How to use if-then-else in a recursive function - sml

I am writing a function that will take a list of list and merge it into sorted pairs of list. For example [[1],[9],[8],[7],[4],[5],[6]] would return [[1,9],[7,8],[4,5],[6]]. This is my first attempt at SML. I keep getting this error: operator and operand don't agree [overload conflict].
fun mergePass[] = []
| mergePass(x::[]) = x::[]
| mergePass(x::y::Z) =
if x<y
then (x # y)::mergePass(Z)
else (y # x)::mergePass(Z);
Edit: If mergePass is called on [[1,9],[7,8],[4,5],[6]] I will need it to return [[1,7,8,9],[4,5,6]].
This merge function takes two sorted lists
fun merge([],y) = y
| merge(x,[]) = x
| merge(a::x,b::y) =
if a < b then a::merge(x,b::y)
else b::merge(a::x,y);

You seem reasonably close. A few hints/remarks:
1) Aesthetically, using nil in one line and [] in others seems odd. Either use all nil or use all []
2) Since the input are lists of lists, in x::y::z, the identifiers x and y would be lists of integers, rather than individual integers. Thus, x<y wouldn't make sense. You can't compare lists of integers using <.
3) Your problem description strongly suggests that the inner-lists are all 1-element lists. Thus you could use the pattern [x]::[y]::z to allow you to compare x and y. In this case, x#y could be replaced by [x,y]
4) If the inner lists are allowed to be of arbitrary size, then your code needs major revision and would probably require a full-fledged sort function to sort the result of concatenating pairs of inner lists. Also, in this case, the single list in the one inner list case should probably be sorted.
5) You have a typo: mergeP isn't mergePass.
On Edit:
If the sublists are each sorted (and the name of the overall function perhaps suggests this) then you need a function called e.g. merge which will take two sorted lists and combine them into a single sorted list. If this is for a class and you have already seen a merge function as an example (perhaps in a discussion of merge-sort) -- just use that. Otherwise you will have to write your own before you write this function. Once you have the merge function, skip the part of comparing x and y and instead have something as simple as:
| mergePass (xs::ys::zss) = (merge xs ys) :: mergePass zss
If the sublists are not merged, then you will need a full-fledged sort in which case you would use something like:
| mergePass (xs::ys::zss) = sort(xs # ys) :: mergePass zss

Related

Adding two lists together with map

So I'm trying to write some minimal code to put two lists of strings together, and to do this I thought it was best to use the haskell map function.
Essentially I want to be able to do adders ["1","2"] ["3","4"] = ["1","2","3","4"]
So I have a function called adder, which takes a list, then adds a string to that list and returns the new list. Then I have a function called adders which replicates the adder function, but adds a list of strings instead of just one string, however at the moment it produces multiple lists instead of one list.
I thought
adder :: [String] -> String -> [String]
adder y x = y ++ [x]
adders y x = map (adder y) x
would work, but this just gives a list of two lists
[["1","2","3"],[["1","2","4"]]
How is the best way to go about this?
I thought it was best to use the haskell map function
No. map f applies f to every element of your list. But you don't want to change the elements at all, you want to change the list itself. That, however, is out of scope of the things that are possible with map. map cannot add more elements, neither can it remove some.
If you want to concatenate two lists, simply use ++:
adders :: [a] -> [a] -> [a]
adders x y = x ++ y

More efficient way to update an element in a list in Elm?

Is there a more efficient way to update an element in a list in Elm than maping over each element?
{ model | items = List.indexedMap (\i x -> if i == 2 then "z" else x) model.items }
Maybe Elm's compiler is sophisticated enough to optimize this so that map or indexedMap isn't unnecessarily copying over every element except 1. What about nested lists?
Clojure has assoc-in to update an element inside a nested list or record (can be combined too). Does Elm have an equivalent?
More efficient in terms of amount of code would be (this is similar to #MichaelKohl's answer):
List.take n list ++ newN :: List.drop (n+1) list
PS: if n is < 0 or n > (length of list - 1) then the new item will be added before or at the end of the list.
PPS: I seem to recall that a :: alist is slightly better performing than [a] ++ alist.
If you mean efficient in terms of performance/ number of operations:
As soon as your lists get large, it is more efficient to use an Array (or a Dict) instead of a List as your type.
But there is a trade-off:
Array and Dict are very efficient/ performant when you frequently retrieve/ update/ add items.
List is very performant when you do frequent sorting and filtering and other operations where you actually need to map over the entire set.
That is why in my code, List is what I use a lot in view code. On the data side (in my update functions) I use Dict and Array more.
Basically, an Elm list is not meant for such a use-case. Instead, consider using an Array. Array contains a set function you can use for what is conceptually an in-pace update. Here's an example:
import Html exposing (text)
import Array
type alias Model = { items : Array.Array String }
model =
{ items = Array.fromList ["a", "b", "c"]
}
main =
let
m = { model | items = Array.set 2 "z" model.items }
z = Array.get 2 m.items
output = case z of
Just n -> n
Nothing -> "Nothing"
in
text output -- The output will be "z"
If for some reason you need model.items to be a List, note that you can convert back and forth between Array and List.
I'm not overly familiar with Elm, but given that it's immutable by default, I'd assume it uses structural sharing for its underlying data structures, so your concern re memory may be unfounded.
Personally I think there's nothing wrong with your approach posted above, but if you don't like it, you can try something like this (or List.concat):
List.take n list ++ newN :: List.drop (n+1)
I'm definitely not an Elm expert, but a look at Elm's List documentation did not reveal any function to update the element at a given index in a list.
I like Michael's answer. It's quite elegant. If you prefer a less-elegant, recursive approach, you can do something like the following. (Like I said, I'm not an Elm expert, but hopefully the intention of the code is clear if its not quite right. Also, I don't do any error handling.)
updateListAt :: List a -> Int -> a -> List a
updateListAt (head :: tail) 0 x = x :: tail
updateListAt (head :: tail) i x = head :: (updateListAt tail (i - 1) x)
However, both the runtime and space complexity will be O(n) in both the average and worst cases, regardless of the method used. This is a consequence of Elm's List being a single-linked list.
Regarding assoc-in, if you look at the Clojure source, you'll see that assoc-in is just recursively defined in terms of assoc. However, I think you'd have trouble typing it for arbitrary, dynamic depth in Elm.

How can we denote list of tuples in argument

In sml, we define lists of integers or strings as arguments by l::ls which helps us to define lists of arbitrary length and then we can compare with = or > or <. How can we denote tuples in similar manner?
e.g.
I can write,
fun delete(x,l::ls)=if x=l then delete(x,ls) else l::delete(x,ls)
how can I write similarly for tuples?
Note, I even need to compare the individual elements of the tuple: i.e. (a1,b1)>(a2,b2) if b1>b2 so some sortcut that can merely delete like above will not be sufficient.
Tons of Thank You.
You can do pattern matching directly on tuples using the usual form (x, y).
Your delete function works on any 'a list so it is correct for lists of tuples as well. Here is an example which filters a list based on the first values in tuples:
fun deleteByFirst(x0, []) = []
| deleteByFirst(x0, (x, y)::ls) =
if x = x0
then deleteByFirst(x0, ls)
else (x, y)::deleteByFirst(x0, ls)

SML: function with multiple outputs

I´m a newbie in SML and I´d like to update my function so that it has two outputs: a list AND 1 or 0. The function was proposed here: SML: Remove the entry from the List. It returns an updated list without a row that contains ´elem´.
fun removeElem elem myList = filter (fn x => x <> elem) myList
The function should return a new list AND 1, if a raw has been deleted. Otherwise, it should return an old list AND 0.
Any hint or example is highly appreciated. Thanks.
Note that all SML functions take a single input and return a single output. Instead, think of returning a tuple containing the new list and a flag indicating whether any elements were removed. One possibility is to use a couple of functions from the standard basis to test whether elem is in myList and build up a tuple consisting of that and the results from the filter shown in the question. The test might look like:
Option.isSome (List.find (fn x => x = elem) myList)
There are more concise ways to write that, but it shows the idea. Note that it returns a bool instead of an int; this is more precise, so I won't convert to the integers requested in the question.
A drawback of the above is that it requires traversing the list twice. To avoid that, consider the type that the function must return: a tuple of a list without elem and a flag showing whether any elems have been removed. We can then write a function that take a new value and a (valid) tuple, and returns a valid tuple. One possibility:
fun update(x, (acc, flag)) = if x = elem then (acc, true) else (x :: acc, flag)
We can then apply update to each element of myList one-by-one. Since we want the order of the list to stay the same, apart from the removed elements, we should work through myList from right to left, accumulating the results into an initially empty list. The function foldr will do this directly:
foldr update ([], false) myList
However, there is a lot of logic hidden in the foldr higher-order function.
To use this as a learning exercise, I'd suggest using this problem to implement the function in a few ways:
as a recursive function
as a tail-recursive function
using the higher order functions foldl and foldr
Understanding the differences between these versions will shed a lot of light on how SML works. For each version, let the types guide you.
As has been stated in some of your previous questions; Returning 0 or 1 as an indicator for what happened is a really bad design, as you don't get any guarantees from the types, whether or not you will get -42 as the result. Since you are working with a strongly typed language, you might as well use this to your advantage:
The most obvious thing to do instead would be to return a boolean, as that is actually what you are emulating with 0 and 1. In this case you could return the pair (true, modified_list) or (false, original_list).
Since you want to associate some data with the result, there is another -- perhaps, for some, less -- obvious thing to do; Return the result as an option, indication a change in the list as SOME modified_list and indication no change as NONE.
In either case you would have to "remember" whether or not you actually removed any elements from the original list, and thus you can't use the filter function. Instead you would have to do this for yourself using somewhat the same code as you originally posted.
One way would be like this
fun removeElem _ [] = (false, [])
| removeElem elem (x::xs) =
let
val (b, xs') = removeElem elem xs
in
if elem = x then
(true, xs')
else
(b, x::xs')
end
Another way would be to use a accumulator parameter to store the resulting list
fun removeElem elem xs =
let
fun removeElem' [] true res = SOME (rev res)
| removeElem' [] false _ = NONE
| removeElem' (x::xs) b res =
if elem = x then
removeElem' xs true res
else
removeElem' xs b (x::res)
in
removeElem' xs false []
end
Since the solution is being built in the reverse order, we reverse the result just before we return it. This makes sure that we don't have to use the costly append operation when adding elements to the result list: res # [x]

Recursive function that returns all values in list (In OCaml)

I need a function that recursively returns (not prints) all values in a list with each iteration. However, every time I try programming this my function returns a list instead.
let rec elements list = match list with
| [] -> []
| h::t -> h; elements t;;
I need to use each element each time it is returned in another function that I wrote, so I need these elements one at a time, but I can't figure this part out. Any help would be appreciated.
Your function is equivalent to :
let rec elements list =
match list with
| [] -> []
| h :: t -> elements t
This happens because a ; b evaluates a (and discards the result) and then evaluates and returns b. Obviously, this is in turn equivalent to:
let elements (list : 'a list) = []
This is not a very useful function.
Before you try solving this, however, please understand that Objective Caml functions can only return one value. Returning more than one value is impossible.
There are ways to work around this limitation. One solution is to pack all the values you wish to return into a single value: a tuple or a list, usually. So, if you need to return an arbitrary number of elements, you would pack them together into a list and have the calling code process that list:
let my_function () = [ 1 ; 2; 3; 4 ] in (* Return four values *)
List.iter print_int (my_function ()) (* Print four values *)
Another less frequent solution is to provide a function and call it on every result:
let my_function action =
action 1 ;
action 2 ;
action 3 ;
action 4
in
my_function print_int
This is less flexible, but arguably faster, than returning a list : lists can be filtered, sorted, stored...
Your question is kind of confusing - you want a function that returns all the values in a list. Well the easiest way of returning a variable number of values is using a list! Are you perhaps trying to emulate Python generators? OCaml doesn't have anything similar to yield, but instead usually accomplishes the same by "passing" a function to the value (using iter, fold or map).
What you have currently written is equivalent to this in Python:
def elements(list):
if(len(list) == 0):
return []
else:
list[0]
return elements(list[1:])
If you are trying to do this:
def elements(list):
if(len(list) > 0):
yield list[0]
# this part is pretty silly but elements returns a generator
for e in elements(list[1:]):
yield e
for x in elements([1,2,3,4,5]):
dosomething(x)
The equivalent in OCaml would be like this:
List.iter dosomething [1;2;3;4;5]
If you are trying to determine if list a is a subset of list b (as I've gathered from your comments), then you can take advantage of List.mem and List.for_all:
List.for_all (fun x -> List.mem x b) a
fun x -> List.mem x b defines a function that returns true if the value x is equal to any element in (is a member of) b. List.for_all takes a function that returns a bool (in our case, the membership function we just defined) and a list. It applies that function to each element in the list. If that function returns true for every value in the list, then for_all returns true.
So what we have done is: for all elements in a, check if they are a member of b. If you are interested in how to write these functions yourself, then I suggest reading the source of list.ml, which (assuming *nix) is probably located in /usr/local/lib/ocaml or /usr/lib/ocaml.