Here is an implementation of TEA, that attempts to encrypt a file containing a text message:
main.cpp
#include <iostream>
#include <iomanip>
#include <string>
#include <fstream>
#include "TEA.h"
int main()
try
{
// std::cout <<"sizeof(long) = " << sizeof(long) <<'\n';
std::string src("in.txt");
std::string dest("out.txt");
std::string key("bs");
send_msg(src, dest, key);
}
catch(std::exception& e)
{
std::cerr << e.what();
exit(1);
}
TEA.h
#ifndef TEA_h
#define TEA_h
/*
src - eight (2 words or 2*4 bytes) characters to be enciphered.
dest- enciphered output.
key - array of 4 words.
Assumes sizeof(long) == 4 bytes.
*/
void encipher(const unsigned long* const v,
unsigned long* const w,
const unsigned long* const k)
{
unsigned long y = v[0];
unsigned long z = v[1];
unsigned long sum = 0;
unsigned long delta = 0x9E3779B9;
unsigned long n = 32;
while (n-- > 0)
{
y += (z<<4 ^ z>>5) + z^sum + k[sum&3];
sum += delta;
z += (z<<4 ^ z>>5) + y^sum + k[sum>>11&3];
}
w[0] = y;
w[1] = z;
}
//---------------------------------------------------------------------------
/*
Sends the clear text from: src_file as
encrypted text to: dest_file, using TEA
with key: the last argument.
*/
void send_msg(std::string& src_file,
std::string& dest_file,
std::string key)
{
const int nchar = 2 * sizeof(long); // size of I/O chunk: 8 bytes = 64 bits
const int kchar = 2 * nchar; // size of key: 16 bytes = 128 bits
// pad key with 0's to match en-/de- cipher argument input size
while (key.size() < kchar)
{
key += '0';
}
// prepare files
std::ifstream ifs(src_file.c_str());
std::ofstream ofs(dest_file.c_str());
if (!ifs || !ofs)
{
throw std::runtime_error("File can't open!\n");
}
// key: extract raw string data interpreted as pointer to const unsigned long
const unsigned long* k = reinterpret_cast<const unsigned long*>(key.data());
// define C-compatible way to read & write from / to file 128 bits (two unsigned longs) at a time
unsigned long outptr[2];
char inbuf[nchar];
unsigned long* inptr = reinterpret_cast<unsigned long*>(inbuf);
int count = 0;
while (ifs.get(inbuf[count]))
{
ofs << std::hex; // write output in hex
if (++count == nchar) // 8 characters in the input buffer: ready to encode
{
encipher(inptr, outptr, k);
// pad with leading 0's
ofs << std::setw(8) << std::setfill('0') << outptr[0] <<' '
<< std::setw(8) << std::setfill('0') << outptr[1] <<' ';
count = 0;
}
}
if (count) // pad at the end
{
while (count != nchar)
{
inbuf[count++] = '0';
}
encipher(inptr, outptr, k);
ofs << outptr[0] <<' '<< outptr[1] <<' ';
}
}
#endif
Input file, in.txt:
The Tiny
Expected in Output file:
5b8fb57c 806fbcce
Actual in Output file, out.txt:
f3a810ff 3874d755
What am I doing wrong?
The + operation has a higher precedence than ^, so (z<<4 ^ z>>5) + z^sum + k[sum&3] is parsed as
(((z<<4) ^ (z>>5)) + z)^(sum + k[sum&3]).
Similarly for the other expression.
You should add parenthesis to make your expression explicit in how it executes.
The problem was indeed related to those expressions (pointed out by #1201ProgramAlarm), however, it is not related to the (wrong) implicit operator precedence (nor arity).
y += (z<<4 ^ z>>5) + z^sum + k[sum&3];
sum += delta;
z += (z<<4 ^ z>>5) + y^sum + k[sum>>11&3]; // <------ the problem is here
the left and right bit shift operations have to be applied on variable y, i.e.:
z += (y<<4 ^ y>>5) + y^sum + k[sum>>11&3];
Related
I am currently working on a Hash function and need to interpret a 4 byte string as a 4 byte integer number. Specifically I want every char value of the string interpreted as part of the integer number.
You can just copy the 4 bytes into a 32 bit unsigned integer variable to be able to interpret it as a 4 byte integer:
#include <cstdint>
#include <cstring>
#include <iostream>
#include <string>
std::uint32_t foo(const std::string& str) {
if(str.size() != 4) throw std::runtime_error("wrong string length");
std::uint32_t rv;
std::memcpy(&rv, str.c_str(), 4);
return rv;
}
int main() {
std::cout << (1 + 256 + 65536 + 16777216) << '\n'; // 16843009
std::cout << foo("\001\001\001\001") << '\n'; // 16843009
// The result is platform dependent, so these are possible results:
std::cout << foo("\004\003\002\001") << '\n'; // 16909060 or 67305985
std::cout << foo("\001\002\003\004") << '\n'; // 16909060 or 67305985
}
This function takes a string and interprets its char values as a 4 byte integer number.
Only tested strings with a maximum length of 4.
uint32_t buffToInteger( std::string buffer )
{
uint32_t b = 0;
for ( uint64_t i = 0; i < buffer.length(); i++ )
{
b |= static_cast< unsigned char >(buffer.at( i ) << (24 - (4 - buffer.length() + i) * 8));
}
return b;
}
I am trying to unpack mp3 frames using bitfields.
The header of mp3 frames starts with the syncword 0xFFF followed by 20 bits of header data. The structure of the header is represented as follows:
struct Mp3FrameRaw {
unsigned short fff:12; // Should always be 0xFFF = 4095
unsigned short mpeg_standard : 1;
unsigned short layer : 2;
unsigned short error_protection : 1;
unsigned short bitrate : 4;
unsigned short frequency : 2;
unsigned short pad_bit : 1;
unsigned short : 1;
unsigned short mode :2;
unsigned short mode_extension :2;
unsigned short copyrighted : 1;
unsigned short original: 1;
unsigned short emphasis: 2;
};
In total the header is 32 bit long.
My program first finds the syncword:
size_t find_sync_word(std::vector<unsigned char> & input) {
bool previous_was_ff = false;
for (size_t offset = 0; offset < input.size(); ++offset) {
if (previous_was_ff && (input[offset] & 0xF0 == 0xF0))
return offset - 1;
previous_was_ff = 0xFF == input[offset];
}
return -1;
}
And then tries to unpack the first header:
int parse(std::vector<unsigned char> & input) {
size_t offset = find_sync_word(input);
if (offset < 0) {
std::cerr << "Not a valid Mp3 file" << std::endl;
return -1;
}
Mp3FrameRaw *frame_ptr = reinterpret_cast<Mp3FrameRaw * >(input.data() + offset);
std::cout << frame_ptr->fff << " (Should always be 4095)" << std::endl;
std::cout << frame_ptr->layer << " (Should be 1 )" << std::endl;
std::cout << frame_ptr->bitrate << " (Should be 1-14)" << std::endl;
return 0;
}
The main.cpp reads:
int main() {
std::ifstream mp3_file("/path/to/file.mp3", std::ios::binary);
std::vector<unsigned char> file_contents((std::istreambuf_iterator<char>(mp3_file)),
std::istreambuf_iterator<char>());
return parse(file_contents);
}
The result reads:
3071 (Should always be 4095)
3 (Should be 1 )
0 (Should be 1 - 14)
Contrary, if I unpack the fields manually bit by bit, everything works as expected. e.g
{
size_t offset;
Mp3FrameRaw frame;
...
frame.fff = input[offset++];
frame.fff = (frame.fff << 4) | (input[offset] >> 4);
frame.mpeg_standard = (input[offset] >> 3) & 1;
frame.layer = (input[offset] >> 1) & 0x3;
frame.error_protection = (input[offset++]) & 0x1;
frame.bitrate = input[offset] >> 4;
...
}
I assume that the bitfields are not located in a way they intuitively should do. What am I doing wrong?
I am using gcc on Ubuntu 18.04.
Working with C++ on Visual Studio 2010.
Trying to come up with a robust function that will take a hex value as string and size as integer and then output the formatted hex value.
For e.g.,
If the input string is "A2" and size is 1, then the output is "0xA2"
If the input string is "800" and size is 2, then the output is "0x0800"
If the input string is "DEF" and size is 4, then the output is "0x00000DEF"
If the input string is "00775" and size is 4, then the output is "0x00000775"
If the input string is "FB600" and size is 3, then the output is "0x0FB600"
The basic idea is, multiply size by 2 and then if the string length is less than that, then add leading zeros to the hex value and then append it with "0x".
"0x" is appended irrespective of whether leading zeros are added.
As you see in 1st example, there's no zeros to add as the string already contains 2 characters.
I came up with below function, but it's having memory corruption. Also when i try to process large amount of data by calling this function few hundrend times, it crashes. Seems my logic has memory holes in it.
So am hoping that someone can come up with a robust intelligent code for this function.
What i tried:
void formatHexString(char* inputHex, int size, char* outputFormattedHex)
{
int len = size * 2;
int diff = len - strlen(inputHex);
char * tempHex = new char [diff + 2]; //"2" is for holding "0x"
tempHex[0] = '0';
tempHex[1] = 'x';
if (len > strlen(inputHex))
{
for (int i = 2; i < ((len - strlen(inputHex)) + 2); i++)
{
tempHex[i] = '0';
}
}
strcat(tempHex, inputHex);
sprintf(outputFormattedHex, "%s", tempHex);
delete [] tempHex;
cout <<outputFormattedHex <<endl;
}
int main
{
char bbb1[24];
formatHexString("23", 1, bbb1);
char bbb2[24];
formatHexString("A3", 2, bbb2);
char bbb3[24];
formatHexString("0AA23", 4, bbb3);
char bbb4[24];
formatHexString("7723", 4, bbb4);
char bbb5[24];
formatHexString("AA023", 4, bbb5);
return 0;
}
UPDATED:
I cannot modify the arguments to original function as this function is called from a different application. So i modified my original function with your code, but this is not working. Any ideas?
void formatHexString(char* inputHex, int size, char* outputFormattedHex)
{
string input(inputHex);
std::size_t const input_len(input.length());
if (!size || (size * 2 < input_len))
size = input_len / 2 + input_len % 2;
std::stringstream ss;
ss << "0x" << std::setw(2 * size) << std::setfill('0') << input;
sprintf(outputFormattedHex, "%s", ss.str());
}
#include <iostream>
#include <sstream>
#include <iomanip>
#include <string>
#include <cstddef>
std::string formatHexString(std::string const & input, std::size_t size = 0)
{
std::size_t const input_len(input.length());
// always round up to an even count of digits if no size is specified
// or size would cause the output to be truncated
if (!size || (size * 2 < input_len))
size = input_len / 2 + input_len % 2;
std::stringstream ss;
ss << "0x" << std::setw(2 * size) << std::setfill('0') << input;
return ss.str();
}
int main()
{
std::cout << formatHexString( "23") << '\n'
<< formatHexString( "A3", 2) << '\n'
<< formatHexString( "AA23", 4) << '\n'
<< formatHexString( "7723", 4) << '\n'
<< formatHexString("AA023", 4) << '\n';
}
Solution without std::stringstream:
#include <string>
#include <cstddef>
std::string formatHexString(std::string const & input, std::size_t size = 0)
{
std::size_t const input_len(input.length());
// always round up to an even count of digits if no size is specified
// or size would cause the output to be truncated
if (!size || (size * 2 < input_len))
size = input_len / 2 + input_len % 2;
std::string result("0x");
for (std::size_t i = 0, leading_zeros = size * 2 - input_len; i < leading_zeros; ++i)
result += '0';
result += input;
return result;
}
Updated:
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <string>
#include <iomanip>
#include <sstream>
#include <cstddef>
#include <cstdio>
void formatHexString(char const * inputHex, int size, char * outputFormattedHex)
{
int const input_len(std::strlen(inputHex));
if (!size || (size * 2 < input_len))
size = input_len / 2 + input_len % 2;
std::stringstream ss;
ss << "0x" << std::setw(2 * size) << std::setfill('0') << inputHex;
std::strcpy(outputFormattedHex, ss.str().c_str());
}
int main()
{
char output[24];
formatHexString("23", 1, output);
std::cout << output << '\n';
formatHexString("A3", 2, output);
std::cout << output << '\n';
formatHexString("0AA23", 4, output);
std::cout << output << '\n';
formatHexString("7723", 4, output);
std::cout << output << '\n';
formatHexString("AA023", 4, output);
std::cout << output << '\n';
}
It is unclear from your question, what you expect to happen with leading zeros on the input: I.e. either input "00000000EA" Size 2 turns to "00EA", or it keeps all its leading zeros.
This simple solution is for both cases (bTrim = true, for the 1st case):
#include <string>
void formatHexString(std::string & strHex, unsigned int nSize, bool bTrim = true)
{
if (bTrim) // Trim leading-zeros:
strHex = strHex.substr(strHex.find_first_not_of('0'));
if (nSize > strHex.length()) // Pad with leading-zeros to fit nSize:
strHex.insert(0, std::string(nSize - strHex.length(), '0').c_str());
strHex.insert(0, "0x"); // Insert prefix
}
-
If it's important to keep the original signature, wrap the above formatHexString with:
void formatHexString(char* inputHex, int size, char* outputFormattedHex)
{
std::string strHex(inputHex);
formatHexString(strHex, size * 2);
strcpy_s(outputFormattedHex, strHex.length()+1, strHex.c_str()); // Visual Studio
}
I have a couple of integers, for example (in binary represetation):
00001000, 01111111, 10000000, 00000001
and I need to put them in sequence to array of bytes(chars), without the leading zeros, like so:
10001111 11110000 0001000
I understand that it is must be done by bit shifting with <<,>> and using binary or |. But I can't find the correct algorithm, can you suggest the best approach?
The integers I need to put there are unsigned long long ints, so the length of one can be anywhere from 1 bit to 8 bytes (64 bits).
You could use a std::bitset:
#include <bitset>
#include <iostream>
int main() {
unsigned i = 242122534;
std::bitset<sizeof(i) * 8> bits;
bits = i;
std::cout << bits.to_string() << "\n";
}
There are doubtless other ways of doing it, but I would probably go with the simplest:
std::vector<unsigned char> integers; // Has your list of bytes
integers.push_back(0x02);
integers.push_back(0xFF);
integers.push_back(0x00);
integers.push_back(0x10);
integers.push_back(0x01);
std::string str; // Will have your resulting string
for(unsigned int i=0; i < integers.size(); i++)
for(int j=0; j<8; j++)
str += ((integers[i]<<j) & 0x80 ? "1" : "0");
std::cout << str << "\n";
size_t begin = str.find("1");
if(begin > 0) str.erase(0,begin);
std::cout << str << "\n";
I wrote this up before you mentioned that you were using long ints or whatnot, but that doesn't actually change very much of this. The mask needs to change, and the j loop variable, but otherwise the above should work.
Convert them to strings, then erase all leading zeros:
#include <iostream>
#include <sstream>
#include <string>
#include <cstdint>
std::string to_bin(uint64_t v)
{
std::stringstream ss;
for(size_t x = 0; x < 64; ++x)
{
if(v & 0x8000000000000000)
ss << "1";
else
ss << "0";
v <<= 1;
}
return ss.str();
}
void trim_right(std::string& in)
{
size_t non_zero = in.find_first_not_of("0");
if(std::string::npos != non_zero)
in.erase(in.begin(), in.begin() + non_zero);
else
{
// no 1 in data set, what to do?
in = "<no data>";
}
}
int main()
{
uint64_t v1 = 437148234;
uint64_t v2 = 1;
uint64_t v3 = 0;
std::string v1s = to_bin(v1);
std::string v2s = to_bin(v2);
std::string v3s = to_bin(v3);
trim_right(v1s);
trim_right(v2s);
trim_right(v3s);
std::cout << v1s << "\n"
<< v2s << "\n"
<< v3s << "\n";
return 0;
}
A simple approach would be having the "current byte" (acc in the following), the associated number of used bits in it (bitcount) and a vector of fully processed bytes (output):
int acc = 0;
int bitcount = 0;
std::vector<unsigned char> output;
void writeBits(int size, unsigned long long x)
{
while (size > 0)
{
// sz = How many bit we're about to copy
int sz = size;
// max avail space in acc
if (sz > 8 - bitcount) sz = 8 - bitcount;
// get the bits
acc |= ((x >> (size - sz)) << (8 - bitcount - sz));
// zero them off in x
x &= (1 << (size - sz)) - 1;
// acc got bigger and x got smaller
bitcount += sz;
size -= sz;
if (bitcount == 8)
{
// got a full byte!
output.push_back(acc);
acc = bitcount = 0;
}
}
}
void writeNumber(unsigned long long x)
{
// How big is it?
int size = 0;
while (size < 64 && x >= (1ULL << size))
size++;
writeBits(size, x);
}
Note that at the end of the processing you should check if there is any bit still in the accumulator (bitcount > 0) and you should flush them in that case by doing a output.push_back(acc);.
Note also that if speed is an issue then probably using a bigger accumulator is a good idea (however the output will depend on machine endianness) and also that discovering how many bits are used in a number can be made much faster than a linear search in C++ (for example x86 has a special machine language instruction BSR dedicated to this).
does anybody know any commonly used library for C++ that provides methods for encoding and decoding numbers from base 10 to base 32 and viceversa?
Thanks,
Stefano
[Updated] Apparently, the C++ std::setbase() IO manipulator and normal << and >> IO operators only handle bases 8, 10, and 16, and is therefore useless for handling base 32.
So to solve your issue of converting
strings with base 10/32 representation of numbers read from some input to integers in the program
integers in the program to strings with base 10/32 representations to be output
you will need to resort to other functions.
For converting C style strings containing base 2..36 representations to integers, you can use #include <cstdlib> and use the strtol(3) & Co. set of functions.
As for converting integers to strings with arbitrary base... I cannot find an easy answer. printf(3) style format strings only handle bases 8,10,16 AFAICS, just like std::setbase. Anyone?
Did you mean "base 10 to base 32", rather than integer to base32? The latter seems more likely and more useful; by default standard formatted I/O functions generate base 10 string format when dealing with integers.
For the base 32 to integer conversion the standard library strtol() function will do that. For the reciprocal, you don't need a library for something you can easily implement yourself (not everything is a lego brick).
Here's an example, not necessarily the most efficient, but simple;
#include <cstring>
#include <string>
long b32tol( std::string b32 )
{
return strtol( b32.c_str(), 0, 32 ) ;
}
std::string itob32( long i )
{
unsigned long u = *(reinterpret_cast<unsigned long*>)( &i ) ;
std::string b32 ;
do
{
int d = u % 32 ;
if( d < 10 )
{
b32.insert( 0, 1, '0' + d ) ;
}
else
{
b32.insert( 0, 1, 'a' + d - 10 ) ;
}
u /= 32 ;
} while( u > 0 );
return b32 ;
}
#include <iostream>
int main()
{
long i = 32*32*11 + 32*20 + 5 ; // BK5 in base 32
std::string b32 = itob32( i ) ;
long ii = b32tol( b32 ) ;
std::cout << i << std::endl ; // Original
std::cout << b32 << std::endl ; // Converted to b32
std::cout << ii << std::endl ; // Converted back
return 0 ;
}
In direct answer to the original (and now old) question, I don't know of any common library for encoding byte arrays in base32, or for decoding them again afterward. However, I was presented last week with a need to decode SHA1 hash values represented in base32 into their original byte arrays. Here's some C++ code (with some notable Windows/little endian artifacts) that I wrote to do just that, and to verify the results.
Note that in contrast with Clifford's code above, which, if I'm not mistaken, assumes the "base32hex" alphabet mentioned on RFC 4648, my code assumes the "base32" alphabet ("A-Z" and "2-7").
// This program illustrates how SHA1 hash values in base32 encoded form can be decoded
// and then re-encoded in base16.
#include "stdafx.h"
#include <string>
#include <vector>
#include <iostream>
#include <cassert>
using namespace std;
unsigned char Base16EncodeNibble( unsigned char value )
{
if( value >= 0 && value <= 9 )
return value + 48;
else if( value >= 10 && value <= 15 )
return (value-10) + 65;
else //assert(false);
{
cout << "Error: trying to convert value: " << value << endl;
}
return 42; // sentinal for error condition
}
void Base32DecodeBase16Encode(const string & input, string & output)
{
// Here's the base32 decoding:
// The "Base 32 Encoding" section of http://tools.ietf.org/html/rfc4648#page-8
// shows that every 8 bytes of base32 encoded data must be translated back into 5 bytes
// of original data during a decoding process. The following code does this.
int input_len = input.length();
assert( input_len == 32 );
const char * input_str = input.c_str();
int output_len = (input_len*5)/8;
assert( output_len == 20 );
// Because input strings are assumed to be SHA1 hash values in base32, it is also assumed
// that they will be 32 characters (and bytes in this case) in length, and so the output
// string should be 20 bytes in length.
unsigned char *output_str = new unsigned char[output_len];
char curr_char, temp_char;
long long temp_buffer = 0; //formerly: __int64 temp_buffer = 0;
for( int i=0; i<input_len; i++ )
{
curr_char = input_str[i];
if( curr_char >= 'A' && curr_char <= 'Z' )
temp_char = curr_char - 'A';
if( curr_char >= '2' && curr_char <= '7' )
temp_char = curr_char - '2' + 26;
if( temp_buffer )
temp_buffer <<= 5; //temp_buffer = (temp_buffer << 5);
temp_buffer |= temp_char;
// if 8 encoded characters have been decoded into the temp location,
// then copy them to the appropriate section of the final decoded location
if( (i>0) && !((i+1) % 8) )
{
unsigned char * source = reinterpret_cast<unsigned char*>(&temp_buffer);
//strncpy(output_str+(5*(((i+1)/8)-1)), source, 5);
int start_index = 5*(((i+1)/8)-1);
int copy_index = 4;
for( int x=start_index; x<(start_index+5); x++, copy_index-- )
output_str[x] = source[copy_index];
temp_buffer = 0;
// I could be mistaken, but I'm guessing that the necessity of copying
// in "reverse" order results from temp_buffer's little endian byte order.
}
}
// Here's the base16 encoding (for human-readable output and the chosen validation tests):
// The "Base 16 Encoding" section of http://tools.ietf.org/html/rfc4648#page-10
// shows that every byte original data must be encoded as two characters from the
// base16 alphabet - one charactor for the original byte's high nibble, and one for
// its low nibble.
unsigned char out_temp, chr_temp;
for( int y=0; y<output_len; y++ )
{
out_temp = Base16EncodeNibble( output_str[y] >> 4 ); //encode the high nibble
output.append( 1, static_cast<char>(out_temp) );
out_temp = Base16EncodeNibble( output_str[y] & 0xF ); //encode the low nibble
output.append( 1, static_cast<char>(out_temp) );
}
delete [] output_str;
}
int _tmain(int argc, _TCHAR* argv[])
{
//string input = "J3WEDSJDRMJHE2FUHERUR6YWLGE3USRH";
vector<string> input_b32_strings, output_b16_strings, expected_b16_strings;
input_b32_strings.push_back("J3WEDSJDRMJHE2FUHERUR6YWLGE3USRH");
expected_b16_strings.push_back("4EEC41C9238B127268B4392348FB165989BA4A27");
input_b32_strings.push_back("2HPUCIVW2EVBANIWCXOIQZX6N5NDIUSX");
expected_b16_strings.push_back("D1DF4122B6D12A10351615DC8866FE6F5A345257");
input_b32_strings.push_back("U4BDNCBAQFCPVDBL4FBG3AANGWVESI5J");
expected_b16_strings.push_back("A7023688208144FA8C2BE1426D800D35AA4923A9");
// Use the base conversion tool at http://darkfader.net/toolbox/convert/
// to verify that the above base32/base16 pairs are equivalent.
int num_input_strs = input_b32_strings.size();
for(int i=0; i<num_input_strs; i++)
{
string temp;
Base32DecodeBase16Encode(input_b32_strings[i], temp);
output_b16_strings.push_back(temp);
}
for(int j=0; j<num_input_strs; j++)
{
cout << input_b32_strings[j] << endl;
cout << output_b16_strings[j] << endl;
cout << expected_b16_strings[j] << endl;
if( output_b16_strings[j] != expected_b16_strings[j] )
{
cout << "Error in conversion for string " << j << endl;
}
}
return 0;
}
I'm not aware of any commonly-used library devoted to base32 encoding but Crypto++ includes a public domain base32 encoder and decoder.
I don't use cpp, so correct me if I'm wrong. I wrote this code for the sake of translating it from C# to save my acquaintance the trouble. The original source, that which I used to create these methods, is on a different post, here, on stackoverflow:
https://stackoverflow.com/a/10981113/13766753
That being said, here's my solution:
#include <iostream>
#include <math.h>
class Base32 {
public:
static std::string dict;
static std::string encode(int number) {
std::string result = "";
bool negative = false;
if (number < 0) {
negative = true;
}
number = abs(number);
do {
result = Base32::dict[fmod(floor(number), 32)] + result;
number /= 32;
} while(number > 0);
if (negative) {
result = "-" + result;
}
return result;
}
static int decode(std::string str) {
int result = 0;
int negative = 1;
if (str.rfind("-", 0) == 0) {
negative = -1;
str = str.substr(1);
}
for(char& letter : str) {
result += Base32::dict.find(letter);
result *= 32;
}
return result / 32 * negative;
}
};
std::string Base32::dict = "0123456789abcdefghijklmnopqrstuvwxyz";
int main() {
std::cout << Base32::encode(0) + "\n" << Base32::decode(Base32::encode(0)) << "\n";
return 0;
}