Algorithm to constrain moving point onto 3d surface - c++

I'm not really sure where to start looking for info about this question, so I'm asking here. Hopefully it's not too general. I've written a particle library in C++ and am trying to add the ability to constrain particles to the surface of a mesh. Not a rigid constraint though -- I want particles to be able to slide over the surface when affected by forces.
So, imagine I have an arbitrary concave mesh with n triangular faces. I then have a 3d point (particle) located on one of the faces. A apply a directional force to that particle to get it moving, but I want it to move along the topology of the surface, not simply move linearly through space. It should move smoothly over the surface and always be touching a triangle of the mesh.
I've thought about moving the particle linearly at first, and then snapping it to the closest point on the surface, but that would run into a lot of problems, like the particle might snap to other non-contiguous parts of the mesh simply because they happen to be a shorter distance to the particle after it's been moved by the force.
Then I thought about checking its barycentric coordinates and using them to determine which adjacent triangle it should move onto, if it leaves the bounds of its current triangle...but that seems like a hugely inefficient solution riddled with other problems (like if the force moves the particle past the bounds of all adjacent triangles as well).
Then I thought about using UVW coordinates to figure out where the particle would move to, but that wouldn't work either.
Any ideas?
Here's an image to help illustrate the problem:

Related

OpenGL - parameterized meshes

Given a human 3D model, I want to change its shape by giving parameters, like height, waist, bust etc.
From what I gathered, the 3D model should have some 'hooks' around the areas I can change.
Any pointers for this would be very helpful through OpenGL, Three.js or any other means. I don't want to do it in Blender or other 3D manipulation tools. I want it done programatically.
Here's a Sample 3D model
What you should do is "tag" a group of vertices together.
Then apply a vertex shader to those groups, which changes the position of the vertices to shrink/expand the mesh.
One way to do this is to place a point inside the mesh, and give it a radius. This pretty much means you're creating a sphere.
Run the shader on all the vertices inside the sphere.
What the shader should do is "inflate" the sphere - moving the vertices away from the center point.
Just transform each vertice away from the center by a certain ammount.
(Make a vector from the center to the current vertice, continue the vector, and move the vertice there.
This should work well for the belly.
Another shader you can do is to stretch the mesh vertically (for the person's height).
This is more straightforward.
Just run on all vertices and add to their height.
How much to add - that's what you should figure out. My intuition says it can't be a constant - I think it's a linear function but I'm not sure.

View frustum culling for animated meshes

I implemented frustum culling in my system, it tests the frustum planes on every object's bounding sphere, and it works great. (I find the PlaneVsAabb check unneeded)
However, the bounding sphere of the mesh is adjusted for its bind pose, so when the mesh starts moving (e.g the player attacks with his sword) some vertices could go out of the sphere.
This often results in a mesh getting culled, although there are some vertices that should be rendered (e.g the player's sword that went out of the sphere).
I could think of two possible solutions for this:
For every mesh in every frame, calculate its new bounding sphere based on bone changes. (I have no idea how to start with this...) Could this be too inefficient?
Add a fixed offset for every sphere radius (based on the entire mesh size maybe?), so there could be no chance of the mesh getting culled even when animated.
(1) would be inefficient in real-time yes. However you can do a mixture of both, by computing the largest possible bounding sphere statically i.e. when you load it. Using that in (2) would guarantee a better result than some arbitrary offset you make up.
(1) You can add locators to key elements (e.g. dummy bone on the tip of the sword) and transform their origin while animating. You can done it on CPU on each update and then calculate bounding box or bounding sphere. Or you can precompute bounding volumes for each frame of animation offline. Doom3 uses second approach.

OpenGL/OpenTK Fill Interior Space

I am looking for a way to "fill" three-dimensional geometry with color, and quite possibly a texture at some time later on.
Suppose for a moment that you could physically phase your head into a concrete wall, logically you would see only darkness. In OpenGL, however, when you do this the world is naturally hollow and transparent due to culling and because of how the geometry is drawn. I want to simulate the darkness/color/texture within it instead.
I know some games do this by overlaying a texture/color directly over the hud--therefore blinding the player.
Is there another way to do this, though? Suppose the player is standing half in water; they can partially see below the waves. How would you fill it to prevent them from being able to see clearly below what is now half of their screen?
What is this concept even called?
A problem with the texture-in-front-of-the-camera method is a texture is 2D but you want to visualize a slice of a 3D volume. For the first thing you talk about, the head-inside-a-wall idea, I'll point you to "3D/volume texturing". For standing-half-in-water, you're after "volume rendering" with "absorption" (discussed by #user3670102).
3D texturing
The general idea here is you have some function that defines a colour everywhere in a 3D space, not just on a surface (as with regular texture mapping). This is nice because you can put geometry anywhere and colour it in the fragment shader based on the 3D position. Think of taking a slice through the volume and looking at the intersection colour.
For the head-in-a-wall effect you could draw a full screen polygon in front of the player (right on the near clipping plane, although you might want to push this forwards a bit so its not too small) and colour it based on a 3D function. Now it'll look properly solid and move ad the player does and not like you've cheaply stuck a texture over the screen.
The actual function could be defined with a 3D texture but that's very memory intensive. Instead, you could look into either procedural 3D colour (a procedural wood or brick shader is pretty common as an example). Even assuming a 2D texture is "extruded" through the volume will work, or better yet weight 3 textures (one for each axis) based on the angle of the intersection/surface you're drawing on.
Detecting an intersection with the geometry and the near clipping plane is probably the hardest bit here. If I were you I'd look at tricks with the z-buffer and make sure to draw everything as solid non-self-intersecting geometry. A simple idea might be to draw back faces only after drawing everything with front faces. If you can see back faces that part of the near plane must be inside something. For these pixels you could calculate the near clipping plane position in world space and apply a 3D texture. Though I suspect there are faster ways than drawing everything twice.
In reality there would probably be no light getting to what you see and it should be black, but I guess just ignore this and render the colour directly, unlit.
Absorption
This sounds way harder than it actually is. If you have some transparent solid that's all the one colour ("homogeneous") then it removes light the further light has to travel through it. Think of many alpha-transparent surfaces, take the limit and you have an exponential. The light remaining is close to 1/exp(dist) or exp(-dist). Google "Beer's Law". From here,
vec3 Absorbance = WaterColor * WaterDensity * -WaterDepth;
vec3 Transmittance = exp(Absorbance);
A great way to find distances through something is to render the back faces (or seabed/water floor) with additive blending using a shader that draws distance to a floating point texture. Then switch to subtractive blending and render all the front faces (or water surface). You're left with a texture containing distances/depth for the above equation.
Volume Rendering
Combining the two ideas, the material is both a transparent solid but the colour (and maybe density) varies throughout the volume. This starts to get pretty complicated if you have large amounts of data and want it to be fast. A straight forward way to render this is to numerically integrate a ray through the 3D texture (or procedural function, whatever you're using), at the same time applying the absorption function. A basic brute force Euler integration might start a ray for each pixel on the near plane, then march forwards at even distances. Over each step while you march you assume the colour remains constant and apply absorption, keeping track of how much light you have left. A quick google brings up this.
This seems related to looking through what's called "participating media". On the less extreme end, you'd have light fog, or smoky haze. In the middle could be, say, dirty water. And the extreme case would be your head-in-the-wall example.
Doing this in a physically accurate way isn't trivial, because the darkening effect is more pronounced when the thickness of the media is greater.
But you can fake this by making some assumptions and giving the interior geometry (under the water or inside the wall) darker by reduced lighting or using darker colors. If you care about the depth effect, look at OpenGL and fog.
For underwater, you can make the back side of the water a semi-transparent color that causes stuff above it to have a suitable change in color.
If you really want to go nuts with accuracy, look at Kajia's Rendering Equation. That covers everything (including stuff that glows), but generally needs simplification and approximations to be more useful.

OpenGL lighting question?

Greetings all,
As seen in the image , I draw lots of contours using GL_LINE_STRIP.
But the contours look like a mess and I wondering how I can make this look good.(to see the depth..etc )
I must render contours so , i have to stick with GL_LINE_STRIP.I am wondering how I can enable lighting for this?
Thanks in advance
Original image
http://oi53.tinypic.com/287je40.jpg
Lighting contours isn't going to do much good, but you could use fog or manually set the line colors based on distance (or even altitude) to give a depth effect.
Updated:
umanga, at first I thought lighting wouldn't work because lighting is based on surface normal vectors - and you have no surfaces. However #roe pointed out that normal vectors are actually per vertex in OpenGL, and as such, any POLYLINE can have normals. So that would be an option.
It's not entirely clear what the normal should be for a 3D line, as #Julien said. The question is how to define normals for the contour lines such that the resulting lighting makes visual sense and helps clarify the depth?
If all the vertices in each contour are coplanar (e.g. in the XY plane), you could set the 3D normal to be the 2D normal, with 0 as the Z coordinate. The resulting lighting would give a visual sense of shape, though maybe not of depth.
If you know the slope of the surface (assuming there is a surface) at each point along the line, you could use the surface normal and do a better job of showing depth; this is essentially like a hill-shading applied only to the contour lines. The question then is why not display the whole surface?
End of update
+1 to Ben's suggestion of setting the line colors based on altitude (is it topographic contours?) or based on distance from viewer. You could also fill the polygon surrounded by each contour with a similar color, as in http://en.wikipedia.org/wiki/File:IsraelCVFRtopography.jpg
Another way to make the lines clearer would be to have fewer of them... can you adjust the density of the contours? E.g. one contour line per 5ft height difference instead of per 1ft, or whatever the units are. Depending on what it is you're drawing contours of.
Other techniques for elucidating depth include stereoscopy, and rotating the image in 3D while the viewer is watching.
If your looking for shading then you would normally convert the contours to a solid. The usual way to do that is to build a mesh by setting up 4 corner points at zero height at the bounds or beyond then dropping the contours into the mesh and getting the mesh to triangulate the coords in. Once done you then have a triangulated solid hull for which you can find the normals and smooth them over adjacent faces to create smooth terrain.
To triangulate the mesh one normally uses the Delaunay algorithm which is a bit of a beast but there does exist libraries for doing it. The best of which I know of is the ones based on Guibas as Stolfi papers since its pretty optimal.
To generate the normals you do a simple cross product and ensure the facing is correct and manually renormalize them before feeding into the glNormal.
The in the old days you used to make a glList out of the result but the newer way is to make a vertex array. If you want to be extra flash then you can look for coincident planar faces and optimize the mesh down for faster redraw but thats a bit of a black art - good for games, not so good for CAD.
(thx for bonus last time)

Can someone describe the algorithm used by Ken Silverman's Voxlap engine?

From what I gathered he used sparse voxel octrees and raycasting. It doesn't seem like he used opengl or direct3d and when I look at the game Voxelstein it appears that miniature cubes are actually being drawn instead of just a bunch of 2d square. Which caught me off guard I'm not sure how he is doing that without opengl or direct3d.
I tried to read through the source code but it was difficult for me to understand what was going on. I would like to implement something similar and would like the algorithm to do so.
I'm interested in how he performed rendering, culling, occlusion, and lighting. Any help is appreciated.
The algorithm is closer to ray-casting than ray-tracing. You can get an explanation from Ken Silverman himself here:
https://web.archive.org/web/20120321063223/http://www.jonof.id.au/forum/index.php?topic=30.0
In short: on a grid, store an rle list of surface voxels for each x,y stack of voxels (if z means 'up'). Assuming 4 degrees of freedom, ray-cast across it for each vertical line on the screen, and maintain a list of visible spans which is clipped as each cube is drawn. For 6 degrees of freedom, do something similar but with scanlines which are tilted in screenspace.
I didn't look at the algorithm itself, but I can tell the following based off the screenshots:
it appears that miniature cubes are actually being drawn instead of just a bunch of 2d square
Yep, that's how ray-tracing works. It doesn't draw 2d squares, it traces rays. If you trace your rays against many miniature cubes, you'll see many miniature cubes. The scene is represented by many miniature cubes (voxels), hence you see them when you look up close. It would be nice to actually smoothen the data somehow (trace against smoothed energy function) to make them look smoother.
I'm interested in how he performed rendering
by ray-tracing
culling
no need for culling when ray-tracing, particularly in a voxel scene. As you move along the ray you check only the voxels that the ray intersects.
occlusion
voxel-voxel occlusion is handled naturally by ray-tracing; it would return the first voxel hit, which is the closest. If you draw sprites you can use a Z-buffer generated by the ray-tracer.
and lighting
It's possible to approximate the local normal by looking at nearby cells and looking which are occupied and which are not. Then performing the lighting calculation. Alternatively each voxel can store the normal along with its color or other material properties.