How to detect malloc and free function calls in a llvm pass and replace it with a new function calls by getting the arguments and return type in llvm?
i.e. Is there a way to create new functions (Malloc and free) and then create function calls whenever Malloc and free are detected?
1.Create malloc and free
Type *BPTy = PointerType::getUnqual(Type::getInt8Ty(M.getContext()));
FunctionType *malloc_Fty = FunctionType::get(BPTy, llvm::ArrayRef<Type*>(), true);
Function *malloc_func = cast<Function>(M.getOrInsertFunction("malloc", malloc_Fty));
FunctionType *free_Fty = FunctionType::get(Type::getVoidTy(M.getContext()), BPTy, false);
Function *free_func = cast<Function>(M.getOrInsertFunction("free",free_Fty));
2. Detect malloc and free and replace it with new malloc and free function calls
if(CallInst *CI = dyn_cast<CallInst>(I)) {
Function *Callee = CI->getCalledFunction();
if (Callee->getName() == "malloc") {
FunctionType *Ty = Callee->getFunctionType();
PointerType *PtrTy = dyn_cast<PointerType>(Ty);
Type *AllocTy = PtrTy->getElementType();
const DataLayout &DL = M.getDataLayout();
Type *IntPtrTy = DL.getIntPtrType(M.getContext());
Value *mallocArgs;
mallocArgs = ConstantExpr::getSizeOf(AllocTy);
mallocArgs = ConstantExpr::getTruncOrBitCast(cast<Constant>(mallocArgs), IntPtrTy);
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&*I)) {
if (AI->isArrayAllocation()) {
if (isa<ConstantInt>(mallocArgs) && cast<ConstantInt>(mallocArgs)->isOne()) {
mallocArgs = I->getOperand(0);
} else if (Constant *CO = dyn_cast<Constant>(I->getOperand(0))) {
CO = ConstantExpr::getIntegerCast(CO, IntPtrTy, false );
mallocArgs = ConstantExpr::getMul(CO, cast<Constant>(mallocArgs));
} else {
Value *Scale = I->getOperand(0);
if (Scale->getType() != IntPtrTy)
Scale = CastInst::CreateIntegerCast(Scale, IntPtrTy, false,"", &*I);
// Multiply it by the array size if necessary...
mallocArgs =BinaryOperator::Create(Instruction::Mul, Scale, mallocArgs, "", &*I);
}
}
}
// Create the call to malloc
CallInst *malloc_Call = CallInst::Create(malloc_func, mallocArgs, "", &*I);
// Cast the instruction to convert to the correct type
Value *malloc_PtrCast;
Type * voidty=Type::getVoidTy (M.getContext());
if (malloc_Call->getType() !=voidty )
malloc_PtrCast = new BitCastInst(malloc_Call, I->getType(), "", &*I);
else
malloc_PtrCast = Constant::getNullValue(I->getType());
Instruction *II=dyn_cast<Instruction>(&*I);
II->replaceAllUsesWith(malloc_PtrCast);
}
if (Callee->getName() == "free") {
Value *free_PtrCast =
new BitCastInst(I->getOperand(0), PointerType::getUnqual(Type::getInt8Ty(M.getContext())), "", &*I);
// Create the call to free function
CallInst::Create(free_func, free_PtrCast, "", &*I);
Instruction *II=dyn_cast<Instruction>(&*I);
II->replaceAllUsesWith(free_PtrCast);
}
}
3. Example on which I am testing
void* ptr;
void malloc_func()
{
ptr = malloc(512);
}
void free_func()
{
free(ptr);
}
But, I am getting segmentation fault, is this the correct way to replace malloc and free function calls with the new functions?
Related
I want to update value of global variable in LLVM IR.
I created new global variable in ModulePass:
bool runOnModule(llvm::Module &M) {
IRBuilder<> Builder(M.getContext());
Instruction *I = &*inst_begin(M.getFunction("main"));
Builder.SetInsertPoint(I);
M.getOrInsertGlobal("globalKey", Builder.getInt64Ty());
GlobalVariable* gVar = M.getNamedGlobal("globalKey");
gVar->setLinkage(GlobalValue::InternalLinkage);
gVar->setAlignment(Align(8));
gVar->setInitializer(Builder.getInt64(0));
gVar->setConstant(false);
for (Function &F : M.functions()) {
InstructionVisitor visitor(DL, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
for (Instruction &I : instructions(F)) {
visitor.visit(I);
}
}
return true;
}
Later in InstructionVisitor I try to increment globalKey on each allocation and print it using printf function:
Instruction* InstructionVisitor::print(Instruction* I, const char* text, Value* arg1, Value* arg2, Value* arg3, Value* arg4) {
Function* printfFn = I->getModule()->getFunction("printf");
if (printfFn) {
IRBuilder<> Builder(I->getContext());
Builder.SetInsertPoint(I->getNextNode());
Value* convertedText = Builder.CreateGlobalStringPtr(text);
std::vector <Value *> params;
params.push_back(convertedText);
if (arg1)
params.push_back(arg1);
if (arg2)
params.push_back(arg2);
if (arg3)
params.push_back(arg3);
if (arg4)
params.push_back(arg4);
return Builder.CreateCall(printfFn, params);
}
return I;
}
Instruction* InstructionVisitor::incrementGlobalKey(Instruction* I) {
IRBuilder<> Builder(I->getContext());
Builder.SetInsertPoint(I->getNextNode());
GlobalVariable* key = I->getModule()->getNamedGlobal("globalKey");
if (key) {
LoadInst* load = Builder.CreateLoad(key);
Value* inc = Builder.CreateAdd(load, Builder.getInt64(1));
StoreInst* store = Builder.CreateStore(inc, key);
return store;
}
return I;
}
void InstructionVisitor::visitCallInst(CallInst &CI) {
if (isAllocationFn(&CI, &TLI)) {
Value* allocatedAddress = &CI;
Instruction* I = &CI;
Value* allocatedSize = I->getOperand(0);
Instruction* next = incrementGlobalKey(I);
GlobalVariable* key = I->getModule()->getNamedGlobal("globalKey");
const char* message = "Allocated address: 0x%p, size: %d, key: 0x%x\n";
print(next, message, allocatedAddress, allocatedSize, key->getOperand(0));
}
}
I print that global variable during execution of instrumented code (using injected printf call). I access it's value by key->getOperand(0) (as shown above), but it's unchanged. I'm using ORC JIT based on this tutorial: https://llvm.org/docs/tutorial/BuildingAJIT2.html and I run ModulePass from optimizeModule function from this tutorial.
IR, souce code that I'm instrumenting and program output can be found here:
https://pastebin.com/JbDR2Wug
Does anyone know how to make it work? I will be grateful for help!
After #droptop helpful comment I changed my code to actually load the global variable's value using load instruction. It works fine now. Updated code is shown below if anyone need it:
Instruction* InstructionVisitor::getGlobalValue(Instruction* I, StringRef Name) {
IRBuilder<> Builder(I->getContext());
Builder.SetInsertPoint(I->getNextNode());
GlobalVariable* key = I->getModule()->getNamedGlobal(Name);
if (key) {
LoadInst* load = Builder.CreateLoad(key);
return load;
}
return nullptr;
}
void InstructionVisitor::visitCallInst(CallInst &CI) {
if (isAllocationFn(&CI, &TLI)) {
Value* allocatedAddress = &CI;
Instruction* I = &CI;
Value* allocatedSize = I->getOperand(0);
Instruction* next = incrementGlobalKey(I, allocatedAddress, allocatedSize);
Instruction* loadKey = getGlobalValue(next, "globalKey"); //here
const char* message = "Allocated address: 0x%p, size: %d, key: %lld\n";
next = print(loadKey, message, allocatedAddress, allocatedSize, loadKey);
}
}
So I was working on malloc in void. And I have a code:
int iInitRandomPhaseArrays(WS_ELEMENT *Aufbau, RANDOMSTRUCT **random)
{
WS_ELEMENT *Act;
int iCounter = 0, i;
RANDOMSTRUCT *dummy;
Act = Aufbau;
if (*random != NULL)
return -1;
while (Act != NULL)
{
if (Act->operation == Linsenarray)
iCounter++;
Act = Act->pNext;
}
if (iCounter)
{
dummy = malloc(iCounter * sizeof(random));
ran1_3ARG(&ran1_idum, &ran1_iy, ran1_iv);
dummy[0].idum = ran1_idum;
dummy[0].iy = ran1_iy;
memcpy(dummy[0].iv, ran1_iv, sizeof(ran1_iv));
for (i = 0; i < iCounter; i++)
ran1_3ARG(&dummy[i].idum, &dummy[i].iy, dummy[i].iv);
dummy[0].Anzahl = iCounter;
*random = dummy;
}
return iCounter;
}
here error:
a value of type "void *" cannot be assigned to an entity of type "RANDOMSTRUCT *"
Can anyone help me solve it?
Change the line:
dummy = malloc(iCounter * sizeof(random));
to say:
dummy = (RANDOMSTRUCT *)malloc(iCounter * sizeof(RANDOMSTRUCT));
dummy = malloc(iCounter * sizeof(random));
this allocates the wrong amount of memory (a multiple of a pointer size, not the pointed-to) and returns a void*. In c++ void* doesn't implicitly convert to other pointer types. In c it does.
Assuming you actually mean to use C-isms in C++ code, write this:
template<class T>
T* typed_malloc( std::size_t count = 1 ) {
return static_cast<T*>(malloc( sizeof(T)*count ));
}
this function is a type-safe version of malloc that handles 9999/10000 uses, and prevents an annoying class of bugs.
Then change the line of code to:
dummy = typed_malloc<RANDOMSTRUCT>(iCounter);
Sometimes using malloc in c++ isn't easy to remove, because your code interacts with c code. This kind of change can eliminate bugs before they happen as you modify c code to c++ relatively transparently.
I just started with LLVM. I am using C++ to create a compiler for Pascal-like language. Given that print functions are system calls, how do I map from my language writeln(5) to the system function printf ("%d",5)? I thought that code below should do it.
NamedValues.clear();
vector<Type *> Doubles(1, Type::getInt32Ty(TheContext));
FunctionType * FT = FunctionType::get(Type::getInt32Ty(TheContext), Doubles, false);
Function * function = Function::Create(FT, Function::ExternalLinkage, "writeln", TheModule.get());
// create function body
BasicBlock * BB = BasicBlock::Create(TheContext, "entry", function);
Builder.SetInsertPoint(BB);
// get param
Function::arg_iterator AI = function->arg_begin();
Value * val = AI;
AI->setName("val");
// get format string
string format = "%d";
Constant * ConstStr = ConstantDataArray::getString(TheContext, format.c_str());
ConstStr = new GlobalVariable(*TheModule, ConstStr->getType(), true, GlobalValue::InternalLinkage, ConstStr, format);
Constant * Idxs[] = {ConstantInt::get(Type::getInt32Ty(TheContext), 0), 0};
Idxs[1] = Idxs[0];
// make params
vector<Type *> params;
params.push_back(PointerType::getUnqual(Type::getInt8Ty(TheContext)));
// get printf function
FunctionCallee PrintF = TheModule->getOrInsertFunction("printf", FunctionType::get(Type::getVoidTy(TheContext), params, true));
// call
/*
* CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args = None,
const Twine &Name = "", MDNode *FPMathTag = nullptr)
*/
Builder.CreateCall(PrintF.getFunctionType(), ConstantExpr::getGetElementPtr(ConstStr->getType(), ConstStr, Idxs), val);
Builder.CreateRet(Builder.getInt32(0));
main_loop();
Error I got:
Assertion failed: (Ty == cast<PointerType>(C->getType()->getScalarType())->getElementType()), function getGetElementPtr, file /Users/ustynov/Documents/Study/HOMEWORKS/semestralwork/llvm/lib/IR/Constants.cpp, line 2012.
I have a script to C++ callback/functor system that can call any "registered" C++ function using strings and/or variants.
//REMOVED ERROR CHECKS AND ERRONEOUS STUFF FOR THIS POST
int LuaGameObject::LuaCallFunction( lua_State *luaState )
{
if ( lua_isuserdata( luaState, 1 ) == 1 )
{
int nArgs = lua_gettop( luaState );
//Get GameObject
OGameObject* pGameObject = static_cast<OGameObject*>(lua_touserdata( luaState, 1 ));
if ( pGameObject )
{
//Get FunctionName
const char* functionNameString = lua_tostring( luaState, 2 );
//Get Args
std::vector<OVariant> args;
for ( int i = 3; i <= nArgs; ++i )
{
OVariant variant;
variant.SetFromLua( luaState, i );
args.push_back( variant );
}
//Call it!
CallGameObjectFunction( luaState, pGameObject, functionNameString, args );
return 1;
}
}
return 0;
}
OVariant LuaGameObject::ExecuteLua()
{
lua_State *lState = luaL_newstate();
luaL_openlibs( lState );
lua_register( lState, "Call", LuaCallFunction );
luaL_loadstring( lState, m_pScript );
//now run it
lua_pcall( lState, 0, 1, 0 );
//process return values
OVariant result;
result.SetFromLua( lState, -1 );
lua_close( lState );
return result;
}
In lua I can do something like this...
local king = Call("EmpireManager","GetKing")
Call("MapCamera","ZoomToActor",king)
However, I am feeling that I can use the __index metamethod to simplify the lua...
local king = EmpireManager:GetKing()
MapCamera:ZoomToActor(king)
I was hoping to achieve the simplified lua by using the following implemenation of the __index metamethod
Here is how I register the __index metafunction... (mostly copied from online examples)
void LuaGameObject::Register( lua_State * l )
{
luaL_Reg sRegs[] =
{
{ "__index", &LuaGameObject::LuaCallFunction },
{ NULL, NULL }
};
luaL_newmetatable( l, "luaL_EmpireManager" );
// Register the C functions into the metatable we just created.
luaL_setfuncs( l, sRegs, 0 );
lua_pushvalue( l, -1 );
// Set the "__index" field of the metatable to point to itself
// This pops the stack
lua_setfield( l, -1, "__index" );
// Now we use setglobal to officially expose the luaL_EmpireManager metatable
// to Lua. And we use the name "EmpireManager".
lua_setglobal( l, "EmpireManager" );
}
Unfortunately, I cant seem to get the callback setup right. Lua correctly calls my LuaGameObject::LuaCallFunction, but the stack does not contain what I would like. From within the LuaGameObject::LuaCallFunction, I can find the function name and EmpireManager object on the stack. But, I cant find the args on the stack. What is the proper way to set this up? Or is it not possible?
It is definitely possible to add methods to a userdata type in Lua, as explained in the Programming in Lua guide from the official website.
When you type the following Lua code:
myUserdata:someMethod(arg1,arg2,arg3)
Assuming myUserdata is a "userdata" object, the interpreter will do the following.
Call getmetatable(myUserdata).__index(myUserdata,"someMethod") to get the value of someMethod.
Call someMethod(myUserdata,arg1,arg2,arg3). someMethod can be anything callable from Lua. Examples: a Lua or C function, or a table/userdata with a __call metamethod.
Your __index metamethod should just return a function (or another object callable from Lua) implementing the method. Something like this:
// IMO, quite a misleading name for the __index metamethod (there is a __call metamethod)
int LuaGameObject::LuaCallFunction( lua_State *l)
{
// todo: error checking
OGameObject* pGameObject = static_cast<OGameObject*>(lua_touserdata( luaState, 1 ));
std::string memberName = lua_tostring( luaState, 2 );
int result = 1;
if (memberName == "method1") {
lua_pushcfunction(l,LuaGameObject::luaMethod1);
} else if (memberName == "method2") {
lua_pushcfunction(l,LuaGameObject::luaMethod2);
} else {
result = 0;
}
return result;
}
Basic skeleton of the functions returned by the __index metamethod:
int LuaGameObject::luaMethod1(lua_State* l) {
// todo: error checking.
OGameObject* pGameObject = static_cast<OGameObject*>(lua_touserdata(l, 1));
float arg1 = lua_tonumber(l, 2);
// get other args
pGameObject->method1(arg1 /*, more args if any.*/);
// optionally push return values on the stack.
return 0; // <-- number of return values.
}
Ok so after more research, I now believe that I cannot use __index metafunction to call a c functor with arguments. It only passes the table name and the key to the callback.
However, for anyone interested, it can be used for table-like objects, but not functions (as arguments are not pushed onto the stack). I will it for my "property" objects. They have no arguments and can be used in lua as follows...
local king = EmpireManager:king
king:name = "Arthur"
local name = king:name
These properly link to and call the appropriate C++ objects.functions
Actor::SetName(std::string name)
std::string Actor::GetName()
I had the same problem to call a method from my object and have used this post to develop the solution.
I hope that the example below can be useful to you.
#include <iostream>
#include <string>
#include <map>
#include <functional>
extern "C" {
#include "lua/lua.h"
#include "lua/lauxlib.h"
#include "lua/lualib.h"
}
//template<class UserdataType> // if will be work with lua garbage collector, use a function like that to delete the this_ptr (1st param)
//int DeletePtr(lua_State *lua_state) { // It's necessary register the metatable.__gc and to trust in gc (create just pointer of LuaObjects
// UserdataType** this_ptr = reinterpret_cast<UserdataType**>(lua_touserdata(lua_state, 1));
// delete (*this_ptr);
// return 0;
//}
template<class UserdataType>
int Closure(lua_State *lua_state) {
UserdataType** ptr = reinterpret_cast<UserdataType**>(lua_touserdata(lua_state, 1)); // This closure is being called by call operator ()
return (*ptr)->CallFunction(lua_state); // To access the function name called use lua stack index with lua_upvalueindex(-1)
} // Call the object method to resolve this called there
template<class UserdataType>
int ReturnClosure(lua_State *lua_state) { // This function is called as a lookup of metatable.__index
lua_pushcclosure(lua_state, Closure<UserdataType>, 1); // then we will return a closure to be called through call operator ()
return 1; // The 1st param (the only one) is the action name of function
} // Then a closure will grant access to ReturnClosure params as upvalues (lua_upvalueindex)
class LuaObject {
public:
LuaObject() : userdata_name("userdata1") {
}
void CreateNewUserData(lua_State* lua_ptr, const std::string& global_name) {
RegisterUserData(lua_ptr);
LuaObject** this_ptr = reinterpret_cast<LuaObject**>(lua_newuserdata(lua_ptr, sizeof(LuaObject*)));
*this_ptr = this;
luaL_getmetatable(lua_ptr, userdata_name.c_str());
lua_setmetatable(lua_ptr, -2); // setmetatable(this_ptr, userdata_name)
lua_setglobal(lua_ptr, global_name.c_str()); // store to global scope
}
int CallFunction(lua_State* lua_state) const {
std::string name = lua_tostring(lua_state, lua_upvalueindex(1)); // userdata:<function>(param2, param3)
auto it = functions.find(name); // <function> lua_tostring(lua_state, lua_upvalueindex(1))
if (it != functions.end()) { // <implicit this> lua_touserdata(l, 1)
return it->second(lua_state); // <param #1> lua_touserdata(l, 2)
} // <param #2> lua_touserdata(l, 3)
return 0; // <param #n> lua_touserdata(l, n+1)
}
void NewFunction(const std::string& name, std::function<int(lua_State*)> func) {
functions[name] = func;
}
private:
void RegisterUserData(lua_State* lua_ptr) {
luaL_getmetatable(lua_ptr, userdata_name.c_str());
if (lua_type(lua_ptr, -1) == LUA_TNIL) {
/* create metatable for userdata_name */
luaL_newmetatable(lua_ptr, userdata_name.c_str());
lua_pushvalue(lua_ptr, -1); /* push metatable */
/* metatable.__gc = DeletePtr<LuaObject> */
//lua_pushcfunction(lua_ptr, DeletePtr<LuaObject>);
//lua_setfield(lua_ptr, -2, "__gc");
/* metatable.__index = ReturnClosure<LuaObject> */
lua_pushcfunction(lua_ptr, ReturnClosure<LuaObject>);
lua_setfield(lua_ptr, -2, "__index");
}
}
std::map<std::string, std::function<int(lua_State*)>> functions;
std::string userdata_name;
};
int main(int argc, char* argv[]) {
lua_State* lua_state = luaL_newstate();
luaL_openlibs(lua_state);
LuaObject luaobj;
luaobj.CreateNewUserData(lua_state, "test_obj");
luaobj.NewFunction("action", [](lua_State* l)->int {
std::string result = "action has been executed";
LuaObject** ptr = reinterpret_cast<LuaObject**>(lua_touserdata(l, 1));
result += "\n #1 param is user_data (self == this) value = " + std::to_string(reinterpret_cast<size_t>(*ptr));
for (int i = 2; i <= lua_gettop(l); ++i) {
result += "\n #" + std::to_string(i)+ " = " + lua_tostring(l, i);
}
result += "\n #n param is passed on call operator () #n = " + std::to_string(lua_gettop(l));
lua_pushfstring(l, result.c_str());
return 1;
});
std::string lua_code;
lua_code += "print(test_obj:unknown_function()) \n";
lua_code += "print(test_obj:action()) \n";
lua_code += "print(test_obj:action(1)) \n";
lua_code += "print(test_obj:action(1, 2)) \n";
lua_code += "print(test_obj:action(1, 2, 'abc'))\n";
if (!(luaL_loadbuffer(lua_state, lua_code.c_str(), lua_code.length(), NULL) == 0 && lua_pcall(lua_state, 0, LUA_MULTRET, 0) == 0)) {
std::cerr << "Lua Code Fail: " << lua_tostring(lua_state, -1) << std::endl;
}
lua_close(lua_state);
return 0;
}
Output:
action has been executed
#1 param is user_data (self == this) value = 13629232
#n param is passed on call operator () #n = 1
action has been executed
#1 param is user_data (self == this) value = 13629232
#2 = 1
#n param is passed on call operator () #n = 2
action has been executed
#1 param is user_data (self == this) value = 13629232
#2 = 1
#3 = 2
#n param is passed on call operator () #n = 3
action has been executed
#1 param is user_data (self == this) value = 13629232
#2 = 1
#3 = 2
#4 = abc
#n param is passed on call operator () #n = 4
I am trying to generate a function call using AsmJit to which I pass an char*. This char* is in itself retrieved from another function call. I tried out this:
typedef
const char* getStr();
const char* getStrImpl() {
return "hello pie";
}
void use_str_impl(int id, const char* c_str) {
// do stuff...
}
int main() {
JitRuntime rt;
CodeHolder code;
code.init(rt.getCodeInfo());
X86Compiler c(&code);
auto jitted_func = c.addFunc(FuncSignature0<const char*>(code.getCodeInfo().getCdeclCallConv()));
auto err = c.getLastError();
auto call = c.call((uint64_t) fooFuncImpl, FuncSignature0<intptr_t>());
X86Gpd res(call->getRet().getId());
auto call2 = c.call((uint64_t) send_input, FuncSignature2<void, int, intptr_t>());
err = !call2->setArg(0, Imm(42));
err = !call2->setArg(1, res);
c.ret();
c.endFunc();
err = c.finalize();
if(err) return 0;
size_t size = code.getCodeSize();
VMemMgr vm;
void* p = vm.alloc(size);
if (!p) return 0;
code.relocate(p);
auto fun = (entrypoint*) p;
fun();
}
It turns out this does not generate any instructions for the second parameter or second call to setArg. I also tried to use .newIntPtr and using move instructions to move the result of call into place. But this generated dec and add instructions which made no sense to me and my small experience with assembly. What is the correct way of doing this type of thing?
Btw I am using the AsmJit next branch.
I have done few corrections to your sample with some comments.
Better Usage of JitRuntime:
JitRuntime rt;
size_t size = code.getCodeSize();
VMemMgr vm;
....
void* p = vm.alloc(size);
if (!p) return 0;
code.relocate(p);
auto fun = (entrypoint*) p;
You have used JitRuntime just to setup the parameters for CodeHolder, but then avoided it and allocated the memory for the function yourself. While that's a valid use case it's not what most people do. Using runtime's add() is sufficient in most cases.
Invalid use of CCFuncCall::getRet():
X86Gpd res(call->getRet().getId());
The call node at this point doesn't have any return register assigned so it would return an invalid id. If you need to create a virtual register you always have to call compiler's newSomething(). AsmJit's compiler provides API to check for that case at runtime, if you are unsure:
// Would print 0
printf("%d", (int)c.isVirtRegValid(call->getRet().getId()));
The solution is to create a new virtual register and ASSIGN it to the function's return value. Assigning return value requires an index (like assigning an argument), the reason is that some functions may return multiple values(like 64-bit value in 32-bit mode), using 0 as index is sufficient most of the time.
X86Gp reg = c.newIntPtr("reg");
call->setRet(0, reg);
You can verify getRet() functionality:
X86Gp reg = c.newIntPtr("reg");
assert(call->getRet(0).isNone());
call->setRet(0, reg);
assert(call->getRet(0) == reg);
Fully working example:
#include <stdio.h>
#include <asmjit/asmjit.h>
const char* func_a() {
printf("func_a(): Called\n");
return "hello pie";
}
void func_b(int id, const char* c_str) {
printf("func_b(%d, %s): Called\n", id, c_str);
}
int main() {
using namespace asmjit;
JitRuntime rt;
CodeHolder code;
code.init(rt.getCodeInfo());
X86Compiler c(&code);
X86Gp reg = c.newIntPtr("reg");
// Compilation step...
c.addFunc(FuncSignature0<void>(code.getCodeInfo().getCdeclCallConv()));
auto call_a = c.call((uint64_t)func_a, FuncSignature0<intptr_t>());
call_a->setRet(0, reg);
auto call_b = c.call((uint64_t)func_b, FuncSignature2<void, int, intptr_t>());
call_b->setArg(0, Imm(42));
call_b->setArg(1, reg);
c.ret();
c.endFunc();
// Finalize does the following:
// - allocates virtual registers
// - inserts prolog / epilog
// - assembles to CodeHolder
auto err = c.finalize();
if (err) {
printf("COMPILER FAILED: %s\b", DebugUtils::errorAsString(err));
return 1;
}
typedef void (*EntryPoint)(void);
EntryPoint entry;
// Adds function to the runtime. Should be freed by rt.release().
// Function is valid until the runtime is valid if not released.
err = rt.add(&entry, &code);
if (err) {
printf("RUNTIME FAILED: %s\b", DebugUtils::errorAsString(err));
return 1;
}
entry();
return 0;
}
I am trying to create a function that receives and returns a double. For the call method I used the approach with Mem. At the end I need to save the result in the variable xmm1.
I can't identify the error. The sine function is called correctly. But for the final assembler generation error occurs.
JitRuntime rt;
CodeHolder code;
code.init(rt.codeInfo());
asmjit::x86::Compiler cc(&code);
asmjit::x86::Gp reg = cc.newIntPtr("reg");
asmjit::Zone zonee(1024);
asmjit::ConstPool constPool(&zonee);
asmjit::Label constPoolLabel = cc.newLabel();
// Compilation step...
// c.addFunc(asmjit::FuncSignatureT<void>(code.codeInfo().getCdeclCallConv()));
cc.addFunc(asmjit::FuncSignatureT<void>());
auto call_a = cc.call((uint64_t)func_a, FuncSignatureT<intptr_t>());
call_a->setRet(0, reg);
auto call_b = cc.call((uint64_t)func_b, FuncSignatureT<void, int, intptr_t>());
call_b->setArg(0, Imm(42));
call_b->setArg(1, reg);
auto seno = [&](double value) {
size_t valueOffset;
double seno = static_cast<double_t>(std::sin(value));
cout << " seno " << seno << endl;
constPool.add(&seno, sizeof(double), valueOffset);
return asmjit::x86::ptr(constPoolLabel, valueOffset);
};
asmjit::x86::Mem mem;
double test = 180.5;
auto call_c = cc.call(seno(test), asmjit::FuncSignatureT<double_t>());
call_c->setArg(0, asmjit::Imm(test));
call_c->_setRet(0, mem);
cc.movsd(asmjit::x86::xmm1, mem);
cc.ret();
cc.endFunc();
// Finalize does the following:
// - allocates virtual registers
// - inserts prolog / epilog
// - assembles to CodeHolder
auto err = cc.finalize();
if (err) {
printf("COMPILER FAILED: %s\b", DebugUtils::errorAsString(err));
return;
}
typedef void (*EntryPoint)(void);
EntryPoint entry;
// Adds function to the runtime. Should be freed by rt.release().
// Function is valid until the runtime is valid if not released.
err = rt.add(&entry, &code);
if (err) {
printf("RUNTIME FAILED: %s\b", DebugUtils::errorAsString(err));
return;
}
entry();
return;
perhaps the memory object should relate to some memory address?
Mem mem = qword_ptr ((uint64_t) &test);