Delete a vector without deleting the array - c++

I'm trying to populate a vector of doubles in C++ and pass the associated array to Fortran. But I'm having trouble freeing the rest of the memory associated with the vector. I'd like to avoid copying. Here's what I have:
std::vector<double> *vec = new std::vector<double>();
(*vec).push_back(1.0);
(*vec).push_back(2.0);
*arr = (*vec).data(); //arr goes to Fortran
How do I delete vec while keeping arr intact? Is there a way to nullify the pointer to arr in vec so that I can then delete vec?
Update
I see that I didn't give enough information here. A couple things:
I'm actually calling a C++ function in Fortran using iso_c_binding
I don't know how large the vec needs to be. The vector class looks good for this situation
I might try Guillaume's suggestion eventually, but for now, I'm passing vec to the Fortran and calling another C++ function to delete it once I'm done with the data

You need to rethink your program design.
Somehow, somewhere, you need to keep an array alive while Fortran is using it. So whatever context you're using to access Fortran should probably be responsible for ownership of this array.
class fortran_context {
/*Blah blah blah whatever API you're using to access Fortran*/
void * arr;
std::vector<double> vec; //Don't allocate this as a pointer; makes no sense!
public:
fortran_context() {
arr = //Do whatever is necessary to setup Fortran stuff. I'm assuming your
//api has some kind of "get_array_pointer" function that you'll use.
}
~fortran_context() {
//Do the cleanup for the fortran stuff
}
//If you want to spend time figuring out a robust copy constructor, you may.
//Personally, I suspect it's better to just delete it, and make this object non-copyable.
fortran_context(fortran_context const&) = delete;
std::vector<double> & get_vector() {
return vec;
}
std::vector<double> const& get_vector() const {
return vec;
}
void assign_vector_to_array() {
*arr = vec.data();
}
void do_stuff_with_fortran() {
assign_vector_to_array();
//???
}
};
int main() {
fortran_context context;
auto & vec = context.get_vector();
vec.push_back(1.0);
vec.push_back(2.0);
context.do_stuff_with_fortran();
return 0;
} //Cleanup happens automatically due to correct implementation of ~fortran_context()
I've abstracted a lot of this because I don't know what API you're using to access Fortran, and I don't know what kind of work you're doing with this array. But this is, by far, the safest way to ensure that
The vector's allocated memory exists so long as you are doing stuff in Fortran
The memory associated with the vector will be cleaned up properly when you're done.

How do I delete vec while keeping arr intact? Is there a way to nullify the pointer to arr in vec so that I can then delete vec?
The library does not provide any built-in capability to do that. You have to do the bookkeeping work yourself.
Allocate memory for the data and copy data from the vector.
Send the data to FORTRAN.
Decide when it is safe to deallocate the data and then delete them.
// Fill up data in vec
std::vector<double> vec;
vec.push_back(1.0);
vec.push_back(2.0);
// Allocate memory for arr and copy the data from vec
double* arr = new double[vec.size()];
std::copy(vec.begin(), vec.end(), arr);
// use arr
// delete arr
delete [] arr;

What you are asking for is not possible. std::vector, being a well behaved template class will release the internals that it owns and manages when it is destroyed.
You will have to keep vector alive while you are using its contents, which makes perfect sense. Otherwise, you will have to make a copy.
Also, I don't see why you are allocating the vector on the heap, it doesn't seem needed at all.

How do I delete vec while keeping arr intact? Is there a way to nullify the pointer to arr in vec so that I can then delete vec?
You don't.
I think you misuse or misunderstood what vector is for. It is not meant to expose memory management of the underlying array, but to represent a dynamically sized array as a regular type.
If you need to explicitly manage memory, I'd suggest you to use std::unique_ptr<T[]>. Since unique pointers offers a way to manage memory and to release it's resource without deleting it, I think it's a good candidate to meet your needs.
auto arr = std::make_unique<double[]>(2);
arr[0] = 1.;
arr[1] = 2.;
auto data = arr.release();
// You have to manage `data` memory manually,
// since the unique pointer released it's resource.
// arr is null here
// data is a pointer to an array, must be deleted manually later.
delete[] data;

Related

Better way to store the address and value of a pointer, and reuse that same pointer variable without using dynamic memory allocation

Sorry if this question is already answered somewhere else, but I've been searching for a couple days and haven't been able to find exactly what I'm looking for.
I was wondering what a safer/cleaner way is to store a pointer (keep the address and value the same and store in some container) and reuse that same pointer variable.
Currently, I'm just using dynamic memory allocation and manually deleting it later on, but I was wondering if there is a better way to do this (I'll elaborate more after the code, since it may be easier to understand what I'm asking for then).
I attached some sample code below with what I'm talking about, and how I am currently doing it (please bear with me on any glaring mistakes, I'm still learning C++):
struct MyStruct{
double* arr;
MyStruct* parent_struct;
};
MyStruct* first_struct = new MyStruct;
first_struct->arr = some_array;
first_struct->parent_struct = nullptr;
std::vector<MyStruct*>* my_vector = new std::vector<MyStruct*>();
my_vector->push_back(first_struct);
double* temp_array;
MyStruct* temp_struct;
MyStruct* previous_struct;
for (i=0; i<num_iterations; i++){
temp_array = new double[sizeofarray];
assign_some_values(temp_array);
assign_struct_some_values(previous_struct);
if (some_condition(temp_array)){
temp_struct = new MyStruct;
temp_struct->arr = temp_array;
temp_struct->parent_struct = previous_struct;
my_vector->push_back(temp_struct);
} else{
delete [] temp_array;
}
}
... use values in my_vector ...
for (j=0; j<my_vector.size(); j++){
delete [] (*my_vector)[j]->arr;
delete (*my_vector)[j];
}
delete my_vector;
The main thing is, what alternative to the dynamically allocated arrays/structures can I use?
Please keep in mind that I would like to try to keep the address and values the same once they are added to my_vector, if at all possible (due to some requirements with the code I'm using). I feel like there is a much better way to do this without dynamic memory allocation, or so many pointers (like using smart pointers, std::array, etc), but I haven't been able to properly get any of the other methods to work.
When I try using smart pointers, I can't seem to get the custom deleter to work properly for the structures.
And when using a container (like std::vector) for the arr variables instead of double*, they keep getting deallocated (or I'm accidentally changing the address/values somehow) before the for loop is finished.

"Moving" sequential containers to pointers

I'm building a buffer for network connections where you can explicitly allocate memory or you can supply it on your own via some sequential container(eg.:std::vector,std::array)these memory chunks are stored in a list what we use later for read/write operations. (the chunks are needed for handle multiple read/write requests)
I have a question about the last part, I want to make a pointer to the container's data and then tell the container to not care about it's data anymore.
So something like move semantics.
std::vector<int> v = {9,8,7,6,5,4,3,2,1,0};
std::vector<int> _v(std::move(v));
Where _v has all the values of v and v left in a safe state.
The problem is if I just make a pointer for v.data() after the lifetime of the container ends, the data pointed by the pointer releases with the container.
For example:
// I would use span to make sure It's a sequential container
// but for simplicity i use a raw pointer
// gsl::span<int> s;
int *p;
{
std::vector<int> v = {9,8,7,6,5,4,3,2,1,0};
// s = gsl::make_span(v);
p = v.data();
}
for(int i = 0; i < 10; ++i)
std::cout << p[i] << " ";
std::cout << std::endl;
Now p contains some memory trash and i would need the memory previously owned by the vector.
I also tried v.data() = nullptr but v.data() is rvalue so it's not possible to assign it. Do you have any suggestions, or is this possible?
edit.:
To make it more clear what i'm trying to achieve:
class readbuf_type
{
struct item_type // representation of a chunk
{
uint8_t * const data;
size_t size;
inline item_type(size_t psize)
: size(psize)
, data(new uint8_t[psize])
{}
template <std::ptrdiff_t tExtent = gsl::dynamic_extent>
inline item_type(gsl::span<uint8_t,tExtent> s)
: size(s.size())
, data(s.data())
{}
inline ~item_type()
{ delete[] data; }
};
std::list<item_type> queue; // contains the memory
public:
inline size_t read(uint8_t *buffer, size_t size); // read from queue
inline size_t write(const uint8_t *buffer, size_t size); // write to queue
inline void *get_chunk(size_t size)
{
queue.emplace_back(size);
return queue.back().data;
}
template <std::ptrdiff_t tExtent = gsl::dynamic_extent>
inline void put_chunk(gsl::span<uint8_t,tExtent> arr)
{
queue.emplace_back(arr);
}
} readbuf;
I have the get_chunkfunction what basically just allocates memory with the size, and I have put_chunk what I'm struggling with, the reason i need this because before you can write to this queue you need to allocate memory and then copy all the elements from the buffer(vector,array) you're trying to write from to the queue.
Something like:
std::vector<int> v = {9,8,7,6,5,4,3,2,1,0};
// instead of this
readbuf.get_chunk(v.size);
readbuf.write(v.data(), v.size());
// we want this
readbuf.put_chunk({v});
Since we're developing for distributed systems memory is crucial and that's why we want to avoid the unnecessary allocation, copying.
ps.This is my first post, so sorry if i wasn't precise in the first place..
No, it is not possible to "steal" the buffer of the standard vector in the manner that you suggest - or any other standard container for that matter.
You've already shown one solution: Move the buffer into another vector, instead of merely taking the address (or another non-owning reference) of the buffer. Moving from the vector transfers the ownership of the internal buffer.
It would be possible to implement such custom vector class, whose buffer could be stolen, but there is a reason why vector doesn't make it possible. It can be quite difficult to prove the correctness of your program if you release resources willy-nilly. Have you considered how to prevent the data from leaking? The solution above is much simpler and easier to verify for correctness.
Another approach is to re-structure your program in such way that no references to the data of your container outlive the container itself (or any invalidating operation).
Unfortunately the memory area of the vector cannot be detached from the std::vector object. The memory area can be deleted even if you insert some data to the std::vector object. Therefore use of this memory area later is not safe, unless you are sure that this particular std::vector object exists and is not modified.
The solution to this problem is to allocate a new memory area and copy the content of the vector to this newly allocated memory area. The newly allocated memory area can be safely accessed without worrying about the state of the std::vector object.
std::vector<int> v = {1, 2, 3, 4};
int* p = new int[v.size()];
memcpy(p, v.data(), sizeof(int) * v.size());
Don't forget to delete the memory area after you are finished using this memory area.
delete [] p;
Your mistake is in thinking that the pointer "contains" memory. It doesn't contain anything, trash or ints or otherwise. It is a pointer. It points to stuff. You have deleted that stuff and not transferred it anywhere else, so it can't work any more.
In general, you will need a container to put this information in, be it another vector, or even your own hand-made array. Just having a pointer to data does not mean you have data.
Furthermore, since it is impossible to ask a vector to relinquish its buffer to a non-vector thing, a vector is really your only chance in this particular case. It's not quite clear why that's not a good enough solution for you. :)
Not sure what you try to achieve but I would use moving semantic like this:
#include <iostream>
#include <memory>
#include <vector>
int main() {
std::unique_ptr<std::vector<int>> p;
{
std::vector<int> v = {9,8,7,6,5,4,3,2,1,0};
p = std::move(make_unique<std::vector<int>>(v));
}
for(int i = 0; i < 10; ++i)
std::cout << (*p)[i] << " ";
std::cout << std::endl;
return 0;
}

Avoiding copy when writing array to vector

But if you want to prevent the 5000 copy (or more) of some potentially ugly heavy objects. Just for performance and ignore readable code you can do this
#include <iostream>
#include <vector>
int main(int argc, char* argv[])
{
std::vector<int> v;
int* a = (int*) malloc(10*sizeof(int));
//int a[10];
for( int i = 0; i<10;++i )
{
*(a + i) = i;
}
delete v._Myfirst; // ? not sure
v._Myfirst = a;
for( int i = 0; i<10;++i )
{
std::cout << v[i] << std::endl;
}
system("PAUSE");
return 0;
}
simply replace the _Myfirst underlying "array". but be very careful, this will be deleted by the vector.
Does my delete/free of my first fail in some cases?
Does this depend on the allocator?
Is there a swap for that? There is the brand new swap for vectors, but how about from an array?
I had to interface with a code I cannot modify (political reasons), which provides me with arrays of objects and have to make them vector of objects.
The pointer seems the right solution, but it's a lot of memory jumps and I have to perform the loop anyway. I was just wondering if there was some way to avoid the copy and tell the vector, "now this is your underlying array".
I agree that the above is highly ugly and this is why I actually reserve and push in my real code. I just wanted to know if there was a way to avoid the loop.
Please don't answer with a loop and a push back, as obviously that's what my "real" code is already doing. If there is no function to perform this swap can we implement a safe one?
Question 1: does my delete/free of my first fail in some cases ?
Yes. You do not know how the memory for _Myfirst is allocated (apart from it uses the allocator). The standard does not specify that that the default allocator should use malloc to allocate the memory so you do not know if delete will work.
Also you are mixing allocation schemes.
You are allocating with malloc(). But expecting the std::vector<> to allocate with new (because you are calling delete).
Also even if the allocator did use new it would be uisng the array version of new and thus you would need to use the array version of delete to reclaim the memory.
Question 2: does this depends on allocator ?
Yes.
Question 3: is there a swap for that ? there is the brand new swap for vectors, but from an array ?
No.
To prevent expensive copies. Use emplace_back().
std::vector<int> v;
v.reserve(10); // reserve space for 10 objects (min).
for( int i = 0; i<10;++i )
{
v.emplace_back(i); // construct in place in the array (no copy).
}
std::vector<SomeUglyHeavyObject*> vect(5000, NULL);
for (int i=0; i<5000; i++)
{
vect[i] = &arr[i];
}
There, avoids copying and doesn't muck with std::vector internals.
If you don't like the way the vector behaves, don't use a vector. Your code depends on implementation details that you MUST not rely upon.
Yes it's ugly as you said. Make it pretty by using the correct container.
Which container you use depends on what operations you need on the container. It may be something as simple as a C-style array will suit your needs. It may be a vector of pointers, or shared pointers if you want the vector to manage the lifetime of the HeavyObjects.
In response to the need to increase the size of collection (see comments below):
std::vector guarantees that the underlying storage is contiguous, so if you increase the size, it will allocate a new larger buffer and copy the old one into the new (using the copy constructor for the objects if one exists.) Then swap the new buffer into place -- freeing the old one using its own allocator.
This will trash your memory unless the buffer you brute forced into the vector was allocated in a manner consistent with the vector's allocator.
So if your original array is big enough, all you need is a "maxUsed" size_t to tell you how big the collection is and where to put new entries. If it's not big enough, then your technique will either fail horribly, or incur the copy costs you are trying to avoid.

C++ Allocate Memory Without Activating Constructors

I'm reading in values from a file which I will store in memory as I read them in. I've read on here that the correct way to handle memory location in C++ is to always use new/delete, but if I do:
DataType* foo = new DataType[sizeof(DataType) * numDataTypes];
Then that's going to call the default constructor for each instance created, and I don't want that. I was going to do this:
DataType* foo;
char* tempBuffer=new char[sizeof(DataType) * numDataTypes];
foo=(DataType*) tempBuffer;
But I figured that would be something poo-poo'd for some kind of type-unsafeness. So what should I do?
And in researching for this question now I've seen that some people are saying arrays are bad and vectors are good. I was trying to use arrays more because I thought I was being a bad boy by filling my programs with (what I thought were) slower vectors. What should I be using???
Use vectors!!! Since you know the number of elements, make sure that you reserve the memory first (by calling myVector.reserve(numObjects) before you then insert the elements.).
By doing this, you will not call the default constructors of your class.
So use
std::vector<DataType> myVector; // does not reserve anything
...
myVector.reserve(numObjects); // tells vector to reserve memory
You can use ::operator new to allocate an arbitrarily sized hunk of memory.
DataType* foo = static_cast<DataType*>(::operator new(sizeof(DataType) * numDataTypes));
The main advantage of using ::operator new over malloc here is that it throws on failure and will integrate with any new_handlers etc. You'll need to clean up the memory with ::operator delete
::operator delete(foo);
Regular new Something will of course invoke the constructor, that's the point of new after all.
It is one thing to avoid extra constructions (e.g. default constructor) or to defer them for performance reasons, it is another to skip any constructor altogether. I get the impression you have code like
DataType dt;
read(fd, &dt, sizeof(dt));
If you're doing that, you're already throwing type safety out the window anyway.
Why are you trying to accomplish by not invoking the constructor?
You can allocate memory with new char[], call the constructor you want for each element in the array, and then everything will be type-safe. Read What are uses of the C++ construct "placement new"?
That's how std::vector works underneath, since it allocates a little extra memory for efficiency, but doesn't construct any objects in the extra memory until they're actually needed.
You should be using a vector. It will allow you to construct its contents one-by-one (via push_back or the like), which sounds like what you're wanting to do.
I think you shouldn't care about efficiency using vector if you will not insert new elements anywhere but at the end of the vector (since elements of vector are stored in a contiguous memory block).
vector<DataType> dataTypeVec(numDataTypes);
And as you've been told, your first line there contains a bug (no need to multiply by sizeof).
Building on what others have said, if you ran this program while piping in a text file of integers that would fill the data field of the below class, like:
./allocate < ints.txt
Then you can do:
#include <vector>
#include <iostream>
using namespace std;
class MyDataType {
public:
int dataField;
};
int main() {
const int TO_RESERVE = 10;
vector<MyDataType> everything;
everything.reserve( TO_RESERVE );
MyDataType temp;
while( cin >> temp.dataField ) {
everything.push_back( temp );
}
for( unsigned i = 0; i < everything.size(); i++ ) {
cout << everything[i].dataField;
if( i < everything.size() - 1 ) {
cout << ", ";
}
}
}
Which, for me with a list of 4 integers, gives:
5, 6, 2, 6

A generic method to set the length of a dynamic array of arbitrary type in c++

I am doing a project converting some Pascal (Delphi) code to C++ and would like to write a function that is roughly equivalent to the Pascal "SetLength" method. This takes a reference to a dynamic array, as well as a length and allocates the memory and returns the reference.
In C++ I was thinking of something along the lines of
void* setlength(void* pp, int array_size, int pointer_size, int target_size, ....) {
void * p;
// Code to allocate memory here via malloc/new
// something like: p = reinterpret_cast<typeid(pp)>(p);
// p=(target_size) malloc(array_size);
return p;
}
My question is this: is there a way to pass the pointer type to a function like this and to successfully allocate the memory (perhaps via a typeid parameter?)? Can I use
<reinterpret_cast>
somehow? The ultimate aim would be something like the following in terms of usage:
float*** p;
p=setlength(100,sizeof(float***),sizeof(float**),.....);
class B;
B** cp;
cp=setlength(100,sizeof(B**),sizeof(B*),.....);
Any help would be most welcome. I am aware my suggested code is all wrong, but wanted to convey the general idea. Thanks.
Use std::vector instead of raw arrays.
Then you can simply call its resize() member method.
And make the function a template to handle arbitrary types:
If you want to use your function, it could look something like this:
template <typename T>
std::vector<T>& setlength(std::vector<T>& v, int new_size) {
v.resize(new_size);
return v;
}
But now it's so simple you might want to eliminate the function entirely and just call resize to begin with.
I'm not entirely sure what you're trying to do with the triple-pointers in your example, but it looks like you don't want to resize though, you want to initialize to a certain size, which can be done with the vector constructor:
std::vector<float>v(100);
If you wanted to do it literally, you would do it like this:
template <typename T>
T* SetLength(T* arr, size_t len) {
return static_cast<T*>(realloc(arr, sizeof(T) * len));
}
Note that the array must have been allocated with malloc or calloc. Also note that this does not actually resize the memory—it deallocates the memory and reallocates memory of the appropriate size. If there were any other pointers to the array being passed in, they will be invalid afterwards.
You're really better off using a more idiomatic C++ solution, like std::vector.
For a multidimensional array, probably the best option would be to use boost's multi_array library:
typedef boost::multi_array<float, 3> array_type;
array_type p(boost::extents[100][100][100]); // make an 100x100x100 array of floats
p[1][2][3] = 4.2;
This lets you completely abstract away the allocation and details of setting up the multidimensional array. Plus, because it uses linear storage, you get the efficiency benefits of linear storage with the ease of access of indirections.
Failing that, you have three other major options.
The most C++-y option without using external libraries would be to use a STL container:
std::vector<float **> p;
p.resize(100);
As with multi_array, p will then automatically be freed when it goes out of scope. You can get the vector bounds with p.size(). However the vector will only handle one dimension for you, so you'll end up doing nested vectors (ick!).
You can also use new directly:
float ***p = new float**[100];
To deallocate:
delete [] p;
This has all the disadvantages of std::vector, plus it won't free it for you, and you can't get the size later.
The above three methods will all throw an exception of type std::bad_alloc if they fail to allocate enough memory.
Finally, for completeness, there's the C route, with calloc():
float ***p = (float ***)calloc(100, sizeof(*p));
To free:
free((void*)p);
This comes from C and is a bit uglier with all the casts. For C++ classes it will not call the constructors for you, either. Also, there's no checking that the sizeof in the argument is consistent with the cast.
If calloc() fails to allocate memory it will return NULL; you'll need to check for this and handle it.
To do this the C++ way:
1) As jalf stated, prefer std::vector if you can
2) Don't do void* p. Prefer instead to make your function a template of type T.
The new operator itself is essentially what you are asking for, with the exception that to appropriately allocate for double/triple pointers you must do something along the following lines:
float** data = new float*[size_of_dimension_1];
for ( size_t i=0 ; i<size_of_dimension_1 ; ++i )
data[i] = new float[size_of_dimension_2];
...
// to delete:
for ( size_t i=0 ; i<size_of_dimension_1 ; ++i )
delete [] data[i];
delete [] data;
Edit: I would suggest using one of the many C++ math/matrix libraries out there. I would suggest uBlas.