaches, IMO. Threading support and available primitives are good in Windows, perhaps better than some other platforms. Use them.
In general, don't do any more than what is needed. It's easy to severely over implement and over complicate an issue by throwing more patterns and standard libraries at it.
If nobody on your team has done multithreading work before, budget time to make an expert or funds to hire one as a consultant.
The main thing you have to do is to disconnect your UI from your data set. I'd suggest that the way to do that is to put a layer in between.
You will need to design a data structure of data cooked-for-display. This will most likely contain copies of some of your back-end data, but "cooked" to be easy to draw from. The key idea here is that this is quick and easy to paint from. You may even have this data structure contain calculated screen positions of bits of data so that it's quick to draw from.
Whenever you get a WM_PAINT message you should get the most recent complete version of this structure and draw from it. If you do this properly, you should be able to handle multiple WM_PAINT messages per second because the paint code never refers to your back end data at all. It's just spinning through the cooked structure. The idea here is that its better to paint stale data quickly than to hang your UI.
Meanwhile...
You should have 2 complete copies of this cooked-for-display structure. One is what the WM_PAINT message looks at. (call it cfd_A) The other is what you hand to your CookDataForDisplay() function. (call it cfd_B). Your CookDataForDisplay() function runs in a separate thread, and works on building/updating cfd_B in the background. This function can take as long as it wants because it isn't interacting with the display in any way. Once the call returns cfd_B will be the most up-to-date version of the structure.
Now swap cfd_A and cfd_B and InvalidateRect on your application window.
A simplistic way to do this is to have your cooked-for-display structure be a bitmap, and that might be a good way to go to get the ball rolling, but I'm sure with a bit of thought you can do a much better job with a more sophisticated structure.
So, referring back to your example.
In the paint method, it will call a GetData method, often hundreds of times for hundreds of bits of data in one paint operation
This is now 2 threads, the paint method refers to cfd_A and runs on the UI thread. Meanwhile cfd_B is being built by a background thread using GetData calls.
The quick-and-dirty way to do this is
Take your current WM_PAINT code, stick it into a function called PaintIntoBitmap().
Create a bitmap and a Memory DC, this is cfd_B.
Create a thread and pass it cfd_B and have it call PaintIntoBitmap()
When this thread completes, swap cfd_B and cfd_A
Now your new WM_PAINT method just takes the pre-rendered bitmap in cfd_A and draws it to the screen. Your UI is now disconnnected from your backend GetData() function.
Now the real work begins, because the quick-and-dirty way doesn't handle window resizing very well. You can go from there to refine what your cfd_A and cfd_B structures are a little at a time until you reach a point where you are satisfied with the result.
You might just start out breaking the the UI and the work task into separate threads.
In your paint method instead of calling getData() directly, it puts the request in a thread-safe queue. getData() is run in another thread that reads its data from the queue. When the getData thread is done, it signals the main thread to redraw the visualisation area with its result data using thread syncronization to pass the data.
While all this is going on you of course have a progress bar saying reticulating splines so the user knows something is going on.
This would keep your UI snappy without the significant pain of multithreading your work routines (which can be akin to a total rewrite)
It sounds like you have several different issues that parallelism can address, but in different ways.
Performance increases through utilizing multicore CPU Architecutres
You're not taking advantage of the multi-core CPU architetures that are becoming so common. Parallelization allow you to divide work amongst multiple cores. You can write that code through standard C++ divide and conquer techniques using a "functional" style of programming where you pass work to separate threads at the divide stage. Google's MapReduce pattern is an example of that technique. Intel has the new CILK library to give you C++ compiler support for such techniques.
Greater GUI responsiveness through asynchronous document-view
By separating the GUI operations from the document operations and placing them on different threads, you can increase the apparent responsiveness of your application. The standard Model-View-Controller or Model-View-Presenter design patterns are a good place to start. You need to parallelize them by having the model inform the view of updates rather than have the view provide the thread on which the document computes itself. The View would call a method on the model asking it to compute a particular view of the data, and the model would inform the presenter/controller as information is changed or new data becomes available, which would get passed to the view to update itself.
Opportunistic caching and pre-calculation
It sounds like your application has a fixed base of data, but many possible compute-intensive views on the data. If you did a statistical analysis on which views were most commonly requested in what situations, you could create background worker threads to pre-calculate the likely-requested values. It may be useful to put these operations on low-priority threads so that they don't interfere with the main application processing.
Obviously, you'll need to use mutexes (or critical sections), events, and probably semaphores to implement this. You may find some of the new synchronization objects in Vista useful, like the slim reader-writer lock, condition variables, or the new thread pool API. See Joe Duffy's book on concurrency for how to use these basic techniques.
There is something that no-one has talked about yet, but which is quite interesting.
It's called futures. A future is the promise of a result... let's see with an example.
future<int> leftVal = computeLeftValue(treeNode); // [1]
int rightVal = computeRightValue(treeNode); // [2]
result = leftVal + rightVal; // [3]
It's pretty simple:
You spin off a thread that starts computing leftVal, taking it from a pool for example to avoid the initialization problem.
While leftVal is being computed, you compute rightVal.
You add the two, this may block if leftVal is not computed yet and wait for the computation to end.
The great benefit here is that it's straightforward: each time you have one computation followed by another that is independent and you then join the result, you can use this pattern.
See Herb Sutter's article on futures, they will be available in the upcoming C++0x but there are already libraries available today even if the syntax is perhaps not as pretty as I would make you believe ;)
If it was my development dollars I was spending, I would start with the big picture:
What do I hope to accomplish, and how much will I spend to accomplish this, and how will I be further ahead? (If the answer to this is, my app will run 10% better on quadcore PCs, and I could have achieved the same result by spending $1000 more per customer PC , and spending $100,000 less this year on R&D, then, I would skip the whole effort).
Why am I doing multi-threaded instead of massively parallel distributed? Do I really think threads are better than processes? Multi-core systems also run distributed apps pretty well. And there are some advantages to message-passing process based systems that go beyond the benefits (and the costs!) of threading. Should I consider a process-based approach? SHould I consider a background running entirely as a service, and a foreground GUI? Since my product is node-locked and licensed, I think services would suit me (vendor) quite well. Also, separating stuff into two processes (background service and foreground) just might force the kind of rewrite and rearchitecting to occur that I might not be forced to do, if I was to just add threading into my mix.
This is just to get you thinking: What if you were to rewrite it as a service (background app) and a GUI, because that would actually be easier than adding threading, without also adding crashes, deadlocks, and race conditions?
Consider the idea that for your needs, perhaps threading is evil. Develop your religion, and stick with that. Unless you have a real good reason to go the other way. For many years, I religiously avoided threading. Because one thread per process is good enough for me.
I don't see any really solid reasons in your list why you need threading, except ones that could be more inexpensively solved by more expensive target computer hardware. If your app is "too slow" adding in threads might not even speed it up.
I use threads for background serial communications, but I would not consider threading merely for computationally heavy applications, unless my algorithms were so inherently parallel as to make the benefits clear, and the drawbacks minimal.
I wonder if the "design" problems that this C++Builder app has are like my Delphi "RAD Spaghetti" application disease. I have found that a wholesale refactor/rewrite (over a year per major app that I have done this to), was a minimum amount of time for me to get a handle on application "accidental complexity". And that was without throwing a "threads where possible" idea. I tend to write my apps with threads for serial communication and network socket handling, only. And maybe the odd "worker-thread-queue".
If there is a place in your app you can add ONE thread, to test the waters, I would look for the main "work queue" and I would create an experimental version control branch, and I would learn about how my code works by breaking it in the experimental branch. Add that thread. And see where you spend your first day of debugging. Then I might just abandon that branch and go back to my trunk until the pain in my temporal lobe subsides.
Warren
Here's what I would do...
I would start by profiling your and seeing:
1) what is slow and what the hot paths are
2) which calls are reentrant or deeply nested
you can use 1) to determine where the opportunity is for speedups and where to start looking for parallelization.
you can use 2) to find out where the shared state is likely to be and get a deeper sense of how much things are tangled up.
I would use a good system profiler and a good sampling profiler (like the windows perforamnce toolkit or the concurrency views of the profiler in Visual Studio 2010 Beta2 - these are both 'free' right now).
Then I would figure out what the goal is and how to separate things gradually to a cleaner design that is more responsive (moving work off the UI thread) and more performant (parallelizing computationally intensive portions). I would focus on the highest priority and most noticable items first.
If you don't have a good refactoring tool like VisualAssist, invest in one - it's worth it. If you're not familiar with Michael Feathers or Kent Beck's refactoring books, consider borrowing them. I would ensure my refactorings are well covered by unit tests.
You can't move to VS (I would recommend the products I work on the Asynchronous Agents Library & Parallel Pattern Library, you can also use TBB or OpenMP).
In boost, I would look carefully at boost::thread, the asio library and the signals library.
I would ask for help / guidance / a listening ear when I got stuck.
-Rick
You can also look at this article from Herb Sutter You have a mass of existing code and want to add concurrency. Where do you start?
Well, I think you're expecting a lot based on your comments here. You're not going to go from minutes to milliseconds by multithreading. The most you can hope for is the current amount of time divided by the number of cores. That being said, you're in a bit of luck with C++. I've written high performance multiprocessor scientific apps, and what you want to look for is the most embarrassingly parallel loop you can find. In my scientific code, the heaviest piece is calculating somewhere between 100 and 1000 data points. However, all of the data points can be calculated independently of the others. You can then split the loop using openmp. This is the easiest and most efficient way to go. If you're compiler doesn't support openmp, then you will have a very hard time porting existing code. With openmp (if you're lucky), you may only have to add a couple of #pragmas to get 4-8x the performance. Here's an example StochFit
I hope this will help you in understanding and converting your monolithic single threaded app to multi thread easily. Sorry it is for another programming language but never the less the principles explained are the same all over.
http://www.freevbcode.com/ShowCode.Asp?ID=1287
Hope this helps.
The first thing you must do is to separate your GUI from your data, the second is to create a multithreaded class.
STEP 1 - Responsive GUI
We can assume that the image you are producing is contained in the canvas of a TImage. You can put a simple TTimer in you form and you can write code like this:
if (CurrenData.LastUpdate>CurrentUpdate)
{
Image1->Canvas->Draw(0,0,CurrenData.Bitmap);
CurrentUpdate=Now();
}
OK! I know! Is a little bit dirty, but it's fast and is simple.The point is that:
You need an Object that is created in the main thread
The object is copied in the Form you need, only when is needed and in a safe way (ok, a better protection for the Bitmap may be is needed, but for semplicity...)
The object CurrentData is your actual project, single threaded, that produces an image
Now you have a fast and responsive GUI. If your algorithm as slow, the refresh is slow, but your user will never think that your program is freezed.
STEP 2 - Multithread
I suggest you to implement a class like the following:
SimpleThread.h
typedef void (__closure *TThreadFunction)(void* Data);
class TSimpleThread : public TThread
{
public:
TSimpleThread( TThreadFunction _Action,void* _Data = NULL, bool RunNow = true );
void AbortThread();
__property Terminated;
protected:
TThreadFunction ThreadFunction;
void* Data;
private:
virtual void __fastcall Execute() { ThreadFunction(Data); };
};
SimpleThread.c
TSimpleThread::TSimpleThread( TThreadFunction _Action,void* _Data, bool RunNow)
: TThread(true), // initialize suspended
ThreadFunction(_Action), Data(_Data)
{
FreeOnTerminate = false;
if (RunNow) Resume();
}
void TSimpleThread::AbortThread()
{
Suspend(); // Can't kill a running thread
Free(); // Kills thread
}
Let's explain. Now, in your simple threaded class you can create an object like this:
TSimpleThread *ST;
ST=new TSimpleThread( RefreshFunction,NULL,true);
ST->Resume();
Let's explain better: now, in your own monolithic class, you have created a thread. More: you bring a function (ie: RefreshFunction) in a separate thread. The scope of your funcion is the same, the class is the same, the execution is separate.
My number one suggestion, although it's very late (sorry for reviving old thread, it's interesting!) is seek out homogeneous transform loops where each iteration of the loop is mutating a completely independent piece of data from the other iterations.
Instead of thinking about how to turn this old codebase into an asynchronous one running all kinds of operations in parallel (which could be asking for all kinds of trouble from worse than single-threaded performance from poor locking patterns or exponentially worse, race conditions/deadlocks by trying to do this in hindsight to code you can't fully comprehend), stick to the sequential mindset for the overall application design for now but identify or extract simple, homogeneous transform loops. Don't go from intrusive broad design-level multithreading and then try to drill into details. Work from non-intrusive multithreading of fine implementation details and specific hotspots first.
What I mean by homogeneous loops is basically one that transforms data in a very straightforward way, like:
for each pixel in image:
make it brighter
That is very simple to reason about and you can safely parallelize this loop without any problems whatsoever using OMP or TBB or whatever and without getting tangled up in thread synchronization. It only takes one glance at this code to fully comprehend its side effects.
Try to find as many hotspots as you can which fit this type of simple homogeneous transform loop and if you have complex loops which update many different types of data with complex control flows that trigger complex side effects, then seek to refactor towards these homogeneous loops. Often a complex loop which causes 3 disparate side effects to 3 different types of data can be turned into 3 simple homogeneous loops which each trigger just one kind of side effect to one type of data with a simpler control flow. Doing multiple loops instead of one might seem a tad wasteful, but the loops become simpler, the homogeneity will often lead to more cache-friendly sequential memory access patterns vs. sporadic random-access patterns, and you then tend to find much more opportunities to safely parallelize (as well as vectorize) the code in a straightforward way.
First you have to thoroughly understand the side effects of any code you attempt to parallelize (and I mean thoroughly!!!), so seeking out these homogeneous loops gives you isolated areas of the codebase you can easily reason about in terms of the side effects to the point where you can confidently and safely parallelize those hotspots. It'll also improve the maintainability of the code by making it very easy to reason about the state changes going on in that particular piece of code. Save the dream of the uber multithreaded application running everything in parallel for later. For now, focus on identifying/extracting performance-critical, homogeneous loops with simple control flows and simple side effects. Those are your priority targets for parallelization with simple parallelized loops.
Now admittedly I somewhat dodged your questions, but most of them don't need apply if you do what I suggest, at least until you've kind of worked your way out to the point where you're thinking more about multithreading designs as opposed to simply parallelizing implementation details. And you might not even need to go that far to have a very competitive product in terms of performance. If you have beefy work to do in a single loop, you can devote the hardware resources to making that loop go faster instead of making many operations run simultaneously. If you have to resort to more async methods like if your hotspots are more I/O bound, seek an async/wait approach where you fire off an async task but do some things in the meantime and then wait on the async task(s) to complete. Even if that's not absolutely necessary, the idea is to section off isolated areas of your codebase where you can, with 100% confidence (or at least 99.9999999%) say that the multithreaded code is correct.
You don't ever want to gamble with race conditions. There's nothing more demoralizing than finding some obscure race condition that only occurs once in a full moon on some random user's machine while your entire QA team is unable to reproduce it, only to, 3 months later, run into it yourself except during that one time you ran a release build without debugging info available while you then toss and turn in your sleep knowing your codebase can flake out at any given moment but in ways that no one will ever be able to consistently reproduce. So take it easy with multithreading legacy codebases, at least for now, and stick to multithreading isolated but critical sections of the codebase where the side effects are dead simple to reason about. And test the crap out of it -- ideally apply a TDD approach where you write a test for the code you're going to multithread to ensure it gives the correct output after you finish... though race conditions are the types of things that easily fly under the radar of unit and integration testing, so again you absolutely need to be able to comprehend the entirety of the side effects that go on in a given piece of code before you attempt to multithread it. The best way to do that is to make the side effects as easy to comprehend as possible with the simplest control flows causing just one type of side effect for an entire loop.
It is hard to give you proper guidelines. But...
The easiest way out according to me is to convert your application to ActiveX EXE as COM has support for Threading, etc. built right into it your program will automatically become Multi Threading application. Of course you will have to make quite a few changes to your code. But this is the shortest and safest way to go.
I am not sure but probably RichClient Toolset lib may do the trick for you. On the site the author has written:
It also offers registration free Loading/Instancing-capabilities
for ActiveX-Dlls and new, easy to use Threading-approach,
which works with Named-Pipes under the
hood and works therefore also
cross-process.
Please check it out. Who knows it may be the right solution for your requirements.
As for Project management I think you can continue using what is provided in your choice IDE by integrating it with SVN through plugins.
I forgot to mention that we have completed an application for Share market that automatically trades (buys and sells based on lows and highs) into those scripts that are in user portfolio based on an algorithm that we have developed.
While developing this software we were facing the same kind of problem as you have illustrated here. To solve it we converted out application in ActiveX EXE and we converted all those parts that need to execute parallely into ActiveX DLLs. We have not used any third party libs for this!
HTH