Clojure : Idiomatic (when (predicate x) x) - clojure

In the same way you can convert
(if (something)
something
fallback)
into the shorter version :
(or something fallback)
I was wondering if there is a composition function/elegant builtin for threading a value into the validation of a predicate like :
(when (pred x)
x)
Into something like
(thread-pred pred x)
I could easily build some function or macro to do it, but I'd rather not go NIH here.

It took me way longer than I care to admit - but here you go:
Beware this might explode.
(defmacro -pred->
[pred body]
`(when (~pred ~body) ~body))
(macroexpand-1 '(-pred-> odd? 3))
=> (clojure.core/when (odd? 3) 3)
(-pred-> odd? 3)
=> 3
(-pred-> odd? 2)
=> nil
EDIT: as the comments correctly pointed out it would be wiser to let-bind the body to an autogensym like so:
(defmacro -pred->
[pred body]
`(let [b# ~body]
(when (~pred b#) b#)))

Related

Unexpected behavior when using recur in a variadic function

I was writing an answer for this challenge, when I needed to give a recursive function an optional parameter. I ended up with something kind of equivalent to:
(defn func [a & [b?]]
(if b?
b?
(recur a a)))
My intent was for b? to act as an optional parameter. If it wasn't supplied, it would be defaulted to nil via destructuring.
Instead of running though, it gave me an error:
(func 1)
UnsupportedOperationException nth not supported on this type: Long clojure.lang.RT.nthFrom (RT.java:947)
After some debugging, I realized that for some reason the rest parameter wasn't a list as I'd expect, but just the passed number! The error was coming about because it tried to destructure the number.
I can fix it by getting rid of the wrapper list in the parameter list:
(defn func [a & b]
...
But this just looks wrong. I know the rest parameter should be a list, but b is actually just a number. If I use "unoptimized" recursion, it works as I'd expect:
(defn func2 [a & [b?]]
(if b?
b?
(func2 a a)))
(func2 1)
=> 1
Can anyone explain what's going on here?
This appears to be a known difference
; Note that recur can be surprising when using variadic functions.
(defn foo [& args]
(let [[x & more] args]
(prn x)
(if more (recur more) nil)))
(defn bar [& args]
(let [[x & more] args]
(prn x)
(if more (bar more) nil)))
; The key thing to note here is that foo and bar are identical, except
; that foo uses recur and bar uses "normal" recursion. And yet...
user=> (foo :a :b :c)
:a
:b
:c
nil
user=> (bar :a :b :c)
:a
(:b :c)
nil
; The difference arises because recur does not gather variadic/rest args
; into a seq.
It's the last comment that describes the difference.

Matching types with cond

Trying to find a more appropriate macro than cond to perform matching for predicate functions.
At the moment, I'm doing something like this:
(cond
(map? x) (do-map-code x)
(sequential? x) (do-seq-code x)
(keyword? x) (do-kw-code x)
:else (do-generic-code x))
In an ideal world, I'd like to apply data as the first argument for each of the left hand conditions, allowing me to write this instead.
(cond x
map? (do-map-code x)
sequential? (do-seq-code x)
keyword? (do-kw-code x)
:else (do-generic-code x))
Sort of like a backwards condp.
For reference, I know I could use condp with type and check against the type values. I just want to know whether this macro exists.
You can use condp to do this:
(condp #(%1 %2) x
map? (do-map-code x)
sequential? (do-seq-code x)
keyword? (do-kw-code x)
(do-generic-code x))

In clojure, how to map a sequence and create a hash-map

In clojure, I would like to apply a function to all the elements of a sequence and return a map with the results where the keys are the elements of the sequence and the values are the elements of the mapped sequence.
I have written the following function function. But I am wondering why such a function is not part of clojure. Maybe it's not idiomatic?
(defn map-to-object[f lst]
(zipmap lst (map f lst)))
(map-to-object #(+ 2 %) [1 2 3]) => {1 3, 2 4, 3 5}
Your function is perfectly idiomatic.
For a fn to be part of core, I think it has to be useful to most people. What is part of the core language and what is not is quite debatable. Just think about the amount of StringUtils classes that you can find in Java.
My comments were going to get too long winded, so...
Nothing wrong with your code whatsoever.
You might also see (into {} (map (juxt identity f) coll))
One common reason for doing this is to cache the results of a function over some inputs.
There are other use-cases for what you have done, e.g. when a hash-map is specifically needed.
If and only if #3 happens to be your use case, then memoize does this for you.
If the function is f, and the resultant map is m then (f x) and (m x) have the same value in the domain. However, the values of (m x) have been precalculated, in other words, memoized.
Indeed memoize does exactly the same thing behind the scene, it just doesn't give direct access to the map. Here's a tiny modification to the source of memoize to see this.
(defn my-memoize
"Exactly the same as memoize but the cache memory atom must
be supplied as an argument."
[f mem]
(fn [& args]
(if-let [e (find #mem args)]
(val e)
(let [ret (apply f args)]
(swap! mem assoc args ret)
ret))))
Now, to demonstrate
(defn my-map-to-coll [f coll]
(let [m (atom {})
g (my-memoize f m)]
(doseq [x coll] (g x))
#m))
And, as in your example
(my-map-to-coll #(+ 2 %) [1 2 3])
;=> {(3) 5, (2) 4, (1) 3}
But note that the argument(s) are enclosed in a sequence as memoize handles multiple arity functions as well.

Dealing with symbol resolution properly in macros

Say I want to make a Clojure macro that does the following:
If x is a list calling the function "bar"
return :foobar
else
return x as a string
However, bar is not defined; rather, it is only used internally in the macro, like so:
(foo (bar))
:foobar
(foo 1)
"1"
One could do something like this:
(defmacro foo [x]
(if (and (coll? x) (= (first x) 'bar))
:foobar
(str x)))
This works great for the (bar) case, as well as for literals. However, symbols do not work as intended, giving the symbol name instead of its associated value:
user=> (def y 2)
#'user/y
user=> (foo y)
"y"
One could call the eval function on x before passing it to str, but this causes problem when using the function in let:
user=> (let [a 3 b (foo a)] b)
java.lang.UnsupportedOperationException: Can't eval locals (NO_SOURCE_FILE:89)
Presumably, the problem has to do with symbol resolution, so maybe we try to work something out with syntax-quote:
(defmacro foo [x]
`(if (and (coll? '~x) (= (first '~x) '~'bar))
:foobar
(str ~x)))
Now, the problem is with (foo (bar)), as this expands the else clause to (clojure.core/str (bar)), which throws an exception, as bar is not defined. I then tried doing some shenanigans with eval:
(defmacro foo [x]
`(if (and (coll? '~x) (= (first '~x) '~'bar))
:foobar
(eval '(str ~x))))
But this doesn't work with let bindings again:
user=> (let [a 1 b (foo a)] b)
java.lang.Exception: Unable to resolve symbol: a in this context (NO_SOURCE_FILE:153)
So I'm really at a loss here. It seems as though fixing one problem breaks another. Is there a better, simpler way of making this macro such that it works in the following cases:
In let bindings
With (bar)
With symbols
P.S. If anybody is curious as to why I want to do this, I'm working on a DSL for Yahoo's YQL service and I want to be able to do things like (select (table :t) ...), but I need to be able to pass in symbols, as well as literals.
I believe this should work.
(defmacro foo [x]
(if (and (coll? x) (= (first x) 'bar))
:foobar
`(str ~x)))

Higher-order functions in Clojure

Clojure is awesome, we all know this, but that's not the point. I'm wondering what the idiomatic way of creating and managing higher-order functions in a Haskell-like way is. In Clojure I can do the following:
(defn sum [a b] (+ a b))
But (sum 1) doesn't return a function: it causes an error. Of course, you can do something like this:
(defn sum
([a] (partial + a))
([a b] (+ a b)))
In this case:
user=> (sum 1)
#<core$partial$fn__3678 clojure.core$partial$fn__3678#1acaf0ed>
user=> ((sum 1) 2)
3
But it doesn't seem like the right way to proceed. Any ideas?
I'm not talking about implementing the sum function, I'm talking at a higher level of abstraction. Are there any idiomatic patterns to follow? Some macro? Is the best way defining a macro or are there alternative solutions?
Someone has already implememented this on the Clojure group. You can specify how many args a function has, and it will curry itself for you until it gets that many.
The reason this doesn't happen by default in Clojure is that we prefer variadic functions to auto-curried functions, I suppose.
I've played a bit with the functions suggested by amalloy. I don't like the explicit specification of the number of argument to curry on. So I've created my custom macro. This is the old way to specific an high order function:
(defn-decorated old-sum
[(curry* 3)]
[a b c]
(+ a b c))
This is my new macro:
(defmacro defn-ho
[fn-name & defn-stuff]
(let [number-of-args (count (first defn-stuff))]
`(defn-decorated ~fn-name [(curry* ~number-of-args)] ~#defn-stuff)))
And this is the new implicit way:
(defn-ho new-sum [a b c] (+ a b c))
As you can see there is no trace of (curry) and other stuff, just define your currified function as before.
Guys, what do you think? Ideas? Suggestions?
Bye!
Alfedo
Edit: I've modified the macro according the amalloy issue about docstring. This is the updated version:
(defmacro defhigh
"Like the original defn-decorated, but the number of argument to curry on
is implicit."
[fn-name & defn-stuff]
(let [[fst snd] (take 2 defn-stuff)
num-of-args (if (string? fst) (count snd) (count fst))]
`(defn-decorated ~fn-name [(curry* ~num-of-args)] ~#defn-stuff)))
I don't like the if statement inside the second binding. Any ideas about making it more succint?
This will allow you to do what you want:
(defn curry
([f len] (curry f len []))
([f len applied]
(fn [& more]
(let [args (concat applied (if (= 0 (count more)) [nil] more))]
(if (< (count args) len)
(curry f len args)
(apply f args))))))
Here's how to use it:
(def add (curry + 2)) ; read: curry plus to 2 positions
((add 10) 1) ; => 11
The conditional with the [nil] is meant to ensure that every application ensures some forward progress to the curried state. There's a long explanation behind it but I have found it useful. If you don't like this bit, you could set args as:
[args (concat applied more)]
Unlike JavaScript we have no way of knowing the arity of the passed function and so you must specify the length you expect. This makes a lot of sense in Clojure[Script] where a function may have multiple arities.