PovRay conversion - file-conversion

According to my recollection, once an object or a scene was described in PovRay, there was no other output than the rendering generated. In other words, once exported into *.pov, you were no longer able to convert it into an other 3D file format.
Hence I was very surprised to learn about pov2mesh that aims to generate a point cloud, thanks to meshlab eventually suitable for 3D printing.
As I have a number of scenes defined only as *.pov describing molecules (so, spheres and sticks) and colour encoded molecular surfaces from computation, I wonder if there were a way to convert / rewrite such a scene into a format like vrml 2.0, preserving both shape and colour of them.
Performing the computation again and saving the result straight ahead as vrml is not an option, as beside binary output understood by the software, the choice to save the results is either *.png, or *.pov.
Or is there a povray editor, that is able to understand a *.pov produced by other software, and offeres to export the scene in *.vrml (or a different 3D file format)?

I don't think there is an editor that converts from .pov to .vrml, but both formats are text based. Since your pov file is only made out of sphere and cylinders you could convert it by hand, or write a simple program to do it for you. Here is a red sphere in Povray (http://www.povray.org/documentation/view/3.6.2/283/)
sphere{
<0, 0, 0>, 1
pigment{
color rgb <1, 0, 0>
}
}
I don't know much about vrml but this should be the equivalent (found here: https://www.siggraph.org/special-projects/com97/vrmlexample1.html)
Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.0 0.0
transparency 0.0
}
}
geometry Sphere {
radius 1.0
}
}

Related

How to multiply two images with different encoding

I have two textures map, one albedo and another ambient occlusion. The albedo one is srgb encoded .jpg whereas the ambient occlusion is linear encoded .jpg.
Now, I want to load these two images (preferably in node.js) and multiply their rgb values evenly(0.5 weight) and output the image in .jpg format with sRGB encoding.
I tried to simply read and write a linear encoded normal map using the sharp library(npm, node.js) as a test, with the following code, but the output image looks slightly darker now.
import sharp from 'sharp';
const img = sharp('assets/normal.jpg');
const processedImg = img
.resize(1024)
.jpeg({ quality: 100 });
processedImg.toFile('assets/__normal.jpg');
Even, the metadata() function on the image says the image is in srgb space, but I had exported the maps from Quixel Bridge and I know that those are linear encoded, still the metadata returns that they are in srgb space.
I can't find any hints from the sharp.js documentation on how to force change the input file encodings.
Basically, I want to replicate this operation in blender, but using code in node.js or c++.
I can use some other library, if recommened.
I am even open to c or c++ solutions if it can't be done in nodejs or gets complicated.
Thank you in advance.
Well I found out a trick with which we can trick sharp to work with linear encodings.
So, we know that our file is linear encoded. But since it has no metadata, sharp assumes it to be sRGB encoded. So what can we do? Hmm..
sharp(ifile)
.pipelineColourspace('srgb')
.toColourspace('srgb')
.toBuffer();
We say to sharp that please while processing our file don't gamma correct our linear encoded file(i.e. sharp would think its sRGB, and would have applied gamma correction) to linear (which it normally does), but instead work with supposedly ``sRGB(i.e. linear```) values.
.pipelineColourspace('srgb') tells sharp to do the image-processing with sRGB values, and since sharp wrongly assumed that our file is sRGB, it doesn't gamma correct our file, cause it thinks it already in the required format.
.toColourspace('srgb') tells sharp to output the iamge as srgb values, now again since to sharp our pipeline was sRGB it doesnt gamma correct it again, and just simply spits the buffer received from pipeline.
This way we tell sharp to avoid applying gamma correction on our image. Cool.
Now lets answer the whole question, on how to multiply srgb albedo, linear ao, and output to a sRGB image.
export const multiplyTexture = async (albedo: Buffer, ao: Buffer) => {
return sharp(albedo)
.pipelineColorspace('linear')
.composite([
{
input: await sharp(ao)
.pipelineColourspace('srgb')
.toColourspace('srgb')
.toBuffer(),
blend: 'multiply',
gravity: 'center',
},
])
.toColorspace('srgb')
.toBuffer();
};

Do I need to gamma correct the final color output on a modern computer/monitor

I've been under the assumption that my gamma correction pipeline should be as follows:
Use sRGB format for all textures loaded in (GL_SRGB8_ALPHA8) as all art programs pre-gamma correct their files. When sampling from a GL_SRGB8_ALPHA8 texture in a shader OpenGL will automatically convert to linear space.
Do all lighting calculations, post processing, etc. in linear space.
Convert back to sRGB space when writing final color that will be displayed on the screen.
Note that in my case the final color write involves me writing from a FBO (which is a linear RGB texture) to the back buffer.
My assumption has been challenged as if I gamma correct in the final stage my colors are brighter than they should be. I set up for a solid color to be drawn by my lights of value { 255, 106, 0 }, but when I render I get { 255, 171, 0 } (as determined by print-screening and color picking). Instead of orange I get yellow. If I don't gamma correct at the final step I get exactly the right value of { 255, 106, 0 }.
According to some resources modern LCD screens mimic CRT gamma. Do they always? If not, how can I tell if I should gamma correct? Am I going wrong somewhere else?
Edit 1
I've now noticed that even though the color I write with the light is correct, places where I use colors from textures are not correct (but rather far darker as I would expect without gamma correction). I don't know where this disparity is coming from.
Edit 2
After trying GL_RGBA8 for my textures instead of GL_SRGB8_ALPHA8, everything looks perfect, even when using the texture values in lighting computations (if I half the intensity of the light, the output color values are halfed).
My code is no longer taking gamma correction into account anywhere, and my output looks correct.
This confuses me even more, is gamma correction no longer needed/used?
Edit 3 - In response to datenwolf's answer
After some more experimenting I'm confused on a couple points here.
1 - Most image formats are stored non-linearly (in sRGB space)
I've loaded a few images (in my case both .png and .bmp images) and examined the raw binary data. It appears to me as though the images are actually in the RGB color space, as if I compare the values of pixels with an image editing program with the byte array I get in my program they match up perfectly. Since my image editor is giving me RGB values, this would indicate the image stored in RGB.
I'm using stb_image.h/.c to load my images and followed it all the way through loading a .png and did not see anywhere that it gamma corrected the image while loading. I also examined the .bmps in a hex editor and the values on disk matched up for them.
If these images are actually stored on disk in linear RGB space, how am I supposed to (programatically) know when to specify an image is in sRGB space? Is there some way to query for this that a more featured image loader might provide? Or is it up to the image creators to save their image as gamma corrected (or not) - meaning establishing a convention and following it for a given project. I've asked a couple artists and neither of them knew what gamma correction is.
If I specify my images are sRGB, they are too dark unless I gamma correct in the end (which would be understandable if the monitor output using sRGB, but see point #2).
2 - "On most computers the effective scanout LUT is linear! What does this mean though?"
I'm not sure I can find where this thought is finished in your response.
From what I can tell, having experimented, all monitors I've tested on output linear values. If I draw a full screen quad and color it with a hard-coded value in a shader with no gamma correction the monitor displays the correct value that I specified.
What the sentence I quoted above from your answer and my results would lead me to believe is that modern monitors output linear values (i.e. do not emulate CRT gamma).
The target platform for our application is the PC. For this platform (excluding people with CRTs or really old monitors), would it be reasonable to do whatever your response to #1 is, then for #2 to not gamma correct (i.e. not perform the final RGB->sRGB transformation - either manually or using GL_FRAMEBUFFER_SRGB)?
If this is so, what are the platforms on which GL_FRAMEBUFFER_SRGB is meant for (or where it would be valid to use it today), or are monitors that use linear RGB really that new (given that GL_FRAMEBUFFER_SRGB was introduced 2008)?
--
I've talked to a few other graphics devs at my school and from the sounds of it, none of them have taken gamma correction into account and they have not noticed anything incorrect (some were not even aware of it). One dev in particular said that he got incorrect results when taking gamma into account so he then decided to not worry about gamma. I'm unsure what to do in my project for my target platform given the conflicting information I'm getting online/seeing with my project.
Edit 4 - In response to datenwolf's updated answer
Yes, indeed. If somewhere in the signal chain a nonlinear transform is applied, but all the pixel values go unmodified from the image to the display, then that nonlinearity has already been pre-applied on the image's pixel values. Which means, that the image is already in a nonlinear color space.
Your response would make sense to me if I was examining the image on my display. To be sure I was clear, when I said I was examining the byte array for the image I mean I was examining the numerical value in memory for the texture, not the image output on the screen (which I did do for point #2). To me the only way I could see what you're saying to be true then is if the image editor was giving me values in sRGB space.
Also note that I did try examining the output on monitor, as well as modifying the texture color (for example, dividing by half or doubling it) and the output appeared correct (measured using the method I describe below).
How did you measure the signal response?
Unfortunately my methods of measurement are far cruder than yours. When I said I experimented on my monitors what I meant was that I output solid color full screen quad whose color was hard coded in a shader to a plain OpenGL framebuffer (which does not do any color space conversion when written to). When I output white, 75% gray, 50% gray, 25% gray and black the correct colors are displayed. Now here my interpretation of correct colors could most certainly be wrong. I take a screenshot and then use an image editing program to see what the values of the pixels are (as well as a visual appraisal to make sure the values make sense). If I understand correctly, if my monitors were non-linear I would need to perform a RGB->sRGB transformation before presenting them to the display device for them to be correct.
I'm not going to lie, I feel I'm getting a bit out of my depth here. I'm thinking the solution I might persue for my second point of confusion (the final RGB->sRGB transformation) will be a tweakable brightness setting and default it to what looks correct on my devices (no gamma correction).
First of all you must understand that the nonlinear mapping applied to the color channels is often more than just a simple power function. sRGB nonlinearity can be approximated by about x^2.4, but that's not really the real deal. Anyway your primary assumptions are more or less correct.
If your textures are stored in the more common image file formats, they will contain the values as they are presented to the graphics scanout. Now there are two common hardware scenarios:
The scanout interface outputs a linear signal and the display device will then internally apply a nonlinear mapping. Old CRT monitors were nonlinear due to their physics: The amplifiers could put only so much current into the electron beam, the phosphor saturating and so on – that's why the whole gamma thing was introduced in the first place, to model the nonlinearities of CRT displays.
Modern LCD and OLED displays either use resistor ladders in their driver amplifiers, or they have gamma ramp lookup tables in their image processors.
Some devices however are linear, and ask the image producing device to supply a proper matching LUT for the desired output color profile on the scanout.
On most computers the effective scanout LUT is linear! What does this mean though? A little detour:
For illustration I quickly hooked up my laptop's analogue display output (VGA connector) to my analogue oscilloscope: Blue channel onto scope channel 1, green channel to scope channel 2, external triggering on line synchronization signal (HSync). A quick and dirty OpenGL program, deliberately written with immediate mode was used to generate a linear color ramp:
#include <GL/glut.h>
void display()
{
GLuint win_width = glutGet(GLUT_WINDOW_WIDTH);
GLuint win_height = glutGet(GLUT_WINDOW_HEIGHT);
glViewport(0,0, win_width, win_height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, 1, 0, 1, -1, 1);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glBegin(GL_QUAD_STRIP);
glColor3f(0., 0., 0.);
glVertex2f(0., 0.);
glVertex2f(0., 1.);
glColor3f(1., 1., 1.);
glVertex2f(1., 0.);
glVertex2f(1., 1.);
glEnd();
glutSwapBuffers();
}
int main(int argc, char *argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
glutCreateWindow("linear");
glutFullScreen();
glutDisplayFunc(display);
glutMainLoop();
return 0;
}
The graphics output was configured with the Modeline
"1440x900_60.00" 106.50 1440 1528 1672 1904 900 903 909 934 -HSync +VSync
(because that's the same mode the flat panel runs in, and I was using cloning mode)
gamma=2 LUT on the green channel.
linear (gamma=1) LUT on the blue channel
This is how the signals of a single scanout line look like (upper curve: Ch2 = green, lower curve: Ch1 = blue):
You can clearly see the x⟼x² and x⟼x mappings (parabola and linear shapes of the curves).
Now after this little detour we know, that the pixel values that go to the main framebuffer, go there as they are: The OpenGL linear ramp underwent no further changes and only when a nonlinear scanout LUT was applied it altered the signal sent to the display.
Either way the values you present to the scanout (which means the on-screen framebuffers) will undergo a nonlinear mapping at some point in the signal chain. And for all standard consumer devices this mapping will be according to the sRGB standard, because it's the smallest common factor (i.e. images represented in the sRGB color space can be reproduced on most output devices).
Since most programs, like webbrowsers assume the output to undergo a sRGB to display color space mapping, they simply copy the pixel values of the standard image file formats to the on-screen frame as they are, without performing a color space conversion, thereby implying that the color values within those images are in sRGB color space (or they will often merely convert to sRGB, if the image color profile is not sRGB); the correct thing to do (if, and only if the color values written to the framebuffer are scanned out to the display unaltered; assuming that scanout LUT is part of the display), would be conversion to the specified color profile the display expects.
But this implies, that the on-screen framebuffer itself is in sRGB color space (I don't want to split hairs about how idiotic that is, lets just accept this fact).
How to bring this together with OpenGL? First of all, OpenGL does all it's color operations linearly. However since the scanout is expected to be in some nonlinear color space, this means, that the end result of the rendering operations of OpenGL somehow must be brougt into the on-screen framebuffer color space.
This is where the ARB_framebuffer_sRGB extension (which went core with OpenGL-3) enters the picture, which introduced new flags used for the configuration of window pixelformats:
New Tokens
Accepted by the <attribList> parameter of glXChooseVisual, and by
the <attrib> parameter of glXGetConfig:
GLX_FRAMEBUFFER_SRGB_CAPABLE_ARB 0x20B2
Accepted by the <piAttributes> parameter of
wglGetPixelFormatAttribivEXT, wglGetPixelFormatAttribfvEXT, and
the <piAttribIList> and <pfAttribIList> of wglChoosePixelFormatEXT:
WGL_FRAMEBUFFER_SRGB_CAPABLE_ARB 0x20A9
Accepted by the <cap> parameter of Enable, Disable, and IsEnabled,
and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
and GetDoublev:
FRAMEBUFFER_SRGB 0x8DB9
So if you have a window configured with such a sRGB pixelformat and enable sRGB rasterization mode in OpenGL with glEnable(GL_FRAMEBUFFER_SRGB); the result of the linear colorspace rendering operations will be transformed in sRGB color space.
Another way would be to render everything into an off-screen FBO and to the color conversion in a postprocessing shader.
But that's only the output side of rendering signal chain. You also got input signals, in the form of textures. And those are usually images, with their pixel values stored nonlinearly. So before those can be used in linear image operations, such images must be brought into a linear color space first. Lets just ignore for the time being, that mapping nonlinear color spaces into linear color spaces opens several of cans of worms upon itself – which is why the sRGB color space is so ridiculously small, namely to avoid those problems.
So to address this an extension EXT_texture_sRGB was introduced, which turned out to be so vital, that it never went through being ARB, but went straight into the OpenGL specification itself: Behold the GL_SRGB… internal texture formats.
A texture loaded with this format undergoes a sRGB to linear RGB colorspace transformation, before being used to source samples. This gives linear pixel values, suitable for linear rendering operations, and the result can then be validly transformed to sRGB when going to the main on-screen framebuffer.
A personal note on the whole issue: Presenting images on the on-screen framebuffer in the target device color space IMHO is a huge design flaw. There's no way to do everything right in such a setup without going insane.
What one really wants is to have the on-screen framebuffer in a linear, contact color space; the natural choice would be CIEXYZ. Rendering operations would naturally take place in the same contact color space. Doing all graphics operations in contact color spaces, avoids the opening of the aforementioned cans-of-worms involved with trying to push a square peg named linear RGB through a nonlinear, round hole named sRGB.
And although I don't like the design of Weston/Wayland very much, at least it offers the opportunity to actually implement such a display system, by having the clients render and the compositor operate in contact color space and apply the output device's color profiles in a last postprocessing step.
The only drawback of contact color spaces is, that there it's imperative to use deep color (i.e. > 12 bits per color channel). In fact 8 bits are completely insufficient, even with nonlinear RGB (the nonlinearity helps a bit to cover up the lack of perceptible resolution).
Update
I've loaded a few images (in my case both .png and .bmp images) and examined the raw binary data. It appears to me as though the images are actually in the RGB color space, as if I compare the values of pixels with an image editing program with the byte array I get in my program they match up perfectly. Since my image editor is giving me RGB values, this would indicate the image stored in RGB.
Yes, indeed. If somewhere in the signal chain a nonlinear transform is applied, but all the pixel values go unmodified from the image to the display, then that nonlinearity has already been pre-applied on the image's pixel values. Which means, that the image is already in a nonlinear color space.
2 - "On most computers the effective scanout LUT is linear! What does this mean though?
I'm not sure I can find where this thought is finished in your response.
This thought is elaborated in the section that immediately follows, where I show how the values you put into a plain (OpenGL) framebuffer go directly to the monitor, unmodified. The idea of sRGB is "put the values into the images exactly as they are sent to the monitor and build consumer displays to follow that sRGB color space".
From what I can tell, having experimented, all monitors I've tested on output linear values.
How did you measure the signal response? Did you use a calibrated power meter or similar device to measure the light intensity emitted from the monitor in response to the signal? You can't trust your eyes with that, because like all our senses our eyes have a logarithmic signal response.
Update 2
To me the only way I could see what you're saying to be true then is if the image editor was giving me values in sRGB space.
That's indeed the case. Because color management was added to all the widespread graphics systems as an afterthought, most image editors edit pixel values in their destination color space. Note that one particular design parameter of sRGB was, that it should merely retroactively specify the unmanaged, direct value transfer color operations as they were (and mostly still are done) done on consumer devices. Since there happens no color management at all, the values contained in the images and manipulated in editors must be in sRGB already. This works for so long, as long images are not synthetically created in a linear rendering process; in case of the later the render system has to take into account the destination color space.
I take a screenshot and then use an image editing program to see what the values of the pixels are
Which gives you of course only the raw values in the scanout buffer without the gamma LUT and the display nonlinearity applied.
I wanted to give a simple explanation of what went wrong in the initial attempt, because although the accepted answer goes in-depth on colorspace theory, it doesn't really answer that.
The setup of the pipeline was exactly right: use GL_SRGB8_ALPHA8 for textures, GL_FRAMEBUFFER_SRGB (or custom shader code) to convert back to sRGB at the end, and all your intermediate calculations will be using linear light.
The last bit is where you ran into trouble. You wanted a light with a color of (255, 106, 0) - but that's an sRGB color, and you're working with linear light. To get the color you want, you need to convert that color to the linear space, the same way that GL_SRGB8_ALPHA8 is doing for your textures. For your case, this would be a vec3 light with intensity (1, .1441, 0) - this is the value after applying gamma-compression.

Kinect 3D to 2D bias

I am struggling with the interpretation of kinect depth data.
In order to obtain real world distance from kinect, i used the following formula :
if(i<2047){
depthToMeterTable[i] = i * -0.0030711016 + 3.3309495161;
}
else{
depthToMeterTable[i] = 0;
}
This formula gives something pretty good as a distance estimator.
However i do obtain strange output from a 90° wall corner visualisation.
On the following image is two different information. First, the violet lines represent the wall as i SHOULD see it. A 90° corner. The red dots represent the wall seen from the kinect. As you can see, the angle of the two planes is now bigger.
http://img843.imageshack.us/img843/4061/kinectbias.jpg
Do you have any idea where i could correct this bias, and how to do it ?
Thank you for reading,
Al_th
I'm not familiar with that conversion formula (also not sure how your depthToMeterTable gets filled - what formula is used there).
There's a built-in function in libfreenect for that though: freenect_camera_to_world
Before that utility function was added I used Matt Fischer's conversion functions(RawDepthToMeters and DepthToWorld).
HTH

C++ - Image Conversion

I am new to C++ and would like to know how to read in a .jpg image and then convert it to binary (black and white/bi-level/two-level)?
Thank you.
Your better choice is probably boost Gil.
Boost libraries are not especially for beginner, but they are often well designed.
#include <boost/gil/image.hpp>
#include <boost/gil/typedefs.hpp>
#include <boost/gil/extension/io/jpeg_io.hpp>
int main() {
using namespace boost::gil;
rgb8_image_t img;
jpeg_read_image("test.jpg",img);
gray8s_view_t view(img.dimensions());
color_converted_view<gray8_pixel_t>(const_view(img), view);
jpeg_write_view("grey.jpg", view);
}
You can use DevIL to read the image. It supports a lot of different formats.
To convert it to pure black and white, you then go through the whole image data and compute the intensity or light contribution of each pixel and if it falls below a certain threshold you'll output a black pixel otherwise a white pixel.
You could do it as simply as check the RGB-values of each pixel against a threshold of RGB(0.5, 0.5, 0.5). But you might get better results if you convert the image to HSI and use the intensity value for each pixel, but that's more work.
There is the option for libpng, which as been used on many projects. For additional reading on how to write a grayscale image, take a look at this chapter from their website.

Cement Effect - Artistic Effect

I wish to give an effect to images, where the resultant image would appear as if it is painted on a rough cemented background, and the cemented background customizes itself near the edges to highlight them... Please help me in writing an algorithm to generate such an effect.
The first image is the original image
and the second image is the output im looking for.
please note the edges are detected and the mask changes near the edges to indicate the edges clearly
You need to read up on Bump Mapping. There are plenty of bump mapping algorithms.
The basic algorithm is:
for each pixel
Look up the position on the bump map texture that corresponds to the position on the bumped image.
Calculate the surface normal of the bump map
Add the surface normal from step 2 to the geometric surface normal (in case of an image it's a vector pointing up) so that the normal points in a new direction.
Calculate the interaction of the new 'bumpy' surface with lights in the scene using, for example, Phong shading -- light placement is up to you, and decides where will the shadows lie.
Finally, here's a plain C implementation for 2D images.
Starting with
1) the input image as R, G, B, and
2) a texture image, grayscale.
The images are likely in bytes, 0 to 255. Divide it by 255.0 so we have them as being from 0.0 to 1.0. This makes the math easier. For performance, you wouldn't actually do this but instead use clever fixed-point math, an implementation matter I leave to you.
First, to get the edge effects between different colored areas, add or subtract some fraction of the R, G, and B channels to the texture image:
texture_mod = texture - 0.2*R - 0.3*B
You could get fancier with with nonlinear forumulas, e.g. thresholding the R, G and B channels, or computing some mathematical expression involving them. This is always fun to experiment with; I'm not sure what would work best to recreate your example.
Next, compute an embossed version of texture_mod to create the lighting effect. This is the difference of the texture slid up and right one pixel (or however much you like), and the same texture slid. This give the 3D lighting effect.
emboss = shift(texture_mod, 1,1) - shift(texture_mod, -1, -1)
(Should you use texture_mod or the original texture data in this formula? Experiment and see.)
Here's the power step. Convert the input image to HSV space. (LAB or other colorspaces may work better, or not - experiment and see.) Note that in your desired final image, the cracks between the "mesas" are darker, so we will use the original texture_mod and the emboss difference to alter the V channel, with coefficients to control the strength of the effect:
Vmod = V * ( 1.0 + C_depth * texture_mod + C_light * emboss)
Both C_depth and C_light should be between 0 and 1, probably smaller fractions like 0.2 to 0.5 or so. You will need a fudge factor to keep Vmod from overflowing or clamping at its maximum - divide by (1+C_depth+C_light). Some clamping at the bright end may help the highlights look brighter. As always experiment and see...
As fine point, you could also modify the Saturation channel in some way, perhaps decreasing it where texture_mod is lower.
Finally, convert (H, S, Vmod) back to RGB color space.
If memory is tight or performance critical, you could skip the HSV conversion, and apply the Vmod formula instead to the individual R,G, B channels, but this will cause shifts in hue and saturation. It's a tradeoff between speed and good looks.
This is called bump mapping. It is used to give a non flat appearance to a surface.