What is the difference between Direct DCT and row and column DCT? - compression

I understand that Direct DCT is fast compared to using row and column method, but how exactly does each one of them work? I have searched all over the internet but I can't seem to find any resources.

Typically, DCT implementations reduce the DCT matrix to a produce of matrices Gaussian normal form. The matrices in the factorization are all diagonal matrices or matrices with entires on the diagonal and one off the diagonal. In most cases the diagonal entries are ones.
If you unroll a matrix multiplication after it has been factored like this, ones on the diagonal are NoOps and the one offs are a multiplications and additions.
Such factorizations greatly reduce the number of operations required.

Related

Dimensionality Reduction

I am trying to understand the different methods for dimensionality reduction in data analysis. In particular I am interested in Singular Value Decomposition (SVD) and Principle Component Analysis (PCA).
Can anyone please explain there terms to a layperson? - I understand the general premis of dimensionality reduction as bringing data to a lower dimension - But
a) how do SVD and PCA do this, and
b) how do they differ in their approach
OR maybe if you can explain what the results of each technique is telling me, so for
a) SVD - what are singular values
b) PCA - "proportion of variance"
Any example would be brilliant. I am not very good at maths!!
Thanks
You probably already figured this out, but I'll post a short description anyway.
First, let me describe the two techniques speaking generally.
PCA basically takes a dataset and figures out how to "transform" it (i.e. project it into a new space, usually of lower dimension). It essentially gives you a new representation of the same data. This new representation has some useful properties. For instance, each dimension of the new space is associated with the amount of variance it explains, i.e. you can essentially order the variables output by PCA by how important they are in terms of the original representation. Another property is the fact that linear correlation is removed from the PCA representation.
SVD is a way to factorize a matrix. Given a matrix M (e.g. for data, it could be an n by m matrix, for n datapoints, each of dimension m), you get U,S,V = SVD(M) where:M=USV^T, S is a diagonal matrix, and both U and V are orthogonal matrices (meaning the columns & rows are orthonormal; or equivalently UU^T=I & VV^T=I).
The entries of S are called the singular values of M. You can think of SVD as dimensionality reduction for matrices, since you can cut off the lower singular values (i.e. set them to zero), destroying the "lower parts" of the matrices upon multiplying them, and get an approximation to M. In other words, just keep the top k singular values (and the top k vectors in U and V), and you have a "dimensionally reduced" version (representation) of the matrix.
Mathematically, this gives you the best rank k approximation to M, essentially like a reduction to k dimensions. (see this answer for more).
So Question 1
I understand the general premis of dimensionality reduction as bringing data to a lower dimension - But
a) how do SVD and PCA do this, and b) how do they differ in their approach
The answer is that they are the same.
To see this, I suggest reading the following posts on the CV and math stack exchange sites:
What is the intuitive relationship between SVD and PCA?
Relationship between SVD and PCA. How to use SVD to perform PCA?
How to use SVD for dimensionality reduction to reduce the number of columns (features) of the data matrix?
How to use SVD for dimensionality reduction (in R)
Let me summarize the answer:
essentially, SVD can be used to compute PCA.
PCA is closely related to the eigenvectors and eigenvalues of the covariance matrix of the data. Essentially, by taking the data matrix, computing its SVD, and then squaring the singular values (and doing a little scaling), you end up getting the eigendecomposition of the covariance matrix of the data.
Question 2
maybe if you can explain what the results of each technique is telling me, so for a) SVD - what are singular values b) PCA - "proportion of variance"
These eigenvectors (the singular vectors of the SVD, or the principal components of the PCA) form the axes of the news space into which one transforms the data.
The eigenvalues (closely related to the squares of the data matrix SVD singular values) hold the variance explained by each component. Often, people want to retain say 95% of the variance of the original data, so if they originally had n-dimensional data, they reduce it to d-dimensional data that keeps that much of the original variance, by choosing the largest d-eigenvalues such that 95% of the variance is kept. This keeps as much information as possible, while retaining as few useless dimensions as possible.
In other words, these values (variance explained) essentially tell us the importance of each principal component (PC), in terms of their usefulness reconstructing the original (high-dimensional) data. Since each PC forms an axis in the new space (constructed via linear combinations of the old axes in the original space), it tells us the relative importance of each of the new dimensions.
For bonus, note that SVD can also be used to compute eigendecompositions, so it can also be used to compute PCA in a different way, namely by decomposing the covariance matrix directly. See this post for details.
According to your question,I only understood the topic of Principal component analysis.so that I share few below points about PCA i hope you definitely understand.
PCA:
1.PCA is a linear transformation dimensionality reduction technique.
2.It is used for operations such as noise filtering,feature extraction and data visualization.
3.The goal of PCA is to identify patterns and detecting the correlations between variables.
4.If there is a strong correlation,then we could reduce the dimensionality which PCA is intended for.
5.Eigenvector is to make linear transformation without changing the directions.
this is the sample url to understand the PCA:https://www.solver.com/xlminer/help/principal-components-analysis-example

How to get original order of eigenvalues using Eigen?

I have a diagonal matrix with eigenvalues e.g. 1, 2 and 3. I disturb its values with some noise but it is small enough to change the sequence. When I obtain the eigenvalues of this matrix they are 1,2,3 in 50% cases and 1,3,2 in another 50%.
When I do the same thing without the noise the order is always 1,2,3.
I obtain the eigenvalues using:
matrix.eigenvalues().real();
or using:
Eigen::EigenSolver<Eigen::Matrix3d> es(matrix, false);
es.eigenvalues().real();
The result is the same. Any ideas how to fix it?
There is no "natural" order for eigenvalues of a non-selfadjoint matrix, since they are usually complex (even for real-valued matrices). One could sort them lexicographically (first by real then by complex) or by magnitude, but Eigen does neither. If you have a look at the documentation, you'll find:
The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix. The eigenvalues are not sorted in any particular order.
If your matrix happens to be self-adjoint you should use the SelfAdjointEigenSolver, of course (which does sort the eigenvalues, since they are all real and therefore sortable). Otherwise, you need to sort the eigenvalues manually by whatever criterion you prefer.
N.B.: The result of matrix.eigenvalues() and es.eigenvalues() should indeed be the same, since exactly the same algorithm is applied. Essentially the first variant is just a short-hand, if you are only interested in the eigenvalues.

library for full SVD of sparse matrices

I want to do a singular value decomposition for large matrices containing a lot of zeros. In particular I need U and S, obtained from the diagonalization of a symmetric matrix A. This means that A = U * S * transpose(U^*), where S is a diagonal matrix and U contains all eigenvectors as columns.
I searched the web for c++ librarys that combine SVD and sparse matrices, but could only find libraries that find a few, but not all eigenvectors. Does anyone know if there is such a library?
Also after obtaining U and S I need to multiply them to some dense vector.
For this problem, I am using a combination of different techniques:
Arpack can compute a set of eigenvalues and associated eigenvectors, unfortunately it is fast only for high frequencies and slow for low frequencies
but since the eigenvectors of the inverse of a matrix are the same as the eigenvectors of a matrix, one can factor the matrix (using a sparse matrix factorization routine, such as SuperLU, or Choldmod if the matrix is symmetric). The "communication protocol" with Arpack only expects you to compute a matrix-vector product, so if you do a linear system solve using the factored matrix instead, then this makes Arpack fast for the low frequencies of the spectrum (do not forget then to replace the eigenvalue lambda by 1/lambda !)
This trick can be used to explore the entire spectrum, with a generalized transform (the transform in the previous point is refered as "invert" transform). There is also a "shift-invert" transform that allows one to explore an arbitrary portion of the spectrum and have fast convergence of Arpack. Then you compute (1/lambda + sigma) instead of lambda, when sigma is a "shift" (the transform is slightly more complicated than the "invert" transform, see the references below for a full explanation).
ARPACK: http://www.caam.rice.edu/software/ARPACK/
SUPERLU: http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
The numerical algorithm is explained in my article that can be downloaded here:
http://alice.loria.fr/index.php/publications.html?redirect=0&Paper=ManifoldHarmonics#2008
Sourcecode is available there:
https://gforge.inria.fr/frs/download.php/file/27277/manifold_harmonics-a4-src.tar.gz
See also my answer to this question:
https://scicomp.stackexchange.com/questions/20243/sparse-generalized-eigensolver-using-opencl/20255#20255

Determinant Value For Very Large Matrix

I have a very large square matrix of order around 100000 and I want to know whether the determinant value is zero or not for that matrix.
What can be the fastest way to know that ?
I have to implement that in C++
Assuming you are trying to determine if the matrix is non-singular you may want to look here:
https://math.stackexchange.com/questions/595/what-is-the-most-efficient-way-to-determine-if-a-matrix-is-invertible
As mentioned in the comments its best to use some sort of BLAS library that will do this for you such as Boost::uBLAS.
Usually, matrices of that size are extremely sparse. Use row and column reordering algorithms to concentrate the entries near the diagonal and then use a QR decomposition or LU decomposition. The product of the diagonal entries of the second factor is - up to a sign in the QR case - the determinant. This may still be too ill-conditioned, the best result for rank is obtained by performing a singular value decomposition. However, SVD is more expensive.
There is a property that if any two rows are equal or one row is a constant multiple of another row we can say that determinant of that matrix is zero.It is applicable to columns as well.
From my knowledge your application doesnt need to calculate determinant but the rank of matrix is sufficient to check if system of equations have non-trivial solution : -
Rank of Matrix

Partitioned Matrix-Vector Multiplication

Given a very sparse nxn matrix A with nnz(A) non-zeros, and a dense nxn matrix B. I would like to compute the matrix product AxB. Since n is very large, if carried out naively, the dense matrix B cannot be put into the memory. I have the following two options, but not sure which one is better. Could you give some suggestions. Thanks.
Option1. I parition the matrix B into n column vectors [b1,b2,...,bn]. Then, I can put matrix A and any single vector bi into the memory, and calculate the A*b1, A*b2, ..., A*bn, respectively.
Option2. I partition the matrices A and B, respectively, into four n/2Xn/2 blocks, and then use the block matrix-matrix multiplications to calculate A*B.
Which of the above choice is better? Can I say that Option 1 has high performance in parallel calculation?
See a discussion of both approaches, though for two dense matrices, in this document from the Scalapack documentation. Scalapack is the one of the reference tools for distributed linear algebra.