How to access the class member - c++

Sorry for the bad title... I think the solution may exist on this site, but I cannot find it.
class A {
};
class B {
private:
int _b;
};
class C {
private:
A a; // a: I want to access _b in b
B b;
};
Let's say I have 3 classes like the code above, now the object a in class C wants to access the member _b in object b. Is there any method to achieve it?
I tried using friend, I wonder if I haven't used it in a proper way, because it made the code very complex, like this:
class B {
private:
int _b;
public:
B() : _b(5) {}
int get_b() {
return _b;
}
};
class A {
public:
int get_a(B& b) {
cout << b.get_b();
}
};
class C {
private:
friend class A;
A a;
B b;
public:
A& get_A() {
return a;
}
B& get_B() {
return b;
}
};
int main() {
C c;
c.get_A().get_a(c.get_B());
}
Thank you in advance.
EDIT
Sorry about the confusing code above, actually I want to implement a compiler using OO style. I think a compiler is made of lexer, parser, and symbol table and other things. So I think the relationship is:
class compiler {
private:
lexer l;
parser p;
symbol_table st;
...
};
And the parser and lexer need to access the symbol_table, that is why this question is put forward. I think this design is resemble to the real compiler "in my opinion", but it seems hard to implement... Any advice is appreciated.

In you example, A must be a friend of B and not of C to let it access members of B:
class A;
class B {
friend class A;
//...
};
// ....
In other terms, it should look like this:
#include<iostream>
using namespace std;
class A;
class B {
friend class A;
private:
int _b;
public:
B() : _b(5) {}
};
class A {
public:
int get_a(B& b) {
cout << b._b;
}
};
class C {
private:
A a;
B b;
public:
A& get_A() {
return a;
}
B& get_B() {
return b;
}
};
int main() {
C c;
c.get_A().get_a(c.get_B());
}
That being said, you should probably reconsider your design to avoid such a strong dependency between your classes and get rid of friends.

Your code looks really confused. I'm not sure what you are trying to do in the second piece of code. The only place you can enable access to members of class B is in class B. You can do this either through making those members public or protected, adding accessor functions for the members or setting another class to be a friend class of class B by adding a friend class declaration inside class B.
Personally I would go with accessor functions as this means you are reducing class to class dependencies. Any class that has internal access to class B, by being made a friend or having direct access to member variables because they are public, is then dependent on the structure of class B.

Related

Cyclic dependency involving global objects C++

So, I'm in this situation right now. I have two classes A and B. The B is subclass of A and there's also a global object of the B class which is initialized in the main. A function of the A class uses that global object and calls its functions. In what order do I have to write the declarations in order for the compiler to read everything?
I keep getting the same errors whatever I try. Namely:
- (x) does not name a type
- invalid use of incomplete type (x)
- forward declaration of (x)
Code example:
class B;
B* B_GLOBAL;
class A{
public:
void A_function(){
B_GLOBAL->B_function();
}
private:
};
class B : public A{
public:
void B_function();
private:
};
int main(void){
B_GLOBAL = new B;
return 0;
}
Move the definition of A_function below the declaration of B:
class B;
B* B_GLOBAL;
class A{
public:
void A_function();
private:
};
class B : public A{
public:
void B_function();
private:
};
void A::A_function(){
B_GLOBAL->B_function();
}
int main(void){
B_GLOBAL = new B;
return 0;
}

Pre and post increment operators in different classes

I want to create traits that overload operators, to avoid code duplication. But when I try to put pre and post increment operators in different classes the compiler gives me an error: "operator ++ is ambiguous" Code:
class A
{
public:
A& operator++(){return *this;}
};
class B
{
public:
B operator++(int){return *this;}
};
class C:public A, public B
{
};
int main()
{
C c;
c++;
++c;
}
In my case it is possible to inherit B from A, but then the compiler can't find the post-increment operator. Why does this happen, and what is the correct way?
GCC rejects the code, because it first performs name lookup without considering the argument lists, and the name is found in two base classes. Clang accepts the code, but this is caused by a bug.
The solution is to add using and create a separate class which inherits from A and B, and then inherit C from that class.
class A
{
public:
A& operator++(){return *this;}
};
class B
{
public:
B operator++(int){return *this;}
};
class AAndB:public A, public B
{
public:
using A::operator++;
using B::operator++;
};
class C:public AAndB
{
};
int main()
{
C c;
c++;
++c;
}

How do I access a private constructor in a separate class?

I'm writing a library in C++. I have two classes in my library, A and B. I want to hide the A() constructor from any code that references my library. I also want class B to be able to call the A() constructor.
I come from a C# background and remember little of my C++. In C#, I would simply declare the A() constructor as internal. I've read that the closest way to do this in C++ is a combination of friend declarations and forward-declarations. How do I do this? Here are my three files below:
A.h:
#pragma once
class A
{
private:
A();
};
B.h
#pragma once
class A;
class B
{
public:
A createA();
};
B.cpp:
#include "A.h"
#include "B.h"
A B::createA()
{
A result; //cannot access private member declare in class 'A'
return result;
}
I've tried adding this to A.h:
public: friend A createA();
I've instead tried adding this to A.h with a corresponding forward declaration:
public: friend A B::createA();
I've instead tried adding and extern class B; to A.h and making B a class like this:
public: friend class B;
I'm at a loss.
I think this might be easier if I have the B::createA() function return a pointer to an A object rather than an A object directly, but that won't do in my case. I am emulating a closed API and the API call returns an A object rather than a pointer.
You probably just need to drop the "extern" from your third attempt to turn it into a proper forward-declaration. Try:
A.h:
#pragma once
class B;
class A
{
friend class B;
private:
A();
};
You don't need the external keyword. Make it simple:
// In A.h
class B; // Forward declaration
class A
{
friend class B; // Make all the class B friend
A();
};
// In B.h
class B
{
public:
A createA() {}
};
Live Example.
Unless absolutely necessary, you should have A construct itself (or have a factory that creates A). If you really want B to do it:
class B; // foward declared
class A
{
private:
A() {}
friend class B;
};
class B
{
public:
A CreateA()
{
A a;
return a;
}
};
int main()
{
B b;
A a = b.CreateA();
return 0;
}
Note: You must forward declare B before declaring it a friend in A.
If you want just the function as a friend:
class A;
class B
{
public:
A CreateA();
};
class A
{
private:
A() {}
friend class A B::CreateA();
};
A B::CreateA()
{
A a;
return a;
}
int main()
{
B b;
A a = b.CreateA();
return 0;
}
You can make B a friend of A:
class A
{
private:
A();
friend class B;
};

Friends and nested classes

Ok I'm totally frazzled on this. Code is begin to swim around the screen...must sleep.
So! Ok, troubled by nested classes and friends.
here is the pseudo-code
class A{
public:
//constructor
// member functions
private:
class B{
//private
int a();
};
class C{
//private
int b();
};
};
So once an object of type A has been created, I would like it to access a() and b(). I know that I have to use a friend function for this. So where should I put friend class A. Is that the right expression?.
If you would like to access a() and b() from within class A you need to place the friend declaration inside of class B and class C. However, a() and b() are not members of class A so you cannot access them in the way you are thinking. Instead you also need to add forwarding functions to A.
class A
{
public:
//constructor
// member functions
private:
class B
{
//private
int a();
friend A; // <-- make A a friend
};
class C
{
//private
int b();
friend A; // <-- make A a friend
};
public:
// forwarding function for a
int a()
{
return bdata_.a();
}
// forwarding function for b
int b()
{
return cdata_.b();
}
private:
B bdata_;
C cdata_;
};

mutually referential classes yield "incomplete type" error

I have a situation in which A has a reference to a class C defined inside B, and C has an instance of class B.
When I try to compile the code below, I get "field a has incomplete type". I assume this is because the compiler does not know how much memory it should allocate for an instance of A.
class A;
class B {
public:
class C {
A a;
};
};
class A {
A(const B::C& _c)
: c(_c)
{}
const B::C& c;
};
But when I try to compile this, I get "C in class B does not name a type":
class B;
class B::C;
class A {
A(const B::C& _c)
: c(_c)
{}
const B::C& c;
};
class B {
public:
class C {
A a;
};
};
How can I convince the compiler that B::C is a real type?
As an absolute guess, I notice there's one permutation you haven't tried:
class B {
public:
class C; // Forward declaration
};
class A {
A(const B::C& _c)
: c(_c)
{}
const B::C& c;
};
class B::C {
A a;
C() : a(*this) {} // Thanks Nim for pointing this out!
};
This is quite possibly illegal, but worth a shot I think. If it doesn't work, then I don't see any way around the problem.
The forward declaration for A doesn't serve a purpose: you can't declare an instance of an incomplete type.
As to B::C, I don't think you can use nested names in an incomplete type. Just don't nest C in B: as far as I know this doesn't give you any significant advantages* and stops you from forward declaring it.
*The only advantage I can think of is that you can define it in the private section, but then A would have no business with it in the first place.