C++ generic function call with varargs parameter - c++

In my project i have functions with different number of input parameters with different types. Since these functions are parts of libraries, I cannot change their definitions or bodies.
void methodA(boolean p1, int p2, long p3){
... some unrelevant code here ...
}
void methodB(int p1, int p2, int p3, long p4){
... some unrelevant code here too ...
}
int methodC(long p4){
...
}
In my project i need to have a method, which would receive the address of one of these functions. Additionally it receives well-formed list of parameters (which fits the function in the first parameter). Then this method has to call the passed function with the passed parameters.
Here is what I have now: (i have simplified the code a bit to make my idea clear)
void intercaller(void* some_func_address, ...){
// VARARGS parameters extractor
va_list listPointer;
va_start( listPointer, some_func_address );
int p1 = va_arg( listPointer, int );
int p2 = va_arg( listPointer, int );
int p3 = va_arg( listPointer, int );
long p4 = va_arg( listPointer, long );
// TODO: THIS IS NOT GENERIC CALL , CANN ONLY CALL METHOD B
((void (*)( int , int , int , long )) some_func_address)( p1 , p2 , p3 , p4 );
va_end( listPointer );
}
My problem is the actual function call. The parameter list in the function call should be generic and should be able to include different number of parameters, sadly i dont know how to do that... I have tried passing varargs list like here:
((void (*)( va_list )) some_func_address)( listPointer);
but this messes up the parameters in the called function...
So my question is: is there a way to call a given function with given parameters in a generic manner? Maybe I need some sort of a typedeff or a wrapper function?

If you don't have std::invoke yet, use variadic templates. To treat void functions nicely, use SFINAE.
template<typename R, typename... Args>
auto call(R(*function)(Args...), Args... args) -> typename std::enable_if<!std::is_same<R, void>::value, R>::type {
return function(args...);
}
template<typename... Args>
void call(void (*function)(Args...), Args... args) {
function(args...);
}
Example:
void a() {
std::cout << 'a';
}
void b(int a) {
std::cout << "b:" << a;
}
int c(int a) {
return a;
}
int main() {
call(a);
call(b, 1);
std::cout << "c:" << call(c, 2);
}
Don't forget to #include <type_traits> for std::enable_if and std::is_same.
Try it online!

va_args are still somewhat black magic to me, but I believe the second arg to va_start should be the first arg to the called function. I don't understand what your "clazz" is. I believe you you should call va_start as:
va_start( listpointer, some_func_address );
instead of:
va_start( listPointer, clazz );

Would this help you out?
#include <stdarg.h>
template <typename T>
T extract(va_list& list)
{
return va_arg(list, T);
}
template<typename Result, typename ... Parameters>
Result call(Result(*function)(Parameters...), va_list& list)
{
return function(extract<Parameters>(list)...);
}
void f1(int x, int y)
{
std::cout << x << ' ' << y << std::endl;
}
void f2(double x, double y)
{
std::cout << x << ' ' << y << std::endl;
}
void interceptor(void* f, ...)
{
va_list list;
va_start(list, f);
if(f == &f1)
{
call(f1, list);
}
else if(f == f2)
{
call(f2, list);
}
va_end(list);
}
int main(int argc, char* argv[])
{
interceptor((void*)&f1, 7, 7);
interceptor((void*)&f2, 10.12, 12.10);
return 0;
}
I personally would yet prefer pasing an enum representing the functions to the interceptor function instead of the void* pointer and using switch/case inside.
If you can make the interceptor a template function, it gets even much easier (drop the call template function entirely):
template<typename Result, typename ... Parameters>
void interceptor(Result(*function)(Parameters...), ...)
{
va_list list;
va_start(list, function);
function(extract<Parameters>(list)...);
va_end(list);
}
int main(int argc, char* argv[])
{
interceptor(&f1, 7, 7);
interceptor(&f2, 10.12, 12.10);
return 0;
}

Now coming from your other question, what about this:
(Side note: referenced question tells (in the comments) the void* pointers are coming from some custom map, so there shouldn't be – as far as I can see – any issue with replacing them by other appropriate pointers/classes – which I am going to do...)
#include <stdarg.h>
class FunctionWrapper
{
public:
virtual ~FunctionWrapper() { }
virtual void operator()(va_list&) = 0;
};
template<typename Result, typename ... Parameters>
class FWrapper : public FunctionWrapper
{
Result (*mFunction)(Parameters...);
template <typename T>
T extract(va_list& list)
{
return va_arg(list, T);
}
public:
FWrapper(Result (*function)(Parameters...))
: mFunction(function)
{ }
virtual void operator()(va_list& list)
{
static_cast<void>(mFunction(extract<Parameters>(list)...));
}
};
// facilitates creating the wrappers:
template<typename Result, typename ... Parameters>
FunctionWrapper* createWrapper(Result (*function)(Parameters...))
{
return new FWrapper<Result, Parameters ...>(function);
}
void f1(int x, int y)
{
std::cout << x << ' ' << y << std::endl;
}
void f2(double x, double y)
{
std::cout << x << ' ' << y << std::endl;
}
// e. g.:
FunctionWrapper* gWrappers[] = { createWrapper(&f1), createWrapper(&f2) };
// from your other question: you'd fill the wrappers into the map you mentioned there:
// map[whatever] = createWrapper(&function);
void interceptor(FunctionWrapper* wrapper, ...)
{
va_list list;
va_start(list, wrapper);
(*wrapper)(list);
va_end(list);
}
int main(int argc, char* argv[])
{
interceptor(gWrappers[0], 7, 7);
interceptor(gWrappers[1], 10.12, 12.10);
return 0;
}
This solves the issue via polymorphism: A function wrapper class template class (we need a non-template base class to be able to place all the template instances into an array or a map; this is what your original – but actually illegal – void* pointer served for), resolving the va_list into arguments and calling the original function with...

Related

Examples about function pointer and callback function definition

I'm learning about callback function in C++ and have some problems in understanding the initialization of a callback function such as
typedef void (CALLBACK *name)(int,int);
I think it looks very similar to the declaration of function pointer like this:
typedef void (*name)(int,int);
I have a simple example about how to call a function inside another function using the declaration of function pointer. The example converts a string to int and compare with anoter int. Then tells which one is bigger:
#include <stdio.h>
#include <stdlib.h>
int StrToInt(char* inputchar) //converting function
{
int outputint;
outputint = atoi(inputchar);
return outputint;
}
typedef int(*p)(char*); //declare function pointer
void IntCompare(p FuncP, char* inputchar, int b) //comparing function
{
int a;
a = FuncP(inputchar); //call converting function using function pointer
if (a<b)
{
printf("%d is bigger\n", b);
}
else
{
printf("%d is bigger\n", a);
}
}
void main()
{
char* StrNum = "1234";
p FuncP; //creat a function pointer
FuncP = StrToInt; //point to converting function
IntCompare(FuncP, StrNum, 21);
}
What I'm asking is:
Could somebody give me a similar example about how to use typedef void (CALLBACK *name)(int,int);? Please help me understand when and how to use it. Thank you for your attention.
CALLBACK is macro. It relates to callback functions but it's not the same. You can start looking at implementation of callback functions in C.
qsort for example uses this technique. qsort is a single function which can sort any array. But you have to tell qsort how to compare different data types. That's done by passing a function pointer to qsort.
int compare_int(const void * a, const void * b)
{
return ( *(int*)a - *(int*)b );
}
int compare_string(const void * a, const void * b)
{
const char *pa = *(const char**)a;
const char *pb = *(const char**)b;
return strcmp(pa, pb);
}
int main ()
{
int int_array[] = { 3, 2, 1 };
int count = sizeof(int_array) / sizeof(int);
qsort(int_array, count, sizeof(int), compare_int);
const char *string_array[] = { "234","123","456" };
count = sizeof(string_array) / sizeof(char*);
qsort(string_array, count, sizeof(char*), compare_string);
return 0;
}
Of course in C++ we use std::sort, which uses templates instead.
But we still need to pass functions in C++. See for example, the implementation of for_each
template<class InputIt, class UnaryFunction>
UnaryFunction for_each(InputIt first, InputIt last, UnaryFunction f)
{
for (; first != last; ++first) {
f(*first);
}
return f;
}
Usage:
std::vector<int> nums{ 3, 4, 2, 8, 15, 267 };
auto print = [](const int& n) { std::cout << " " << n; };
std::for_each(nums.begin(), nums.end(), print);
std::cout << '\n';

Construct variadic template argument list

Say i have the following scenario:
namespace detail
{
using duk_c_function_t = std::function<duk_ret_t(duk_context*)>;
template<typename T_Return(typename ... T_Params), std::function<T_Return(T_Params)>
duk_ret_t duk_function_proxy(duk_context* ctx)
{
const int n = sizeof...(T_Params); //real number of arguments passed.
duk_idx_t num_arguments = duk_get_top(ctx); //Number of arguments from javascript
int x = duk_require_int(ctx, 0); //Get integer -> parameter no 1
const char* c = duk_require_string(ctx, 1); //Get string -> parameter no 2
}
}
template<typename T_Return(typename ... T_Params)>
duk_c_function_t duk_function(std::function<T_Return(T_Params ...) function_item)
{
return duk_c_function_t(detail::duk_function_proxy<function_item>);
}
Where duk_function returns a function of the signature duk_ret_t function(duk_context* ctx) { ... }. Now, i know how to call the function object in duk_function_proxy with the variadic templates and such. But there is one problem for me: The javascript interpreter i am using requires that, for every c-function i want to expose, i need query the parameters from the stack, as shown in duk_function_proxy. However, with that being the case, i dont know how to call the function object - i can only store the queried parameters in some sort of container, and thus i cannot call the function object with the given signature. Is there any way to store my queried parameters in some sort of container, and then unpack and pass it to the function object as parameters? I query the required parameters based on the variadic template list, as seen in the prototype.
In short:
I want to iterate over T_Params, get and store the corresponding variables using duk_require_* (in some sort of container), and then use those values to call the function object, which is passed as a template argument.
this should get you started. I've simulated the DUK interface since it's not installed on my machine but you'll get the idea:
#include <iostream>
#include <string>
#include <functional>
#include <utility>
struct duk_context;
const char* duk_require_string(duk_context*, int i)
{
static constexpr const char * strings[] = {
"i like",
"hairy",
"ducks"
};
return strings[i];
}
int duk_require_int(duk_context*, int i)
{
return i * 6;
}
template<class Type> auto get_arg(duk_context* ctx, int i) -> Type;
template<> auto get_arg<std::string>(duk_context* ctx, int i) -> std::string
{
return duk_require_string(ctx, i);
}
template<> auto get_arg<int>(duk_context* ctx, int i) -> int
{
return duk_require_int(ctx, i);
}
template<class...Args, size_t...Is>
void get_args_impl(duk_context* context, const std::function<void(Args...)>& f, std::index_sequence<Is...>)
{
using tuple_type = std::tuple<Args...>;
f(get_arg<std::tuple_element_t<Is, tuple_type>>(context, Is)...);
}
template<class...Args>
void get_args(duk_context* context, const std::function<void(Args...)>& f)
{
get_args_impl<Args...>(context, f, std::index_sequence_for<Args...>());
}
void foo(std::string a, int b, std::string c)
{
std::cout << a << " " << b << " " << c << std::endl;
}
int main()
{
duk_context* ctx = nullptr;
get_args(ctx, std::function<void(std::string, int, std::string)>(&foo));
return 0;
}
expected output:
i like 6 ducks

Pass a member function to create a free function boost pointer

I try to get this code running. I am almost there but I got stuck with the line:
_f = std::bind1st(
std::mem_fun(f, x);
First of all please understand that I don't want to change any code, but the constructor. Why? Because I want to learn. Eventually I want to write a wrapper class Func, that can handle free functions and member function at the same time, in this very manner.
So what wuld I have to put as the first argument inside the std::mem_func()-call???
I tried numerous things.
Probably this is a duplicate, but I don't know how to search for this problem. I lack the vocabulary. If someone can point to a tutorial or something, that would help me to express this problem, I would also appreciate it.
Here is the full sample code:
#include <boost/function.hpp>
#include <iostream>
struct X
{
int foo(int i)
{
return i;
};
};
class Func
{
public:
Func(X *x, int (X::* f) (int))
{
_f = std::bind1st(
std::mem_fun(f, x);
std::cout << _f(5); // Call x.foo(5)
};
private:
boost::function<int (int)> _f;
};
int main()
{
X x;
Func func(&x, &X::foo);
return 0;
}
Thanks in advance.
It seems you just forgot a paren:
_f = std::bind1st(std::mem_fun(f), x);
Although I would initialize with
Func(X *x, int (X::* f) (int))
: _f(std::bind1st(std::mem_fun(f), x))
{
std::cout << _f(5); // Call x.foo(5)
};
(It doesn't matter in this case, but this style is safer in the long run.)
I would refactor the class slightly to use boost::function in the interface, and then the user can decide how to bind in the most generic way:
struct X {
int foo(int i) { return i; };
};
class Func {
boost::function<int (int)> _f;
public:
Func( boost::function<int (int)> f ){
_f = f;
std::cout << _f(5);
};
};
int foo( int x ) { return 2*x; }
int bar( int x, int multiplier ) { return x*multiplier; }
int main() {
X x;
Func func1( boost::bind( &X::foo, &x, _1 ) ); // this does the magic
Func func2( boost::bind( &foo, _1 ) ); // you can also bind free functions...
Func func3( boost::bind( &bar, _1, 5 ) ); // or with different arguments
}

Using std::vector<T*>::push_back with std::mem_fun and std::bind1st

I'm trying to use std::vector<T*>::push_back with std::mem_fun and std::binder1st, but it doesnt seem to be feasible, can this be done?
I've tried to exemplify with the code below.
#include <vector>
#include <functional>
#include <iostream>
using namespace std;
struct A {
int _Foo;
virtual int AFoo() { return _Foo; };
};
struct B: public A {
int BFoo(int bar) { return _Foo+bar ; };
};
struct C: public A {
int CFoo() { return --_Foo; };
};
class MyContainer
{
static const int MyArraySize = 100;
A* MyArray[MyArraySize];
public:
MyContainer() {
int half = MyArraySize / 2;
for( int i=0; i< half; ++i )
MyArray[i] = new B;
for( int i=half; i < MyArraySize; ++i )
MyArray[i] = new C;
}
template<class T, class Fn1>
int Execute( Fn1 func )
{
int count = 0;
for( int i=0; i< MyArraySize; ++i ){
T* t = dynamic_cast<T*>(MyArray[i]);
if( t )
{
func(t);
++count;
}
}
return count;
}
template<class T, class Res, class Arg>
int Execute( mem_fun1_t<Res, T, Arg> func, Arg argument )
{
return Execute<T>( binder2nd< mem_fun1_t<Res,T,Arg> >( func, argument ) );
}
template<class T>
vector<T*> GetItems() // <-- This is the problem function
{
vector<T*> ret;
Execute<T>( bind1st( mem_fun(&vector<T*>::push_back), ret ) );
return ret;
}
};
int main( int argc, char* argv[] )
{
MyContainer cont;
cont.Execute<B>( mem_fun(&B::BFoo), 10 );
cont.Execute<C>( mem_fun(&C::CFoo) );
vector<B*> v = cont.GetItems<A>(); // <-- the problem function is called here.
cout << "v.size = " << v.size() << endl;
}
My goal is to have a container class to which I can tell it to execute a function receiving the selected items ('A' objects or 'A' derivate objects) as parameters. But I didn't manage to use std::vector::push_pack with it.
The problem is that binder1st defines operator() as:
operator() (const typename Operation::second_argument_type& x) const
and mem_fun1_t defines operator() as:
S operator() (T* p, A x) const
The problem is that push_back is defined as:
void vector<T>::push_back(const T &x)
So what we end up with is this:
void mem_fun1_t::operator()(vector<T *> *p, const T *&x)
And:
void binder1st::operator()(const T *&&x)
In other words, a reference to a reference to a pointer. A reference to a reference doesn't exist in C++. The only decent way I can think of fixing this is to use boost::bind instead:
vector<T*> ret;
Execute<T>( boost::bind( mem_fun(&vector<T*>::push_back), &ret, _1) );
return ret;
Also note that you had a bug, and need to pass bind &ret instead of just ret (as mem_fun expects a pointer, mem_fun_ref would work however).
The easiest way to call member functions on the entire set of items in your container is to use for_each:
using namespace std;
using namespace std::tr1;
vector<T> cont;
// ...
for_each( cont.begin(), cont.end(),
bind( &T::foo, 42 ) );
// assume void T::foo(int); exists
If you don't have tr1 you can use:
for_each( cont.begin(), cont.end(),
bind2nd( mem_fun( &s::foo ), 42 ) // first parameter is the object itself
);
I am not sure what you are trying to achieve here though. You have both compile time polymorphism (aka templates) and runtime polymorphism (aka virtual member functions). The design seems a bit too complicated. In fact the following definition suffices:
int Execute()
{
int count = 0;
for( int i=0; i< MyArraySize; ++i ){
MyArray[ i ]->Foo(); // assume virtual int A::Foo(); exists
++count;
}
return count;
}
However, as you may have found out, virtual members need to have the same signature in order to be overriden in sub-classes (otherwise you are overloading the function).
Note that the sample GetItems does not call a member function of the contained objects, it calls a member, namely, push_back on the vector container object.
If all you want to do is to copy the pointers from a vanilla array to a vector you could use vector's specialized ctor that takes two iterators:
template<class T>
vector<T*> GetItems() // <-- This is the problem function
{
return vector<T*>( &MyArray[ 0 ], &MyArray[ 0 ] + MyArraySize );
}

Variable number of parameters in function in C++

How I can have variable number of parameters in my function in C++.
Analog in C#:
public void Foo(params int[] a) {
for (int i = 0; i < a.Length; i++)
Console.WriteLine(a[i]);
}
public void UseFoo() {
Foo();
Foo(1);
Foo(1, 2);
}
Analog in Java:
public void Foo(int... a) {
for (int i = 0; i < a.length; i++)
System.out.println(a[i]);
}
public void UseFoo() {
Foo();
Foo(1);
Foo(2);
}
These are called Variadic functions. Wikipedia lists example code for C++.
To portably implement variadic
functions in the C programming
language, the standard stdarg.h header
file should be used. The older
varargs.h header has been deprecated
in favor of stdarg.h. In C++, the
header file cstdarg should be used.
To create a variadic function, an
ellipsis (...) must be placed at the
end of a parameter list. Inside the
body of the function, a variable of
type va_list must be defined. Then the
macros va_start(va_list, last fixed
param), va_arg(va_list, cast type),
va_end(va_list) can be used. For
example:
#include <stdarg.h>
double average(int count, ...)
{
va_list ap;
int j;
double tot = 0;
va_start(ap, count); //Requires the last fixed parameter (to get the address)
for(j=0; j<count; j++)
tot+=va_arg(ap, double); //Requires the type to cast to. Increments ap to the next argument.
va_end(ap);
return tot/count;
}
The real C++ solution is variadic templates. You'll need a fairly recent compiler and enable C++11 support if needed.
Two ways to handle the "do the same thing with all function arguments" problem: recursively, and with an ugly (but very very Standards compliant) solution.
The recursive solution looks somewhat like this:
template<typename... ArgTypes>
void print(ArgTypes... args);
template<typename T, typename... ArgTypes>
void print(T t, ArgTypes... args)
{
std::cout << t;
print(args...);
}
template<> void print() {} // end recursion
It generates one symbol for each collection of arguments, and then one for each step into the recursion. This is suboptimal to say the least, so the awesome C++ people here at SO thought of a great trick abusing the side effect of a list initialization:
struct expand_type {
template<typename... T>
expand_type(T&&...) {}
};
template<typename... ArgTypes>
void print(ArgTypes... args)
{
expand_type{ 0, (std::cout << args, 0)... };
}
Code isn't generated for a million slightly different template instantiations, and as a bonus, you get preserved order of you function arguments. See the other answer for the nitty gritty details of this solution.
In C++11 and later you can also use initializer lists.
int sum(const initializer_list<int> &il)
{
int nSum = 0;
for (auto x: il)
nSum += x;
return nsum;
}
cout << sum( { 3, 4, 6, 9 } );
Aside from the other answers, if you're just trying to pass an array of integers, why not:
void func(const std::vector<int>& p)
{
// ...
}
std::vector<int> params;
params.push_back(1);
params.push_back(2);
params.push_back(3);
func(params);
You can't call it in parameter, form, though. You'd have to use any of the variadic function listed in your answers. C++0x will allow variadic templates, which will make it type-safe, but for now it's basically memory and casting.
You could emulate some sort of variadic parameter->vector thing:
// would also want to allow specifying the allocator, for completeness
template <typename T>
std::vector<T> gen_vec(void)
{
std::vector<T> result(0);
return result;
}
template <typename T>
std::vector<T> gen_vec(T a1)
{
std::vector<T> result(1);
result.push_back(a1);
return result;
}
template <typename T>
std::vector<T> gen_vec(T a1, T a2)
{
std::vector<T> result(1);
result.push_back(a1);
result.push_back(a2);
return result;
}
template <typename T>
std::vector<T> gen_vec(T a1, T a2, T a3)
{
std::vector<T> result(1);
result.push_back(a1);
result.push_back(a2);
result.push_back(a3);
return result;
}
// and so on, boost stops at nine by default for their variadic templates
Usage:
func(gen_vec(1,2,3));
See Variadic functions in C, Objective-C, C++, and D
You need to include stdarg.h and then use va_list, va_start, va_arg and va_end, as the example in the Wikipedia article shows. It's a bit more cumbersome than in Java or C#, because C and C++ have only limited built-in support for varargs.
If you don't care about portability, you could port this C99 code to C++ using gcc's statement expressions:
#include <cstdio>
int _sum(size_t count, int values[])
{
int s = 0;
while(count--) s += values[count];
return s;
}
#define sum(...) ({ \
int _sum_args[] = { __VA_ARGS__ }; \
_sum(sizeof _sum_args / sizeof *_sum_args, _sum_args); \
})
int main(void)
{
std::printf("%i", sum(1, 2, 3));
}
You could do something similar with C++0x' lambda expressions, but the gcc version I'm using (4.4.0) doesn't support them.
GManNickG and Christoph answers are good, but variadic functions allow you push in the ... parameter whatever you want, not only integers. If you will want in the future, to push many variables and values of different types into a function without using variadic function, because it is too difficult or too complicated for you, or you don't like the way to use it or you don't want to include the required headers to use it, then you always can use void** parameter.
For example, Stephan202 posted:
double average(int count, ...)
{
va_list ap;
int j;
double tot = 0;
va_start(ap, count); //Requires the last fixed parameter (to get the address)
for(j=0; j<count; j++)
tot+=va_arg(ap, double); //Requires the type to cast to. Increments ap to the next argument.
va_end(ap);
return tot/count;
}
this can be also written as:
double average(int count, void** params)
{
int j;
double tot = 0;
for (j=0; j<count; j++)
tot+=*(double*)params[j];
return tot/count;
}
Now use it like this way:
int _tmain(int argc, _TCHAR* argv[])
{
void** params = new void*[3];
double p1 = 1, p2 = 2, p3 = 3;
params[0] = &p1;
params[1] = &p2;
params[2] = &p3;
printf("Average is: %g\n", average(3, params));
system("pause");
return 0;
}
for full code:
#include "stdafx"
#include <process.h>
double average(int count, void** params)
{
int j;
double tot = 0;
for (j=0; j<count; j++)
tot+=*(double*)params[j];
return tot/count;
}
int _tmain(int argc, _TCHAR* argv[])
{
void** params = new void*[3];
double p1 = 1, p2 = 2, p3 = 3;
params[0] = &p1;
params[1] = &p2;
params[2] = &p3;
printf("Average is: %g\n", average(3, params));
system("pause");
return 0;
}
OUTPUT:
Average is: 2
Press any key to continue . . .
I do mine like this in c++ builder xe.xx:
String s[] = {"hello ", " unli", " param", " test"};
String ret = BuildList(s, 4);
String BuildList(String s[], int count)
{
for(int i = 0; i < count; i++)
{
//.... loop here up to last s[i] item ...
}
}