Am I doing that right? Scaling in Qt - c++

I wrote code to make a 2D transformation: scaling.
( value = variable from slider 1-10 )
int x=punktx.back();
int y=punkty.back();
DrawPixel(x*value/6.0,y*value/6.0,bits,255,255,255);
And I received that output:
As you can see I received a little breaks in that square. Is it okay or I have wrong code?

It's not how you scale things in Qt. Use QImage::scaled() or QPixmap::scaled() method instead.
Regarding your problem, the breaks are result of the fact that you use the same number of pixels for drawing the large square as for the small square - you would have to fill the gaps between the pixels, but scaling that way doesn't make sense anyway as mentioned above.

the problem is that if you iterate over an input image that's e.g. 10x10 pixels, and output the same number of pixels then you're only drawing 100 pixels no matter how much you "scale" it by. If you're scaling it to fill 20x20 pixels in size but you only draw your original 100 pixels, of course it will have holes in it.
If you want to implement a simple scaling function as a learning exercise, some approaches are:
instead of drawing 1 pixel per original pixel, draw a rectangle of the scaled size, in that pixel's color. This has the advantage that it's only a tiny change to your existing code, so it might be worth trying as a first attempt.
loop over the output pixels, then interpolate where that would be on the input image (reverse the scaling) then draw one pixel of the right color. This avoids some of the overheads with drawing lots of rectangles (which could paint the same output pixels more than once).
as above, but write the data into a bitmap stored in memory, then draw it all at once with a bitmap drawing command.
Also if you really want to get better results you can work out whether an output pixel crosses over several input pixels, then average out the colors, and so on. This will give smoother looking results but could blur things for solid color images.

Related

Pack pixels in 1bit/bw/binary image in boxes

I need an algorithm that, from a 1bit 2D image (a 2D matrix of mixed 1s and 0s) returns me rectangles (with the x,y coordinates of each corner) that packs the pixels that are equal to zero, using the least amount of boxes.
So for an image like
0000000
1111111
1111111
1111110
1111100
0000000
It would return something like
Rectangle 1 ((0,0),(0,1),(7,0),(7,1))
Rectangle 2 ((6,3),(7,3),(7,4),(6,4))
Rectangle 3 ((5,4),(7,4),(7,6),(5,6))
Rectangle 4 ((0,5),(0,6),(7,6),(7,5))
I feel this algorithm exists, but I am unable to Google it or name it.
I'm guessing you're looking to make a compression algorithm for your images. There isn't an algorithm that guarantees the minimum number of rectangles, as far as I'm aware.
The first thing that comes to mind is taking your pixel data as a 1D array and using run-length encoding to compress it. Images tend to have rather large groupings of similarly-colored pixels, so this should give you some data savings.
There are some things you can do on top of that to further increase the information density:
Like you suggested, start off with an image that is completely white and only store black pixels
If encoding time isn't an issue, run your encoding on both white and black pixels, then store whichever requires less data and use one bit to store whether the image should start with a black or a white background.
There are some algorithms that try to do this in two dimensions, but this seems to be quite a bit more complex. Here's one attempt I found on the topic:
https://pdfs.semanticscholar.org/d09a/62ea3472352bf7bbe873677cd81f348206cc.pdf
I found more interesting SO answers:
What algorithm can be used for packing rectangles of different sizes into the smallest rectangle possible in a fairly optimal way?
Minimum exact cover of grid with squares; extra cuts
Algorithm for finding the fewest rectangles to cover a set of rectangles without overlapping
https://mathoverflow.net/questions/244718/algo-for-covering-maximum-surface-of-a-polygon-with-rectangles
https://mathoverflow.net/questions/105837/get-largest-inscribed-rectangle-of-a-concave-polygon
https://mathoverflow.net/questions/80665/how-to-cover-a-set-in-a-grid-with-as-few-rectangles-as-possible
Converting monochrome image to minimum number of 2d shapes
I also read on Covering rectilinear polygons with axis-parallel rectangles.
I even found a code here: https://github.com/codecombat/codecombat/blob/6009df26de7c7938c0af2122ffba72c07123d172/app/lib/world/world_utils.coffee#L94-L148
I tested multiple approaches but in the end none were as fast as I needed or generated a reasonable amount of rectangles. So for now I went with a different approach.

Noise reduction OpenCV skindetection sample

I'm working on a facedetection app using segmentation of skinpixels with a predefined skinmodel in YCrCb space.
I'm loosely basing my algorithms of this report; http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=767122&tag=1, by Douglas Chai and King N. Ngan.
I first segment out all skin pixels (see left).
After that I perform some calculations to reduce the noise (see steps below). It results in a filtered bitmap 1/8th the size of original. Ideally this would be noise free both in face and background area, but it isn't. I have already tried to reduce it by using my density map and then checking neighbouring 3x3 area pixels and eroding/dilating pixel values depending on their neighbours. Then I resize this bitmap and apply the result as a mask on the original image (see right image for result, ignore my censorship).
My question is, what methods do you recommend for getting rid of the noise?
Also, are there any good methods to get smoother contours ? Ideally I would not like to use "find biggest contour and flood fill", preferably something more sophisticated.
There also seem to be bit of a displacement of the resized mask (it cuts of a bit too much on my right side of the face, and shows a bit too much on the left side). What can be causing this?
the easiest way to do smoother contours is to interpolate your data to a higher resolution using an interpolation scheme. You may look in openCV, that will result in smoother transitions between points.
I hope it will help a little bit. Good luck.

Python: Reduce rectangles on images to their border

I have many grayscale input images which contain several rectangles. Some of them overlap and some go over the border of the image. An example image could look like this:
Now i have to reduce the rectangles to their border. My idea was to make all non-white pixels which are less than N (e.g. 3) pixels away from the border or a white pixel (using the Manhatten distance) white. The output should look like this (sorry for the different-sized borders):
It is not very hard to implement this. Unfortunately the implementation must be fast, because the input may contain extremly many images (e.g. 100'000) and the user has to wait until this step is finished.
I thought about using fromimage and do then everything with numpy, but i did not find a good solution.
Maybe someone has an idea or a hint how this problem may be solved very efficient?
Calculate the distance transform of the image (opencv distanceTrasform http://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html)
In the resulted image zero all the pixels that have value bigger than 3

openGL drawing lag: points vs line_strip

I'm using openGL to draw some very large images(3200 x 4000 pixels). I don't have objects that are anywhere near that large individually, but I do have many irregular lines that span the width and height. I'm currently displaying the lines by drawing all of the points on them as individual vertices (I know that's kind of ridiculous but I'm grabbing all the lines using image processing in openCV and the best way for me to do that is create a set of all the pixels that make up the line). I'm using user commands to rotate the images and I'm getting really large lag between the user input and the updated display. Would it be faster to instead draw with GL_LINE_STRIP and use all of the pixels and verteices in the line? or should i just thin out the pixels and use less data?

How to detect points which are drastically different than their neighbours

I'm doing some image processing, and am trying to keep track of points similar to those circled below, a very dark spot of a couple of pixels diameter, with all neighbouring pixels being bright. I'm sure there are algorithms and methods which are designed for this, but I just don't know what they are. I don't think edge detection would work, as I only want the small spots. I've read a little about morphological operators, could these be a suitable approach?
Thanks
Loop over your each pixel in your image. When you are done considering a pixel, mark it as "used" (change it to some sentinel value, or keep this data in a separate array parallel to the image).
When you come across a dark pixel, perform a flood-fill on it, marking all those pixels as "used", and keep track of how many pixels were filled in. During the flood-fill, make sure that if the pixel you're considering isn't dark, that it's sufficiently bright.
After the flood-fill, you'll know the size of the dark area you filled in, and whether the border of the fill was exclusively bright pixels. Now, continue the original loop, skipping "used" pixels.
How about some kind of median filtering? Sample values from 3*3 grid (or some other suitable size) around the pixel and set the value of pixel to median of those 9 pixels.
Then if most of the neighbours are bright the pixel becomes bright etc.
Edit: After some thinking, I realized that this will not detect the outliers, it will remove them. So this is not the solution original poster was asking.
Are you sure that you don't want to do an edge detection-like approach? It seems like a comparing the current pixel to the average value of the neighborhood pixels would do the trick. (I would evaluate various neighborhood sizes to be sure.)
Personally I like this corner detection algorithms manual.
Also you can workout naive corner detection algorithm by exploiting idea that isolated pixel is such pixel through which intensity changes drastically in every direction. It is just a starting idea to begin from and move on further to better algorithms.
I can think of these methods that might work with some tweaking of parameters:
Adaptive thresholds
Morphological operations
Corner detection
I'm actually going to suggest simple template matching for this, if all your features are of roughly the same size.
Just copy paste the pixels of one (or a few features) to create few templates, and then use Normalized Cross Correlation or any other score that OpenCV provides in its template matching routines to find similar regions. In the result, detect all the maximal peaks of the response (OpenCV has a function for this too), and those are your feature coordinates.
Blur (3x3) a copy of your image then diff your original image. The pixels with the highest values are the ones that are most different from their neighbors. This could be used as an edge detection algorithm but points are like super-edges so set your threshold higher.
what a single off pixel looks like:
(assume surrounding pixels are all 1)
original blurred diff
1,1,1 8/9,8/9,8/9 1/9,1/9,1/9
1,0,1 8/9,8/9,8/9 1/9,8/9,1/9
1,1,1 8/9,8/9,8/9 1/9,1/9,1/9
what an edge looks like:
(assume surrounding pixels are the same as their closest neighbor)
original blurred diff
1,0,0 6/9,3/9,0/9 3/9,3/9,0/9
1,0,0 6/9,3/9,0/9 3/9,3/9,0/9
1,0,0 6/9,3/9,0/9 3/9,3/9,0/9
Its been a few years since i did any image processing. But I would probably start by converting to a binary representation. It doesn't seem like you're overly interested in the grey middle values, just the very dark/very light regions, so get rid of all the grey. At that point, various morphological operations can accentuate the points you're interested in. Opening and Closing are pretty easy to implement, and can yield pretty nice results, leaving you with a field of black everywhere except the points you're interested in.
Have you tried extracting connected components using cvContours? First thresholding the image (using Otsu's method say) and then extracting each contour. Since the spots you wish to track are (from what I see in your image) somewhat isolated from neighborhood they will some up as separate contours. Now if we compute the area of the Bounding Rectangle of each contour and filter out the larger ones we'd be left with only small dots separate from dark neighbors.
As suggested earlier a bit of Morphological tinkering before the contour separation should yield good results.