Printing mathematical fraction in C++ - c++

I want that the program will print 0.75 and the output is 300
int a=300;
int b=400;
double c=a%b;
printf("%lf\n",c)
The program prints "300" and i want that it will print 0.75.
need help pleass

The % symbol is for modulus not division.
As your two variables a & b are both integers, the result you will get from a division will also be an integer, which in the case of 300 / 400 is zero.
What you need to do is force one of those variables to be a float or double. You could either do this when you defined them or cast one to be a double or a float.
So your code becomes :
int a=300;
int b=400;
double c = (double) a/b;
printf("%lf\n",c)
Informing the compiler that you actually want to perform a floating point division instead of an integer based one.

Related

How to round a floating point type to two decimals or more in C++? [duplicate]

How can I round a float value (such as 37.777779) to two decimal places (37.78) in C?
If you just want to round the number for output purposes, then the "%.2f" format string is indeed the correct answer. However, if you actually want to round the floating point value for further computation, something like the following works:
#include <math.h>
float val = 37.777779;
float rounded_down = floorf(val * 100) / 100; /* Result: 37.77 */
float nearest = roundf(val * 100) / 100; /* Result: 37.78 */
float rounded_up = ceilf(val * 100) / 100; /* Result: 37.78 */
Notice that there are three different rounding rules you might want to choose: round down (ie, truncate after two decimal places), rounded to nearest, and round up. Usually, you want round to nearest.
As several others have pointed out, due to the quirks of floating point representation, these rounded values may not be exactly the "obvious" decimal values, but they will be very very close.
For much (much!) more information on rounding, and especially on tie-breaking rules for rounding to nearest, see the Wikipedia article on Rounding.
Using %.2f in printf. It only print 2 decimal points.
Example:
printf("%.2f", 37.777779);
Output:
37.77
Assuming you're talking about round the value for printing, then Andrew Coleson and AraK's answer are correct:
printf("%.2f", 37.777779);
But note that if you're aiming to round the number to exactly 37.78 for internal use (eg to compare against another value), then this isn't a good idea, due to the way floating point numbers work: you usually don't want to do equality comparisons for floating point, instead use a target value +/- a sigma value. Or encode the number as a string with a known precision, and compare that.
See the link in Greg Hewgill's answer to a related question, which also covers why you shouldn't use floating point for financial calculations.
How about this:
float value = 37.777779;
float rounded = ((int)(value * 100 + .5) / 100.0);
printf("%.2f", 37.777779);
If you want to write to C-string:
char number[24]; // dummy size, you should take care of the size!
sprintf(number, "%.2f", 37.777779);
Always use the printf family of functions for this. Even if you want to get the value as a float, you're best off using snprintf to get the rounded value as a string and then parsing it back with atof:
#include <math.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
double dround(double val, int dp) {
int charsNeeded = 1 + snprintf(NULL, 0, "%.*f", dp, val);
char *buffer = malloc(charsNeeded);
snprintf(buffer, charsNeeded, "%.*f", dp, val);
double result = atof(buffer);
free(buffer);
return result;
}
I say this because the approach shown by the currently top-voted answer and several others here -
multiplying by 100, rounding to the nearest integer, and then dividing by 100 again - is flawed in two ways:
For some values, it will round in the wrong direction because the multiplication by 100 changes the decimal digit determining the rounding direction from a 4 to a 5 or vice versa, due to the imprecision of floating point numbers
For some values, multiplying and then dividing by 100 doesn't round-trip, meaning that even if no rounding takes place the end result will be wrong
To illustrate the first kind of error - the rounding direction sometimes being wrong - try running this program:
int main(void) {
// This number is EXACTLY representable as a double
double x = 0.01499999999999999944488848768742172978818416595458984375;
printf("x: %.50f\n", x);
double res1 = dround(x, 2);
double res2 = round(100 * x) / 100;
printf("Rounded with snprintf: %.50f\n", res1);
printf("Rounded with round, then divided: %.50f\n", res2);
}
You'll see this output:
x: 0.01499999999999999944488848768742172978818416595459
Rounded with snprintf: 0.01000000000000000020816681711721685132943093776703
Rounded with round, then divided: 0.02000000000000000041633363423443370265886187553406
Note that the value we started with was less than 0.015, and so the mathematically correct answer when rounding it to 2 decimal places is 0.01. Of course, 0.01 is not exactly representable as a double, but we expect our result to be the double nearest to 0.01. Using snprintf gives us that result, but using round(100 * x) / 100 gives us 0.02, which is wrong. Why? Because 100 * x gives us exactly 1.5 as the result. Multiplying by 100 thus changes the correct direction to round in.
To illustrate the second kind of error - the result sometimes being wrong due to * 100 and / 100 not truly being inverses of each other - we can do a similar exercise with a very big number:
int main(void) {
double x = 8631192423766613.0;
printf("x: %.1f\n", x);
double res1 = dround(x, 2);
double res2 = round(100 * x) / 100;
printf("Rounded with snprintf: %.1f\n", res1);
printf("Rounded with round, then divided: %.1f\n", res2);
}
Our number now doesn't even have a fractional part; it's an integer value, just stored with type double. So the result after rounding it should be the same number we started with, right?
If you run the program above, you'll see:
x: 8631192423766613.0
Rounded with snprintf: 8631192423766613.0
Rounded with round, then divided: 8631192423766612.0
Oops. Our snprintf method returns the right result again, but the multiply-then-round-then-divide approach fails. That's because the mathematically correct value of 8631192423766613.0 * 100, 863119242376661300.0, is not exactly representable as a double; the closest value is 863119242376661248.0. When you divide that back by 100, you get 8631192423766612.0 - a different number to the one you started with.
Hopefully that's a sufficient demonstration that using roundf for rounding to a number of decimal places is broken, and that you should use snprintf instead. If that feels like a horrible hack to you, perhaps you'll be reassured by the knowledge that it's basically what CPython does.
Also, if you're using C++, you can just create a function like this:
string prd(const double x, const int decDigits) {
stringstream ss;
ss << fixed;
ss.precision(decDigits); // set # places after decimal
ss << x;
return ss.str();
}
You can then output any double myDouble with n places after the decimal point with code such as this:
std::cout << prd(myDouble,n);
There isn't a way to round a float to another float because the rounded float may not be representable (a limitation of floating-point numbers). For instance, say you round 37.777779 to 37.78, but the nearest representable number is 37.781.
However, you can "round" a float by using a format string function.
You can still use:
float ceilf(float x); // don't forget #include <math.h> and link with -lm.
example:
float valueToRound = 37.777779;
float roundedValue = ceilf(valueToRound * 100) / 100;
In C++ (or in C with C-style casts), you could create the function:
/* Function to control # of decimal places to be output for x */
double showDecimals(const double& x, const int& numDecimals) {
int y=x;
double z=x-y;
double m=pow(10,numDecimals);
double q=z*m;
double r=round(q);
return static_cast<double>(y)+(1.0/m)*r;
}
Then std::cout << showDecimals(37.777779,2); would produce: 37.78.
Obviously you don't really need to create all 5 variables in that function, but I leave them there so you can see the logic. There are probably simpler solutions, but this works well for me--especially since it allows me to adjust the number of digits after the decimal place as I need.
Use float roundf(float x).
"The round functions round their argument to the nearest integer value in floating-point format, rounding halfway cases away from zero, regardless of the current rounding direction." C11dr ยง7.12.9.5
#include <math.h>
float y = roundf(x * 100.0f) / 100.0f;
Depending on your float implementation, numbers that may appear to be half-way are not. as floating-point is typically base-2 oriented. Further, precisely rounding to the nearest 0.01 on all "half-way" cases is most challenging.
void r100(const char *s) {
float x, y;
sscanf(s, "%f", &x);
y = round(x*100.0)/100.0;
printf("%6s %.12e %.12e\n", s, x, y);
}
int main(void) {
r100("1.115");
r100("1.125");
r100("1.135");
return 0;
}
1.115 1.115000009537e+00 1.120000004768e+00
1.125 1.125000000000e+00 1.129999995232e+00
1.135 1.134999990463e+00 1.139999985695e+00
Although "1.115" is "half-way" between 1.11 and 1.12, when converted to float, the value is 1.115000009537... and is no longer "half-way", but closer to 1.12 and rounds to the closest float of 1.120000004768...
"1.125" is "half-way" between 1.12 and 1.13, when converted to float, the value is exactly 1.125 and is "half-way". It rounds toward 1.13 due to ties to even rule and rounds to the closest float of 1.129999995232...
Although "1.135" is "half-way" between 1.13 and 1.14, when converted to float, the value is 1.134999990463... and is no longer "half-way", but closer to 1.13 and rounds to the closest float of 1.129999995232...
If code used
y = roundf(x*100.0f)/100.0f;
Although "1.135" is "half-way" between 1.13 and 1.14, when converted to float, the value is 1.134999990463... and is no longer "half-way", but closer to 1.13 but incorrectly rounds to float of 1.139999985695... due to the more limited precision of float vs. double. This incorrect value may be viewed as correct, depending on coding goals.
Code definition :
#define roundz(x,d) ((floor(((x)*pow(10,d))+.5))/pow(10,d))
Results :
a = 8.000000
sqrt(a) = r = 2.828427
roundz(r,2) = 2.830000
roundz(r,3) = 2.828000
roundz(r,5) = 2.828430
double f_round(double dval, int n)
{
char l_fmtp[32], l_buf[64];
char *p_str;
sprintf (l_fmtp, "%%.%df", n);
if (dval>=0)
sprintf (l_buf, l_fmtp, dval);
else
sprintf (l_buf, l_fmtp, dval);
return ((double)strtod(l_buf, &p_str));
}
Here n is the number of decimals
example:
double d = 100.23456;
printf("%f", f_round(d, 4));// result: 100.2346
printf("%f", f_round(d, 2));// result: 100.23
I made this macro for rounding float numbers.
Add it in your header / being of file
#define ROUNDF(f, c) (((float)((int)((f) * (c))) / (c)))
Here is an example:
float x = ROUNDF(3.141592, 100)
x equals 3.14 :)
Let me first attempt to justify my reason for adding yet another answer to this question. In an ideal world, rounding is not really a big deal. However, in real systems, you may need to contend with several issues that can result in rounding that may not be what you expect. For example, you may be performing financial calculations where final results are rounded and displayed to users as 2 decimal places; these same values are stored with fixed precision in a database that may include more than 2 decimal places (for various reasons; there is no optimal number of places to keep...depends on specific situations each system must support, e.g. tiny items whose prices are fractions of a penny per unit); and, floating point computations performed on values where the results are plus/minus epsilon. I have been confronting these issues and evolving my own strategy over the years. I won't claim that I have faced every scenario or have the best answer, but below is an example of my approach so far that overcomes these issues:
Suppose 6 decimal places is regarded as sufficient precision for calculations on floats/doubles (an arbitrary decision for the specific application), using the following rounding function/method:
double Round(double x, int p)
{
if (x != 0.0) {
return ((floor((fabs(x)*pow(double(10.0),p))+0.5))/pow(double(10.0),p))*(x/fabs(x));
} else {
return 0.0;
}
}
Rounding to 2 decimal places for presentation of a result can be performed as:
double val;
// ...perform calculations on val
String(Round(Round(Round(val,8),6),2));
For val = 6.825, result is 6.83 as expected.
For val = 6.824999, result is 6.82. Here the assumption is that the calculation resulted in exactly 6.824999 and the 7th decimal place is zero.
For val = 6.8249999, result is 6.83. The 7th decimal place being 9 in this case causes the Round(val,6) function to give the expected result. For this case, there could be any number of trailing 9s.
For val = 6.824999499999, result is 6.83. Rounding to the 8th decimal place as a first step, i.e. Round(val,8), takes care of the one nasty case whereby a calculated floating point result calculates to 6.8249995, but is internally represented as 6.824999499999....
Finally, the example from the question...val = 37.777779 results in 37.78.
This approach could be further generalized as:
double val;
// ...perform calculations on val
String(Round(Round(Round(val,N+2),N),2));
where N is precision to be maintained for all intermediate calculations on floats/doubles. This works on negative values as well. I do not know if this approach is mathematically correct for all possibilities.
...or you can do it the old-fashioned way without any libraries:
float a = 37.777779;
int b = a; // b = 37
float c = a - b; // c = 0.777779
c *= 100; // c = 77.777863
int d = c; // d = 77;
a = b + d / (float)100; // a = 37.770000;
That of course if you want to remove the extra information from the number.
this function takes the number and precision and returns the rounded off number
float roundoff(float num,int precision)
{
int temp=(int )(num*pow(10,precision));
int num1=num*pow(10,precision+1);
temp*=10;
temp+=5;
if(num1>=temp)
num1+=10;
num1/=10;
num1*=10;
num=num1/pow(10,precision+1);
return num;
}
it converts the floating point number into int by left shifting the point and checking for the greater than five condition.

Print 2 decimals from float value [duplicate]

This question already has answers here:
C++ program converts fahrenheit to celsius
(8 answers)
Closed 7 years ago.
First of all, I want to say sorry because I think the doubt is so trivial... but I'm new programming in C++.
I have the following code:
int a = 234;
int b = 16;
float c = b/a;
I want to print the result from float c with 2 decimals (the result should be 0.06) but I don't get the expected result.
Can anyone can help me? I tried using CvRound() and setPrecision() but nothing works like I expect or, in my case, I don't know how to do them working.
The problem is actually blindingly simple. And has NOTHING whatsoever do do with settings such as precision.
a and b are of type int, so b/a is also computed to be of type int. Which involves rounding toward zero. For your values, the result will be zero. That value is then converted to be float. An int with value zero, when converted to float, gives a result of 0.0. No matter what precision you use to output that, it will still output a zero value.
To change that behaviour convert one of the values to float BEFORE doing the division.
float c = b/(float)a;
or
float c = (float)b/a;
The compiler, when it sees a float and and an int both participating in a division, converts the int to float first, then does a division of floats.
int a = 234;
int b = 16;
float c = b/(float)a;
float rounded_down = floorf(c * 100) / 100; /* floor value upto two decimal places */
float nearest = roundf(c * 100) / 100; /* round value upto two decimal places */
float rounded_up = ceilf(c * 100) / 100; /* ceiling value upto two decimal places */
If you just want to print the result, you can use a printf() formatting string to round:
printf("c = %.2f\n", number, pointer);
Otherwise, if you need c to calculate another value, you shouldn't round the original value, only the one to print.
try this:
#include <iostream>
#include <iomanip>
using namespace std;
int main(){
int a = 234;
int b = 16;
float c = float(b)/a;
cout<<fixed<<setprecision(2)<<c;
return 0;
}
Previously when c = b/a since a and b are integers so by integer division we were getting answer as 0 as per your program.
But if we typecast one of the variable(a or b) to float we will obtain decimal answer.
Number of digits after decimal may or may not be 2. To ensure this we can use fixed and setprecision. fixed will ensure that number of digits after decimal will be fixed. setprecision will set how many digits to be there after decimal.

Optimization concern : int to double

I have these two interpolation methods that I use in some of my programs...
__forceinline double InterpolateDouble(double dOldVal, double dOldMin, double dOldMax, double dNewMin, double dNewMax)
{
return (((dOldVal - dOldMin) * (dNewMax - dNewMin)) / (dOldMax - dOldMin)) + dNewMin;
}
__forceinline int InterpolateInteger(int nOldVal, int nOldMin, int nOldMax, int nNewMin, int nNewMax)
{
return (int)InterpolateDouble((double)nOldVal, (double)nOldMin, (double)nOldMax, (double)nNewMin, (double)nNewMax);
}
The method InterpolateInteger() simply calls the InterpolateDouble() method to maintain some fractional accuracy. Is the conversion from integer to double a concern, and is there any way to get an accurate result using only integers (no casting)?
There is a risk of overflow when multiplying before dividing, as your code does here. You must check the possible values of your inputs, in addition to the possible intermediate calculations of multiplication within the code to determine whether an int type will always be sufficient to contain the calculation. Truncation will happen with integer division, but if you want an integer result, that's expected.
Conversion from int to double is trivial from a CPU perspective, since there's a 0 prepended on the front of the integer before calculation.
It's not the conversion from int to double you should worry about. It's the conversion (truncation) back from double to int after the work is done. Consider interpolating [0, 500] to [0, 1]. In that case, once you do the interpolate double, the number will be 1 output for 500 input, and less than one for input 0-499. So 0-499 input will result in 0 output after truncation, and 500 will result in 1.
If you are after maximum optimization and the interpolation points are fixed, you can use the following integer expression:
(dOldVal * dNewDelta + dNewMin * dOldDelta - dOldMin * dNewDelta) / dOldDelta
which is of the form (A * X + B) / C, where A, B and C are three precomputed integer constants. This will yield exact integer answers.
Alternatively, use A * X + B with double precision precomputed coefficients, but the rounding strategy needs to be carefully adjusted.
Yet another possibility is to rescale and round the A and B coefficients using a power of 2, giving a fast division-less integer formula of the form
(A * X + B) >> p
(rounding strategy also delicate).

Why do I get two different outputs here?

The following two pieces of code produce two different outputs.
//this one gives incorrect output
cpp_dec_float_50 x=log(2)
std::cout << std::setprecision(std::numeric_limits<cpp_dec_float_50>::digits)<< x << std::endl;
The output it gives is
0.69314718055994528622676398299518041312694549560547
which is only correct upto the 15th decimal place. Had x been double, even then we'd have got first 15 digits correct. It seems that the result is overflowing. I don't see though why it should. cpp_dec_float_50 is supposed to have 50 digits precision.
//this one gives correct output
cpp_dec_float_50 x=2
std::cout << std::setprecision(std::numeric_limits<cpp_dec_float_50>::digits)<< log(x) << std::endl;
The output it gives is
0.69314718055994530941723212145817656807550013436026
which is correct according to wolframaplha .
When you do log(2), you're using the implementation of log in the standard library, which takes a double and returns a double, so the computation is carried out to double precision.
Only after that's computed (to, as you noted, a mere 15 digits of precision) is the result converted to your 50-digit extended precision number.
When you do:
cpp_dec_float_50 x=2;
/* ... */ log(x);
You're passing an extended precision number to start with, so (apparently) an extended precision overload of log is being selected, so it computes the result to the 50 digit precision you (apparently) want.
This is really just a complex version of:
float a = 1 / 2;
Here, 1 / 2 is integer division because the parameters are integers. It's only converted to a float to be stored in a after the result is computed.
C++ rules for how to compute a result do not depend on what you do with that result. So the actual calculation of log(2) is the same whether you store it in an int, a float, or a cpp_dec_float_50.
Your second bit of code is the equivalent of:
float b = 1;
float c = 2;
float a = b / c;
Now, you're calling / on a float, so you get floating point division. C++'s rules do take into account the types of arguments and paramaters. That's complex enough, and trying to also take into account what you do with the result would make C++'s already overly-complex rules incomprehensible to mere mortals.

Discrepancy between the values computed by Fortran and C++

I would have dared say that the numeric values computed by Fortran and C++ would be way more similar. However, from what I am experiencing, it turns out that the calculated numbers start to diverge after too few decimal digits. I have come across this problem during the process of porting some legacy code from the former language to the latter. The original Fortran 77 code...
INTEGER M, ROUND
DOUBLE PRECISION NUMERATOR, DENOMINATOR
M = 2
ROUND = 1
NUMERATOR=5./((M-1+(1.3**M))**1.8)
DENOMINATOR = 0.7714+0.2286*(ROUND**3.82)
WRITE (*, '(F20.15)') NUMERATOR/DENOMINATOR
STOP
... outputs 0.842201471328735, while its C++ equivalent...
int m = 2;
int round = 1;
long double numerator = 5.0 / pow((m-1)+pow(1.3, m), 1.8);
long double denominator = 0.7714 + 0.2286 * pow(round, 3.82);
std::cout << std::setiosflags(std::ios::fixed) << std::setprecision(15)
<< numerator/denominator << std::endl;
exit(1);
... returns 0.842201286195064. That is, the computed values are equal only up to the sixth decimal. Although not particularly a Fortran advocator, I feel inclined to consider its results as the 'correct' ones, given its legitimate reputation of number cruncher. However, I am intrigued about the cause of this difference between the computed values. Does anyone know what the reason for this discrepancy could be?
In Fortran, by default, floating point literals are single precision, whereas in C/C++ they are double precision.
Thus, in your Fortran code, the expression for calculating NUMERATOR is done in single precision; it is only converted to double precision when assigning the final result to the NUMERATOR variable.
And the same thing for the expression calculating the value that is assigned to the DENOMINATOR variable.