interactive brokers api lagging behind tws when using 100 symbols - c++

I haven't been having this problem until I started putting more symbols up on my screeen. I don't think it's a processing thing, my cpu has been fine and I'm not doing anything super super fancy anyways (just storing data to objects and writing to txt files every so often).
From day 1 with the api, I noticed that I had to put a sleep(1) in the while loop that constantly checks for messages, like so:
PosixTestClient client;
client.connect( host, port, clientId);
while( client.isConnected()) {
sleep(1);
client.processMessages();
}
If I don't have that sleep(1) there, it just crashes. So I guess my first question is: is that normal? Or is something wrong with that?
And my next question is... any tips as to why there might be a lag in the api data as compared to the tws data? I know there's a lag because as the data comes into the api, I'm storing it to strings and then every minute writing the data to text files. Then I go back through my text files and compare it to the charts in tws... and I notice there's about a 2min lag! I also notice it seems to get better (the lag goes away) after the first half hour of the trading day, when things are pretty active.
So... any advice?

Do you have subscribed Booster pack?
TWS API has 100 quotes limit, as well as API. You can buy additional 100 quotes for 30$.
Quote Booster
Increase your allowance of simultaneous quotes windows by purchasing monthly Quote Booster packs at USD 30.00 per pack.
Each booster pack provides 100 simultaneous Level I quotes. Booster Pack quotes are additional to your monthly quote allotment from all sources, including commissions.
Booster pack quotes are available for use in the desktop systems and in the API.
Once subscribed, quotes are available immediately and will display the next time you log into the system.
Data from a cancelled booster pack subscription remains available through the end of the current billing cycle.
Limit of 10 Quote Booster packs per account.

So... with the help of the very helpful and friendly yahoo TWS API users group: https://groups.io/g/twsapi/messages
I was able to find the answer, which was simply:
reduce the sleep time! Running it with no sleep in between the client.proccessMessages() would cause my cpu to run pretty high, but all I needed to really relax cpu was to just sleep for a milisecond... not a whole second. Sleeping for a whole second was causing a lag in data (I suspect that IB ques the data and then 'sends' it to you when you call proccessMessages(), so you need to call that often enough to stay ahead of the tick data you are receiving!)
For anyone who wants to read it in more detail, here was the thread: https://groups.io/g/twsapi/topic/4702705#37186
Fingers crossed that it continues to work, but today I got good data on 100 high-volume tickers with no lag :)

Related

Optimizing / speeding up calculation time in Google Sheets

I have asked a few questions related to this personal project of mine already on this platform, and this should be the last one since I am so close to finishing. Below is the link to a mock example spreadsheet I've created, which mimics what my actual project does but it contains less sensitive information and is also smaller in size.
Mock Spreadsheet
Basic rundown of the spreadsheet:
Pulls data from a master schedule which is controlled/edited by another party into the Master Schedule tab.
In the columns adjacent to the imported data, an array formula expands the master schedule by classroom in case some of the time slots designate multiple rooms. Additional formulas adjust the date, start time, and end time to be capped within the current day's 24-hour period. The start time of each class is also made to be an hour earlier.
In the Room Schedule tab, an hourly calendar is created based on the room number in the first column, and only corresponds to the current day.
I have tested the spreadsheet extensively with multiple scenarios, and I'm happy with how everything works except for the calculation time. I figured the two volatile functions I use would take some processing time just by themselves, and I certainly didn't expect this to be lightning-fast especially without using a script, but the project that I am actually implementing this method for is much larger and takes a very long time to update. The purpose of this spreadsheet is to allow users to find an open room and "reserve" it by clicking the checkbox next to it (which will consequently color the entire row red) allowing everyone else to know that it is now taken.
I'd like to know if there is any way to optimize / speed up my spreadsheet, or to not update it every time a checkbox is clicked and instead update it "manually", similar to what OP is asking here. I am not familiar with Apps Script nor am I well-versed in writing code overall, but I am willing to learn - I just need a push in the right direction since I am going into this blind. I know the number of formulas in the Room Schedule tab is probably working against me yet I am so close to what I wanted the final product to be, so any help or insight is greatly appreciated!
Feel free to ask any questions if I didn't explain this well enough.
to speed up things you should avoid usage of the same formulae per each row and make use of arrayformulas. for example:
=IF(AND(TEXT(K3,"m/d")<>$A$1,(M3-L3)<0),K3+1,K3+0)
=ARRAYFORMULA(IF(K3:K<>"",
IF((TEXT(K3:K, "m/d")<>$A$1)*((M3:M-L3:L)<0), K3:K+1, K3:K+0), ))
=IF(AND(TEXT(K3,"m/d")=$A$1,(M3-L3)<0),TIMEVALUE("11:59:59 PM"),M3+0)
=ARRAYFORMULA(IF(K3:K<>"",
IF((TEXT(K3,"m/d")=$A$1)*((M3-L3)<0), TIMEVALUE("11:59:59 PM"), M3:M+0), ))

Restful API optimization to get huge data

I have a page for listing categories. There are parameters under categories and sub-parameters under parameters and data is huge.
Recently I developed and tested the same. It is taking a lot of time and the performance is severely hit. Because there are about 1600 API calls(API calls to fetch the data for each of the categories, parameters & sub-parameters) for that single page. I have two questions.
1) Which way is effective? a or b?
a) I have an API to get data for a parameter, so that I can make use of this call 1600 times to get data for all categories/parameters/sub-parameters.
b) Have one call to get all parameters/parameters/sub-parameters data
2) Does AWS charge based on number of the calls? For example, having one call to get data in one shot is cheaper than 1600 calls to get data for each of categories and parameters.
If I recall correctly AWS charges you on CPU active time, so basically whenever somebody calls the API, or any computation is being done on whatever you are hosting there.
For your other question I believe A) would be the better choice as it will reduce the load slightly (what I mean by this, is that there will be less computation but more frequently, which overall will speed up the whole process, since you will be splitting up the big data into smaller chunks) and will possibly not make a traffic congestion if many people are requesting at the same time.
Hope this helps!
I think this depends on several factors. Overall A is probably the better option as the data transferred stays the same in both models. Therefore the load and processing power is very similar. In A you have the advantage of the spread of the risk (if one package get´s lost only few information gets lost) and probably better speed with the processor as it only needs to handle very small packages.
To answer your second question: I guess your using API Gateway? Here is the pricing sheet. You pay a fixed amount for 1M calls (in USA 3,50$) and you pay separate for the cache and the data transfer. So I guess you need to calculate yourself what would be cheaper for you.

Mailgun: algorithm for event polling

We are implementing support for tracking of Mailgun events in our application. We reviewed the proposed event polling algorithm but find ourselves not quite comfortable with it. First, we would prefer not to discard the data that we have already fetched and then retry from scratch after a pause. It is not very efficient and leaves a door open for a long loop of retries, as it is not clear when the loop is supposed to end. Second, the "threshold age" seems to be the key to determine "trustworthiness", but its value is not defined, only a very large "half an hour" is suggested.
It is our understanding that the events become "trustworthy" after some threshold delay, let us call it D_max, when the events are guaranteed to reside in the event storage. If so, we can implement this algorithm in a different way, so that we do not fetch the data that we know are not "trustworthy" and make use of all data which have been fetched.
We would be fetching data periodically, and on each iteration we would:
Make a request to the events API specifying an ascending time range from T_1 to T_2 = now() - D_max. For the first iteration, T_1 can be set to some time in the past, "e.g., half an hour ago". For the subsequent iterations, T_1 is set to the value of T_2 from the previous iteration.
Fetch all pages one by one while the next page URL is returned.
Use all fetched events, as they are all "trustworthy".
My questions are:
Q1: Are there any problems with this approach?
Q2: What is the minimum realistic value of D_max? Obviously, we can use "half an hour" for it, but we would like to be more agile in tracking events, so it would be great to know what is the minimum value we can set it to and still reliably fetch all events.
Thanks!
1: I see no problems with this solution (in fact I'm doing something very similar). I'm also storing ID's of the events to validate I'm not inserting duplicate entries.
2: I've been working through this similar process. Right now I am testing with D_max at 10 minutes.
Additionally, While going through a testing process I'm running an additional task nightly that goes back over the entire day to validate a few things:
Am I missing existing metrics?
Diagnose if there is a problem with the assumptions I've made about D_max.

Amount of Test Data needed for load testing of a web service

I am currently working on a project that requires load testing of web services.
One of the services is being called 60,000 times in the production during Busy-Day/Busy-HR.
{PerfTest Env=PROD}
Input Account Number
Output AccountDetails
Do I really need 60,000 unique account numbers(TEST DATA) for this loadrunner script to simulate the production scenario?
If unique data is required, for endurance test I will have to prepare lot of test data for each web service.
If I don't get that much test data, what is the chance of Load Test being affected due to Application Server Cache mechanism??
Can somebody help me?
Thanks
Ram
Are you simulating a day or the highest volume hour in the last year? This can help you to shape the amount of data that you need. Rarely would you start with a 24 hour test. Instead you would be looking at your high water test of an hour with a ramp up and ramp down, so you would need approximately 1.333* your high water hour's worth of data.
So this can drop your 60K to (potentially) 20K(?) I am making an assumption that your worst hour over the last year is somewhere around 1/3 of your traditional day. I have observed this pattern over and over again in different environments over the past two decades. You will want to objectively verify this with log data or query data to support the number in your environment.
Next up, how many of these inquiries are actually unique? You are really going to need a log of the queries across a day (or your high water hour) to determine this. Log processing tools such as Microsoft Logparser or Splunk/Splunk Storm can help you to pull the observed distribution of unique account references within your data, including counts of those which are multiple. Once you know this you can simply use a data file with a fixed block size for each user for unique data and once the data is exhausted the user exits.

Amazon SimpleDB Woes: Implementing counter attributes

Long story short, I'm rewriting a piece of a system and am looking for a way to store some hit counters in AWS SimpleDB.
For those of you not familiar with SimpleDB, the (main) problem with storing counters is that the cloud propagation delay is often over a second. Our application currently gets ~1,500 hits per second. Not all those hits will map to the same key, but a ballpark figure might be around 5-10 updates to a key every second. This means that if we were to use a traditional update mechanism (read, increment, store), we would end up inadvertently dropping a significant number of hits.
One potential solution is to keep the counters in memcache, and using a cron task to push the data. The big problem with this is that it isn't the "right" way to do it. Memcache shouldn't really be used for persistent storage... after all, it's a caching layer. In addition, then we'll end up with issues when we do the push, making sure we delete the correct elements, and hoping that there is no contention for them as we're deleting them (which is very likely).
Another potential solution is to keep a local SQL database and write the counters there, updating our SimpleDB out-of-band every so many requests or running a cron task to push the data. This solves the syncing problem, as we can include timestamps to easily set boundaries for the SimpleDB pushes. Of course, there are still other issues, and though this might work with a decent amount of hacking, it doesn't seem like the most elegant solution.
Has anyone encountered a similar issue in their experience, or have any novel approaches? Any advice or ideas would be appreciated, even if they're not completely flushed out. I've been thinking about this one for a while, and could use some new perspectives.
The existing SimpleDB API does not lend itself naturally to being a distributed counter. But it certainly can be done.
Working strictly within SimpleDB there are 2 ways to make it work. An easy method that requires something like a cron job to clean up. Or a much more complex technique that cleans as it goes.
The Easy Way
The easy way is to make a different item for each "hit". With a single attribute which is the key. Pump the domain(s) with counts quickly and easily. When you need to fetch the count (presumable much less often) you have to issue a query
SELECT count(*) FROM domain WHERE key='myKey'
Of course this will cause your domain(s) to grow unbounded and the queries will take longer and longer to execute over time. The solution is a summary record where you roll up all the counts collected so far for each key. It's just an item with attributes for the key {summary='myKey'} and a "Last-Updated" timestamp with granularity down to the millisecond. This also requires that you add the "timestamp" attribute to your "hit" items. The summary records don't need to be in the same domain. In fact, depending on your setup, they might best be kept in a separate domain. Either way you can use the key as the itemName and use GetAttributes instead of doing a SELECT.
Now getting the count is a two step process. You have to pull the summary record and also query for 'Timestamp' strictly greater than whatever the 'Last-Updated' time is in your summary record and add the two counts together.
SELECT count(*) FROM domain WHERE key='myKey' AND timestamp > '...'
You will also need a way to update your summary record periodically. You can do this on a schedule (every hour) or dynamically based on some other criteria (for example do it during regular processing whenever the query returns more than one page). Just make sure that when you update your summary record you base it on a time that is far enough in the past that you are past the eventual consistency window. 1 minute is more than safe.
This solution works in the face of concurrent updates because even if many summary records are written at the same time, they are all correct and whichever one wins will still be correct because the count and the 'Last-Updated' attribute will be consistent with each other.
This also works well across multiple domains even if you keep your summary records with the hit records, you can pull the summary records from all your domains simultaneously and then issue your queries to all domains in parallel. The reason to do this is if you need higher throughput for a key than what you can get from one domain.
This works well with caching. If your cache fails you have an authoritative backup.
The time will come where someone wants to go back and edit / remove / add a record that has an old 'Timestamp' value. You will have to update your summary record (for that domain) at that time or your counts will be off until you recompute that summary.
This will give you a count that is in sync with the data currently viewable within the consistency window. This won't give you a count that is accurate up to the millisecond.
The Hard Way
The other way way is to do the normal read - increment - store mechanism but also write a composite value that includes a version number along with your value. Where the version number you use is 1 greater than the version number of the value you are updating.
get(key) returns the attribute value="Ver015 Count089"
Here you retrieve a count of 89 that was stored as version 15. When you do an update you write a value like this:
put(key, value="Ver016 Count090")
The previous value is not removed and you end up with an audit trail of updates that are reminiscent of lamport clocks.
This requires you to do a few extra things.
the ability to identify and resolve conflicts whenever you do a GET
a simple version number isn't going to work you'll want to include a timestamp with resolution down to at least the millisecond and maybe a process ID as well.
in practice you'll want your value to include the current version number and the version number of the value your update is based on to more easily resolve conflicts.
you can't keep an infinite audit trail in one item so you'll need to issue delete's for older values as you go.
What you get with this technique is like a tree of divergent updates. you'll have one value and then all of a sudden multiple updates will occur and you will have a bunch of updates based off the same old value none of which know about each other.
When I say resolve conflicts at GET time I mean that if you read an item and the value looks like this:
11 --- 12
/
10 --- 11
\
11
You have to to be able to figure that the real value is 14. Which you can do if you include for each new value the version of the value(s) you are updating.
It shouldn't be rocket science
If all you want is a simple counter: this is way over-kill. It shouldn't be rocket science to make a simple counter. Which is why SimpleDB may not be the best choice for making simple counters.
That isn't the only way but most of those things will need to be done if you implement an SimpleDB solution in lieu of actually having a lock.
Don't get me wrong, I actually like this method precisely because there is no lock and the bound on the number of processes that can use this counter simultaneously is around 100. (because of the limit on the number of attributes in an item) And you can get beyond 100 with some changes.
Note
But if all these implementation details were hidden from you and you just had to call increment(key), it wouldn't be complex at all. With SimpleDB the client library is the key to making the complex things simple. But currently there are no publicly available libraries that implement this functionality (to my knowledge).
To anyone revisiting this issue, Amazon just added support for Conditional Puts, which makes implementing a counter much easier.
Now, to implement a counter - simply call GetAttributes, increment the count, and then call PutAttributes, with the Expected Value set correctly. If Amazon responds with an error ConditionalCheckFailed, then retry the whole operation.
Note that you can only have one expected value per PutAttributes call. So, if you want to have multiple counters in a single row, then use a version attribute.
pseudo-code:
begin
attributes = SimpleDB.GetAttributes
initial_version = attributes[:version]
attributes[:counter1] += 3
attributes[:counter2] += 7
attributes[:version] += 1
SimpleDB.PutAttributes(attributes, :expected => {:version => initial_version})
rescue ConditionalCheckFailed
retry
end
I see you've accepted an answer already, but this might count as a novel approach.
If you're building a web app then you can use Google's Analytics product to track page impressions (if the page to domain-item mapping fits) and then to use the Analytics API to periodically push that data up into the items themselves.
I haven't thought this through in detail so there may be holes. I'd actually be quite interested in your feedback on this approach given your experience in the area.
Thanks
Scott
For anyone interested in how I ended up dealing with this... (slightly Java-specific)
I ended up using an EhCache on each servlet instance. I used the UUID as a key, and a Java AtomicInteger as the value. Periodically a thread iterates through the cache and pushes rows to a simpledb temp stats domain, as well as writing a row with the key to an invalidation domain (which fails silently if the key already exists). The thread also decrements the counter with the previous value, ensuring that we don't miss any hits while it was updating. A separate thread pings the simpledb invalidation domain, and rolls up the stats in the temporary domains (there are multiple rows to each key, since we're using ec2 instances), pushing it to the actual stats domain.
I've done a little load testing, and it seems to scale well. Locally I was able to handle about 500 hits/second before the load tester broke (not the servlets - hah), so if anything I think running on ec2 should only improve performance.
Answer to feynmansbastard:
If you want to store huge amount of events i suggest you to use distributed commit log systems such as kafka or aws kinesis. They allow to consume stream of events cheap and simple (kinesis's pricing is 25$ per month for 1K events per seconds) – you just need to implement consumer (using any language), which bulk reads all events from previous checkpoint, aggregates counters in memory then flushes data into permanent storage (dynamodb or mysql) and commit checkpoint.
Events can be logged simply using nginx log and transfered to kafka/kinesis using fluentd. This is very cheap, performant and simple solution.
Also had similiar needs/challenges.
I looked at using google analytics and count.ly. the latter seemed too expensive to be worth it (plus they have a somewhat confusion definition of sessions). GA i would have loved to use, but I spent two days using their libraries and some 3rd party ones (gadotnet and one other from maybe codeproject). unfortunately I could only ever see counters post in GA realtime section, never in the normal dashboards even when the api reported success. we were probably doing something wrong but we exceeded our time budget for ga.
We already had an existing simpledb counter that updated using conditional updates as mentioned by previous commentor. This works well, but suffers when there is contention and conccurency where counts are missed (for example, our most updated counter lost several million counts over a period of 3 months, versus a backup system).
We implemented a newer solution which is somewhat similiar to the answer for this question, except much simpler.
We just sharded/partitioned the counters. When you create a counter you specify the # of shards which is a function of how many simulatenous updates you expect. this creates a number of sub counters, each which has the shard count started with it as an attribute :
COUNTER (w/5shards) creates :
shard0 { numshards = 5 } (informational only)
shard1 { count = 0, numshards = 5, timestamp = 0 }
shard2 { count = 0, numshards = 5, timestamp = 0 }
shard3 { count = 0, numshards = 5, timestamp = 0 }
shard4 { count = 0, numshards = 5, timestamp = 0 }
shard5 { count = 0, numshards = 5, timestamp = 0 }
Sharded Writes
Knowing the shard count, just randomly pick a shard and try to write to it conditionally. If it fails because of contention, choose another shard and retry.
If you don't know the shard count, get it from the root shard which is present regardless of how many shards exist. Because it supports multiple writes per counter, it lessens the contention issue to whatever your needs are.
Sharded Reads
if you know the shard count, read every shard and sum them.
If you don't know the shard count, get it from the root shard and then read all and sum.
Because of slow update propogation, you can still miss counts in reading but they should get picked up later. This is sufficient for our needs, although if you wanted more control over this you could ensure that- when reading- the last timestamp was as you expect and retry.