I have a vector of maps like this:
[{:id 2 :val "v1"} {:id 5 :val "v2"} {:id 10 :val "v3"}]
and now I want to find an element previous to chosen id.
For example: when provided with id = 10 i want to receive:
{:id 5 :val "v2"}
and when selected id = 2 then return nil.
I'm new in clojurescript programming and cannot think of simple solution for this problem... Help please :)
You can use partition to pair adjacent maps and then search for a match on the second by id:
(def ms [{:id 2 :val "v1"} {:id 5 :val "v2"} {:id 10 :val "v3"}])
(ffirst (filter #(= 10 (:id (second %))) (partition 2 1 ms)))
(partition 2 1 data) in the accepted answer is an option, but here are two alternatives based on a "lagged" sequence.
This one first constructs the look-up table (mapping next ids to each item), which should be more performant if many lookups needs to be done. You could even easily map over it. But this approach requires ids to be unique.
(let [data [{:id 2 :val "v1"} {:id 5 :val "v2"} {:id 10 :val "v3"}]
ids (zipmap (map :id (rest data)) data)]
[(ids 10)
ids])
; [{:id 5, :val "v2"}
; {5 {:id 2, :val "v1"}, 10 {:id 5, :val "v2"}}]
This second one generates a sequence of matching documents, which is necessary if there might be more than one:
(let [data [{:id 2 :val "v1"} {:id 5 :val "v2"} {:id 10 :val "v3"}]
next-ids (->> data rest (map :id))]
(->>
(map (fn [item next-id] (if (= 10 next-id) item))
data next-ids)
(filter some?)
first))
; {:id 5, :val "v2"}
You'd get similar code by using partition but instead of #(...) you'd use destructuring: (fn [first-item second-item] (= 10 (:id second-item))). Indeed ffirst comes very handy in this approach.
Related
In my continual effort to replicate imperative programming in Clojure, I seem to still nest for functions.
For example, if I wanted to start with:
[[{:a 1 :b 2 :c 3} {:a 1 :b 2 :c 3}] [{:a 2 :b 2 :c 3} {:a 2 :b 2 :c 3}]]
and get:
[[:table [:tr [:td {:class "a-1" "b-2" "c-3"}] [:td {:class "a-2" "b-2" "c-3"}]]
how would I do that without the classic nested for statements I'm familiar with from other languages?
I realize I should paste my attempt here but it's too awful.
UPDATE: see the point below that I used incorrect hiccup in the :class values.
My recommendation would be to see the structure of the data (which you have already) and try to decompose the problem in terms of the data you are given.
You have a structure which resembles rows and cells, so that's one approach. You format rows, which are the result of formatting individual cells, then each cell needs to have CSS classes which are passed as a hash-map.
With that in mind:
(defn cell-classes [cell]
(->> (map (fn [[k v]] (str (name k) "-" v)) cell)
(interpose " ")
(reduce str)))
(defn format-cell [cell]
(let [classes (cell-classes cell)]
[:td {:class classes}]))
(defn format-row [cells]
(->> (map format-cell cells)
(into [:tr])))
(defn format-rows [rows]
(->> (map format-row rows)
(into [:table])))
If we test it with your sample data:
(clojure.pprint/pprint (format-rows [[{:a 1 :b 2 :c 3} {:a 1 :b 2 :c 3}] [{:a 2 :b 2 :c 3} {:a 2 :b 2 :c 3}]]))
it prints
[:table
[:tr [:td {:class "a-1 b-2 c-3"}] [:td {:class "a-1 b-2 c-3"}]]
[:tr [:td {:class "a-2 b-2 c-3"}] [:td {:class "a-2 b-2 c-3"}]]]
PS: there's a minor issue in your desired output, which is that {:class "a-1" "b-2" "c-3"} would not be a desirable output for hiccup, that's why I joined the class names with space on cell-classes.
I have a map with collection of these {:id 2489 ,values :.......} {:id 5647 ,values : .....} and so on till 10000 and I want to filter its value dependent on another collection which has ids of first one like (2489 ,......)
I am new to clojure and I have tried :
(into {} (filter #(some (fn [u] (= u (:id %))) [2489 3456 4567 5689]) record-sets))
But it gives me only the last that is 5689 id as output {:id 5689 ,:values ....}, while I want all of them, can you suggest what I can do.
One problem is that you start out with a sequence of N maps, then you try to stuff them into a single map. This will cause the last one to overwrite the first one.
Instead, you need to have the output be a sequence of M maps (M <= N).
Something like this is what you want:
(def data
[{:id 1 :stuff :fred}
{:id 2 :stuff :barney}
{:id 3 :stuff :wilma}
{:id 4 :stuff :betty}])
(let [ids-wanted #{1 3}
data-wanted (filterv
(fn [item]
(contains? ids-wanted (:id item)))
data)]
(println data-wanted))
with result:
[{:id 1, :stuff :fred}
{:id 3, :stuff :wilma}]
Be sure to use the Clojure CheatSheet: http://jafingerhut.github.io/cheatsheet/clojuredocs/cheatsheet-tiptip-cdocs-summary.html
I like filterv over plain filter since it always gives a non-lazy result (i.e. a Clojure vector).
You are squashing all your maps into one. First thing, for sake of performance, is to change your list of IDs into a set, then simply filter.
(let [ids (into #{} [2489 3456 4567 5689])]
(filter (comp ids :id) record-sets))
This will give you the sequence of correct maps. If you want to covert this sequence of maps into a map keyed by ID, you can do this:
(let [ids (into #{} [2489 3456 4567 5689])]
(->> record-sets
(filter (comp ids :id))
(into {} (map (juxt :id identity)))))
Another way to do this could be with the use of select-keys functions in Clojure
select-keys returns a map of only the keys given to the function
so given that your data is a list of maps we can convert it into a hash-map of ids using group-by and then call select-keys on it
(def data
[{:id 1 :stuff :fred}
{:id 2 :stuff :barney}
{:id 3 :stuff :wilma}
{:id 4 :stuff :betty}])
(select-keys (group-by :id data) [1 4])
; => {1 [{:id 1, :stuff :fred}], 4 [{:id 4, :stuff :betty}]}
However now the values is a map of ids. So in order to get the orignal structure back we need get all the values in the map and then flatten the vectors
; get all the values in the map
(vals (select-keys (group-by :id data) [1 4]))
; => ([{:id 1, :stuff :fred}] [{:id 4, :stuff :betty}])
; flatten the nested vectors
(flatten (vals (select-keys (group-by :id data) [1 4])))
; => ({:id 1, :stuff :fred} {:id 4, :stuff :betty})
Extracting the values and flattening might seem a bit inefficient but i think its less complex then the nested loop that needs to be done in the filter based methods.
You can using the threading macro to compose all the steps together
(-> (group-by :id data)
(select-keys [1 4])
vals
flatten)
Another thing that you can do is to store the data as a map of ids from the beginning this way using select keys wont require group-by and the result wont require flattening.
Update all keys in a map
(update-values (group-by :id data) first)
; => {1 {:id 1, :stuff :fred}, 2 {:id 2, :stuff :barney}, 3 {:id 3, :stuff :wilma}, 4 {:id 4, :stuff :betty}}
This would probably be the most efficient for this problem but this structure might not work for every case.
I have 2 vectors: employ and emp-income. I want to loop thru emp-income based on employ to find what all the missing records. In this case, it's missing id = 2. And i want to create the missing record in emp-income and set the income as the previous record's income value. What is the best way to do it in clojure?
(def employ
[{:id 1 :name "Aaron"}
{:id 2 :name "Ben"}
{:id 3 :name "Carry"}])
from:
(def emp-income
[{:emp-id 1 :income 1000}
{:emp-id 3 :income 2000}])
to:
(def emp-income
[{:emp-id 1 :income 1000}
{:emp-id 2 :income 1000}
{:emp-id 3 :income 2000}])
You could use:
(let [emp-id->income (into {} (map (fn [rec] [(:emp-id rec) rec]) emp-income))]
(reduce (fn [acc {:keys [id]}]
(let [{:keys [income]} (or (get emp-id->income id) (peek acc))]
(conj acc {:emp-id id :income income})))
[]
employ))
Note this will create a record of {:emp-id id :income nil} if the first record is not found in emp-income. It will also use the last :emp-id encountered if duplicate :emp-id values are found within emp-income.
I've got the following tree:
{:start_date "2014-12-07"
:data {
:people [
{:id 1
:projects [{:id 1} {:id 2}]}
{:id 2
:projects [{:id 1} {:id 3}]}
]
}
}
I want to update the people and projects subtrees by adding a :name key-value pair.
Assuming I have these maps to perform the lookup:
(def people {1 "Susan" 2 "John")
(def projects {1 "Foo" 2 "Bar" 3 "Qux")
How could I update the original tree so that I end up with the following?
{:start_date "2014-12-07"
:data {
:people [
{:id 1
:name "Susan"
:projects [{:id 1 :name "Foo"} {:id 2 :name "Bar"}]}
{:id 2
:name "John"
:projects [{:id 1 :name "Foo"} {:id 3 :name "Qux"}]}
]
}
}
I've tried multiple combinations of assoc-in, update-in, get-in and map calls, but haven't been able to figure this out.
I have used letfn to break down the update into easier to understand units.
user> (def tree {:start_date "2014-12-07"
:data {:people [{:id 1
:projects [{:id 1} {:id 2}]}
{:id 2
:projects [{:id 1} {:id 3}]}]}})
#'user/tree
user> (def people {1 "Susan" 2 "John"})
#'user/people
user> (def projects {1 "Foo" 2 "Bar" 3 "Qux"})
#'user/projects
user>
(defn integrate-tree
[tree people projects]
;; letfn is like let, but it creates fn, and allows forward references
(letfn [(update-person [person]
;; -> is the "thread first" macro, the result of each expression
;; becomes the first arg to the next
(-> person
(assoc :name (people (:id person)))
(update-in [:projects] update-projects)))
(update-projects [all-projects]
(mapv
#(assoc % :name (projects (:id %)))
all-projects))]
(update-in tree [:data :people] #(mapv update-person %))))
#'user/integrate-tree
user> (pprint (integrate-tree tree people projects))
{:start_date "2014-12-07",
:data
{:people
[{:projects [{:name "Foo", :id 1} {:name "Bar", :id 2}],
:name "Susan",
:id 1}
{:projects [{:name "Foo", :id 1} {:name "Qux", :id 3}],
:name "John",
:id 2}]}}
nil
Not sure if entirely the best approach:
(defn update-names
[tree people projects]
(reduce
(fn [t [id name]]
(let [person-idx (ffirst (filter #(= (:id (second %)) id)
(map-indexed vector (:people (:data t)))))
temp (assoc-in t [:data :people person-idx :name] name)]
(reduce
(fn [t [id name]]
(let [project-idx (ffirst (filter #(= (:id (second %)) id)
(map-indexed vector (get-in t [:data :people person-idx :projects]))))]
(if project-idx
(assoc-in t [:data :people person-idx :projects project-idx :name] name)
t)))
temp
projects)))
tree
people))
Just call it with your parameters:
(clojure.pprint/pprint (update-names tree people projects))
{:start_date "2014-12-07",
:data
{:people
[{:projects [{:name "Foo", :id 1} {:name "Bar", :id 2}],
:name "Susan",
:id 1}
{:projects [{:name "Foo", :id 1} {:name "Qux", :id 3}],
:name "John",
:id 2}]}}
With nested reduces
Reduce over the people to update corresponding names
For each people, reduce over projects to update corresponding names
The noisesmith solution looks better since doesn't need to find person index or project index for each step.
Naturally you tried to assoc-in or update-in but the problem lies in your tree structure, since the key path to update John name is [:data :people 1 :name], so your assoc-in code would look like:
(assoc-in tree [:data :people 1 :name] "John")
But you need to find John's index in the people vector before you can update it, same things happens with projects inside.
I've got two maps:
(def people {:1 "John" :2 "Paul" :3 "Ringo" :4 "George"})
(def band
{:data
{:members
{:1 {:id 1 :name "John"}
:2 {:id 2 :name "Paul"}}}})
I want to loop over people and add any members that don't exist in [:data :members] to band, resulting in:
(def band
{:data
{:members
{:1 {:id 1 :name "John"}
:2 {:id 2 :name "Paul"}
:3 {:id 3 :name "Ringo"}
:4 {:id 4 :name "George"}}}})
Here's what I've tried:
(for [[id name] people]
(when-not
(contains? (get-in band [:data :members]) id)
(assoc-in band [:data :members id] {:id id :name name})))
Which yields:
({:data
{:members
{:4 {:id :4, :name "George"},
:1 {:name "John", :id 1},
:2 {:name "Paul", :id 2}}}}
nil
nil
{:data
{:members
{:1 {:name "John", :id 1},
:2 {:name "Paul", :id 2},
:3 {:id :3, :name "Ringo"}}}})
I'm not sure why I'm getting back what looks to be a list of each mutation of band. What am I doing wrong here? How can I add the missing members of people to band [:data :members]?
To be pedantic you aren't getting back any mutation of band. In fact, one of the most important features of Clojure is that the standard types are immutible, and the primary collection operations return a modified copy without changing the original.
Also, for in Clojure is not a loop, it is a list comprehension. This is why it always returns a sequence of each step. So instead of altering an input one step at a time, you made a new variation on the input for each step, each derived from the immutable original.
The standard construct for making a series of updated copies of an input based on a sequence of values is reduce, which passes a new version of the accumulator and each element of the list to your function.
Finally, you are misunderstanding the role of :keyword syntax - prefixing an item with a : is not needed in order to construct map keys - just about any clojure value is a valid key for a map, and keywords are just a convenient idiom.
user=> (def band
{:data
{:members
{1 {:id 1 :name "John"}
2 {:id 2 :name "Paul"}}}})
#'user/band
user=> (def people {1 "John" 2 "Paul" 3 "Ringo" 4 "George"})
#'user/people
user=> (pprint
(reduce (fn [band [id name :as person]]
(if-not (contains? (get-in band [:data :members]) id)
(assoc-in band [:data :members id] {:id id :name name})
band))
band
people))
{:data
{:members
{3 {:id 3, :name "Ringo"},
4 {:id 4, :name "George"},
1 {:name "John", :id 1},
2 {:name "Paul", :id 2}}}}
nil
You may notice the body of the fn passed to reduce is essentially the same as the body of your for comprehension. The difference is that instead of when-not which returns nil on the alternate case, I use if-not, which allows us to propagate the accumulator (here called band, same as the input) regardless of whether any new version of it is made.