How to draw matches in Opencv? - c++

I have matched two vectors of descriptors of two images:
cv::Ptr<BinaryDescriptorMatcher> bdm = BinaryDescriptorMatcher::createBinaryDescriptorMatcher();
std::vector<std::vector<cv::DMatch> > matches;
float maxDist = 10.0;
bdm->radiusMatch(descr2, descr1, matches, maxDist);
// descr1 from image1, descr2 from image2
std::vector<char> mask(matches.size(), 1);
But now I want to draw the found matches from the two images.
This does not work:
drawMatches(gmlimg, keylines, walls, keylines1, matches, outImg, cv::Scalar::all(-1), cv::Scalar::all(-1), mask, DrawLinesMatchesFlags::DEFAULT);
And this neither:
drawLineMatches(gmlimg, keylines, walls, keylines1, matches, outImg, cv::Scalar::all(-1), cv::Scalar::all(-1), mask, DrawLinesMatchesFlags::DEFAULT);

Since you are getting the matches as std::vector< std::vector<cv::DMatch> >, which is what you would use when using BinaryDescriptorMatcher, you can draw the matches as follows:
std::vector<DMatch> matches_to_draw;
std::vector< std::vector<DMatch> >matches_from_matcher;
std::vector< cv::Keypoint > keypoints_Object, keypoints_Scene; // Keypoints
// Iterate through the matches from descriptor
for(unsigned int i = 0; i < matches_from_matcher.size(); i++)
{
if (matches_from_matcher[i].size() >= 1)
{
cv::DMatch v = matches[i][0];
/*
May be you can add a filtering here for the matches
Skip it if you want to see all the matches
Something like this - avg is the average distance between all keypoint pairs
double difference_for_each_match = fabs(keypoints_Object[v.queryIdx].pt.y
- keypoints_Scene[v.trainIdx].pt.y);
if( (fabs (avg - difference_for_each_match)) <= 5))
{
matches_to_draw.push_back(v);
}
*/
// This is for all matches
matches_to_draw.push_back(v);
}
}
cv::drawMatches(image, keypoints_Object, walls, keypoints_Scene, matches_to_draw, outImg, cv::Scalar::all(-1), cv::Scalar::all(-1), mask, DrawLinesMatchesFlags::DEFAULT);`
The outImg should have the matches and the keypoints drawn.
Let me know if it helps!

Related

Image Stitching warsPerspective size issue

I am trying to stitch two images. tech stack is opecv c++ on vs 2017.
The image that I had considered are:
image1 of code :
and
image2 of code:
I have found the homoography matrix using this code. I have considered image1 and image2 as given above.
int minHessian = 400;
Ptr<SURF> detector = SURF::create(minHessian);
vector< KeyPoint > keypoints_object, keypoints_scene;
detector->detect(gray_image1, keypoints_object);
detector->detect(gray_image2, keypoints_scene);
Mat img_keypoints;
drawKeypoints(gray_image1, keypoints_object, img_keypoints);
imshow("SURF Keypoints", img_keypoints);
Mat img_keypoints1;
drawKeypoints(gray_image2, keypoints_scene, img_keypoints1);
imshow("SURF Keypoints1", img_keypoints1);
//-- Step 2: Calculate descriptors (feature vectors)
Mat descriptors_object, descriptors_scene;
detector->compute(gray_image1, keypoints_object, descriptors_object);
detector->compute(gray_image2, keypoints_scene, descriptors_scene);
//-- Step 3: Matching descriptor vectors using FLANN matcher
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create(DescriptorMatcher::FLANNBASED);
vector< DMatch > matches;
matcher->match(descriptors_object, descriptors_scene, matches);
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for (int i = 0; i < descriptors_object.rows; i++)
{
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
printf("-- Max dist: %f \n", max_dist);
printf("-- Min dist: %f \n", min_dist);
//-- Use only "good" matches (i.e. whose distance is less than 3*min_dist )
vector< DMatch > good_matches;
Mat result, H;
for (int i = 0; i < descriptors_object.rows; i++)
{
if (matches[i].distance < 3 * min_dist)
{
good_matches.push_back(matches[i]);
}
}
Mat img_matches;
drawMatches(gray_image1, keypoints_object, gray_image2, keypoints_scene, good_matches, img_matches, Scalar::all(-1),
Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
imshow("Good Matches", img_matches);
std::vector< Point2f > obj;
std::vector< Point2f > scene;
cout << "Good Matches detected" << good_matches.size() << endl;
for (int i = 0; i < good_matches.size(); i++)
{
//-- Get the keypoints from the good matches
obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);
}
// Find the Homography Matrix for img 1 and img2
H = findHomography(obj, scene, RANSAC);
The next step would be to warp these. I used perspectivetransform function to find the corner of image1 on the stitched image. I had considered this as the number of columns to be used in the Mat result.This is the code I wrote ->
vector<Point2f> imageCorners(4);
imageCorners[0] = Point(0, 0);
imageCorners[1] = Point(image1.cols, 0);
imageCorners[2] = Point(image1.cols, image1.rows);
imageCorners[3] = Point(0, image1.rows);
vector<Point2f> projectedCorners(4);
perspectiveTransform(imageCorners, projectedCorners, H);
Mat result;
warpPerspective(image1, result, H, Size(projectedCorners[2].x, image1.rows));
Mat half(result, Rect(0, 0, image2.cols, image2.rows));
image2.copyTo(half);
imshow("result", result);
I am getting a stitched output of these images. But the issue is with the size of the image. I was doing a comparison by combining the two original images manually with the result of the above code. The size of the result from code is more. What should I do to make it of perfect size? The ideal size should be image1.cols + image2.cols - overlapping length.
warpPerspective(image1, result, H, Size(projectedCorners[2].x, image1.rows));
This line seems problematic.
You should choose the extremum points for the size.
Rect rec = boundingRect(projectedCorners);
warpPerspective(image1, result, H, rec.size());
But you will lose the parts if rec.tl() falls to negative axes, so you should shift the homography matrix to fall in the first quadrant.
See Warping to perspective section of my answer to Fast and Robust Image Stitching Algorithm for many images in Python.

OpenCV - RobustMatcher using findHomography

I've implement a Robust matcher found on the internet based on differents tests : symmetry test, Ratio Test and RANSAC test. It works well.
I used then findHomography in order to have good matches.
Here the code :
RobustMatcher::RobustMatcher() : ratio(0.65f), refineF(true),confidence(0.99), distance(3.0) {
detector = new cv::SurfFeatureDetector(400); //Better than ORB
//detector = new cv::SiftFeatureDetector; //Better than ORB
//extractor= new cv::OrbDescriptorExtractor();
//extractor= new cv::SiftDescriptorExtractor;
extractor= new cv::SurfDescriptorExtractor;
// matcher= new cv::FlannBasedMatcher;
matcher= new cv::BFMatcher();
}
// Clear matches for which NN ratio is > than threshold
// return the number of removed points
// (corresponding entries being cleared,
// i.e. size will be 0)
int RobustMatcher::ratioTest(std::vector<std::vector<cv::DMatch> >
&matches) {
int removed=0;
// for all matches
for (std::vector<std::vector<cv::DMatch> >::iterator
matchIterator= matches.begin();
matchIterator!= matches.end(); ++matchIterator) {
// if 2 NN has been identified
if (matchIterator->size() > 1) {
// check distance ratio
if ((*matchIterator)[0].distance/
(*matchIterator)[1].distance > ratio) {
matchIterator->clear(); // remove match
removed++;
}
} else { // does not have 2 neighbours
matchIterator->clear(); // remove match
removed++;
}
}
return removed;
}
// Insert symmetrical matches in symMatches vector
void RobustMatcher::symmetryTest(
const std::vector<std::vector<cv::DMatch> >& matches1,
const std::vector<std::vector<cv::DMatch> >& matches2,
std::vector<cv::DMatch>& symMatches) {
// for all matches image 1 -> image 2
for (std::vector<std::vector<cv::DMatch> >::
const_iterator matchIterator1= matches1.begin();
matchIterator1!= matches1.end(); ++matchIterator1) {
// ignore deleted matches
if (matchIterator1->size() < 2)
continue;
// for all matches image 2 -> image 1
for (std::vector<std::vector<cv::DMatch> >::
const_iterator matchIterator2= matches2.begin();
matchIterator2!= matches2.end();
++matchIterator2) {
// ignore deleted matches
if (matchIterator2->size() < 2)
continue;
// Match symmetry test
if ((*matchIterator1)[0].queryIdx ==
(*matchIterator2)[0].trainIdx &&
(*matchIterator2)[0].queryIdx ==
(*matchIterator1)[0].trainIdx) {
// add symmetrical match
symMatches.push_back(
cv::DMatch((*matchIterator1)[0].queryIdx,
(*matchIterator1)[0].trainIdx,
(*matchIterator1)[0].distance));
break; // next match in image 1 -> image 2
}
}
}
}
// Identify good matches using RANSAC
// Return fundemental matrix
cv::Mat RobustMatcher::ransacTest(const std::vector<cv::DMatch>& matches,const std::vector<cv::KeyPoint>& keypoints1,
const std::vector<cv::KeyPoint>& keypoints2,
std::vector<cv::DMatch>& outMatches) {
// Convert keypoints into Point2f
std::vector<cv::Point2f> points1, points2;
cv::Mat fundemental;
for (std::vector<cv::DMatch>::const_iterator it= matches.begin();it!= matches.end(); ++it) {
// Get the position of left keypoints
float x= keypoints1[it->queryIdx].pt.x;
float y= keypoints1[it->queryIdx].pt.y;
points1.push_back(cv::Point2f(x,y));
// Get the position of right keypoints
x= keypoints2[it->trainIdx].pt.x;
y= keypoints2[it->trainIdx].pt.y;
points2.push_back(cv::Point2f(x,y));
}
// Compute F matrix using RANSAC
std::vector<uchar> inliers(points1.size(),0);
if (points1.size()>0&&points2.size()>0){
cv::Mat fundemental= cv::findFundamentalMat(
cv::Mat(points1),cv::Mat(points2), // matching points
inliers, // match status (inlier or outlier)
CV_FM_RANSAC, // RANSAC method
distance, // distance to epipolar line
confidence); // confidence probability
// extract the surviving (inliers) matches
std::vector<uchar>::const_iterator itIn= inliers.begin();
std::vector<cv::DMatch>::const_iterator itM= matches.begin();
// for all matches
for ( ;itIn!= inliers.end(); ++itIn, ++itM) {
if (*itIn) { // it is a valid match
outMatches.push_back(*itM);
}
}
if (refineF) {
// The F matrix will be recomputed with
// all accepted matches
// Convert keypoints into Point2f
// for final F computation
points1.clear();
points2.clear();
for (std::vector<cv::DMatch>::const_iterator it= outMatches.begin();it!= outMatches.end(); ++it) {
// Get the position of left keypoints
float x= keypoints1[it->queryIdx].pt.x;
float y= keypoints1[it->queryIdx].pt.y;
points1.push_back(cv::Point2f(x,y));
// Get the position of right keypoints
x= keypoints2[it->trainIdx].pt.x;
y= keypoints2[it->trainIdx].pt.y;
points2.push_back(cv::Point2f(x,y));
}
// Compute 8-point F from all accepted matches
if (points1.size()>0&&points2.size()>0){
fundemental= cv::findFundamentalMat(cv::Mat(points1),cv::Mat(points2), // matches
CV_FM_8POINT); // 8-point method
}
}
}
return fundemental;
}
// Match feature points using symmetry test and RANSAC
// returns fundemental matrix
cv::Mat RobustMatcher::match(cv::Mat& image1,
cv::Mat& image2, // input images
// output matches and keypoints
std::vector<cv::DMatch>& matches,
std::vector<cv::KeyPoint>& keypoints1,
std::vector<cv::KeyPoint>& keypoints2) {
if (!matches.empty()){
matches.erase(matches.begin(),matches.end());
}
// 1a. Detection of the SIFT features
detector->detect(image1,keypoints1);
detector->detect(image2,keypoints2);
// 1b. Extraction of the SIFT descriptors
/*cv::Mat img_keypoints;
cv::Mat img_keypoints2;
drawKeypoints( image1, keypoints1, img_keypoints, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
drawKeypoints( image2, keypoints2, img_keypoints2, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
//-- Show detected (drawn) keypoints
//cv::imshow("Result keypoints detected", img_keypoints);
// cv::imshow("Result keypoints detected", img_keypoints2);
cv::waitKey(5000);*/
cv::Mat descriptors1, descriptors2;
extractor->compute(image1,keypoints1,descriptors1);
extractor->compute(image2,keypoints2,descriptors2);
// 2. Match the two image descriptors
// Construction of the matcher
//cv::BruteForceMatcher<cv::L2<float>> matcher;
// from image 1 to image 2
// based on k nearest neighbours (with k=2)
std::vector<std::vector<cv::DMatch> > matches1;
matcher->knnMatch(descriptors1,descriptors2,
matches1, // vector of matches (up to 2 per entry)
2); // return 2 nearest neighbours
// from image 2 to image 1
// based on k nearest neighbours (with k=2)
std::vector<std::vector<cv::DMatch> > matches2;
matcher->knnMatch(descriptors2,descriptors1,
matches2, // vector of matches (up to 2 per entry)
2); // return 2 nearest neighbours
// 3. Remove matches for which NN ratio is
// > than threshold
// clean image 1 -> image 2 matches
int removed= ratioTest(matches1);
// clean image 2 -> image 1 matches
removed= ratioTest(matches2);
// 4. Remove non-symmetrical matches
std::vector<cv::DMatch> symMatches;
symmetryTest(matches1,matches2,symMatches);
// 5. Validate matches using RANSAC
cv::Mat fundemental= ransacTest(symMatches,
keypoints1, keypoints2, matches);
// return the found fundemental matrix
return fundemental;
}
cv::Mat img_matches;
drawMatches(image1, keypoints_img1,image2, keypoints_img2,
matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
std::cout << "Number of good matching " << (int)matches.size() << "\n" << endl;
if ((int)matches.size() > 5 ){
Debug::info("Good matching !");
}
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for( int i = 0; i < matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_img1[ matches[i].queryIdx ].pt );
scene.push_back( keypoints_img2[matches[i].trainIdx ].pt );
}
cv::Mat arrayRansac;
std::vector<uchar> inliers(obj.size(),0);
Mat H = findHomography( obj, scene, CV_RANSAC,3,inliers);
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( image1.cols, 0 );
obj_corners[2] = cvPoint( image1.cols, image1.rows ); obj_corners[3] = cvPoint( 0, image1.rows );
std::vector<Point2f> scene_corners(4);
perspectiveTransform( obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[0] + Point2f( image1.cols, 0), scene_corners[1] + Point2f( image1.cols, 0), Scalar(0, 255, 0), 4 );
line( img_matches, scene_corners[1] + Point2f( image1.cols, 0), scene_corners[2] + Point2f( image1.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[2] + Point2f( image1.cols, 0), scene_corners[3] + Point2f( image1.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[3] + Point2f( image1.cols, 0), scene_corners[0] + Point2f( image1.cols, 0), Scalar( 0, 255, 0), 4 );
}
</pre><code>
I have results like this (Homography is good):
But I don't understand why for some of my results where the match is good I have these kind of results (homography not seems to be good):
Can someone explain me? Maybe I have to adjust the parameters? But if I reduce constraints (rise the ratio for example) instead of have no matching between two pictures (this is good), I have a lot of matching... And I don't want to. Besides the homography doesn't work at all (I have a green line only like above).
And inversely, my robust matcher works (too) well that is to say that for differents sames picture (just rotated, differents scale etc) , that's work fine but when I have two similar image, I have no match at all...
So I don't how can I do a good computation. I'm a beginner. The robust matcher works well but for the exactly same image but for two similar images like above, it doesn't work and this is a problem.
Maybe I'm on the wrong way.
Before post this message, I of course read a lot on Stack but I didn't find the answer. (For example Here)
It is due to how SURF descriptors work, see http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html
Basically with Droid the image is mostly flat color and it's difficult to find keypoints that are not ambiguous. With Nike, the shape is the same, but the intensity ratio is completely different in the descriptors: imagine on the left the center of a descriptor will be intensity 0 and on the right 1. Even if you normalize the intensity of the images, you're not going to have a match.
If your goal is just to match logos, I suggest you look into edge detection algorithms, like: http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html

Improve matching of feature points with OpenCV

I want to match feature points in stereo images. I've already found and extracted the feature points with different algorithms and now I need a good matching. In this case I'm using the FAST algorithms for detection and extraction and the BruteForceMatcher for matching the feature points.
The matching code:
vector< vector<DMatch> > matches;
//using either FLANN or BruteForce
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create(algorithmName);
matcher->knnMatch( descriptors_1, descriptors_2, matches, 1 );
//just some temporarily code to have the right data structure
vector< DMatch > good_matches2;
good_matches2.reserve(matches.size());
for (size_t i = 0; i < matches.size(); ++i)
{
good_matches2.push_back(matches[i][0]);
}
Because there are a lot of false matches I caluclated the min and max distance and remove all matches that are too bad:
//calculation of max and min distances between keypoints
double max_dist = 0; double min_dist = 100;
for( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = good_matches2[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
//find the "good" matches
vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ )
{
if( good_matches2[i].distance <= 5*min_dist )
{
good_matches.push_back( good_matches2[i]);
}
}
The problem is, that I either get a lot of false matches or only a few right ones (see the images below).
(source: codemax.de)
(source: codemax.de)
I think it's not a problem of programming but more a matching thing. As far as I understood the BruteForceMatcher only regards the visual distance of feature points (which is stored in the FeatureExtractor), not the local distance (x&y position), which is in my case important, too. Has anybody any experiences with this problem or a good idea to improve the matching results?
EDIT
I changed the code, that it gives me the 50 best matches. After this I go through the first match to check, whether it's in a specified area. If it's not, I take the next match until I have found a match inside the given area.
vector< vector<DMatch> > matches;
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create(algorithmName);
matcher->knnMatch( descriptors_1, descriptors_2, matches, 50 );
//look if the match is inside a defined area of the image
double tresholdDist = 0.25 * sqrt(double(leftImageGrey.size().height*leftImageGrey.size().height + leftImageGrey.size().width*leftImageGrey.size().width));
vector< DMatch > good_matches2;
good_matches2.reserve(matches.size());
for (size_t i = 0; i < matches.size(); ++i)
{
for (int j = 0; j < matches[i].size(); j++)
{
//calculate local distance for each possible match
Point2f from = keypoints_1[matches[i][j].queryIdx].pt;
Point2f to = keypoints_2[matches[i][j].trainIdx].pt;
double dist = sqrt((from.x - to.x) * (from.x - to.x) + (from.y - to.y) * (from.y - to.y));
//save as best match if local distance is in specified area
if (dist < tresholdDist)
{
good_matches2.push_back(matches[i][j]);
j = matches[i].size();
}
}
I think I don't get more matches, but with this I'm able to remove more false matches:
(source: codemax.de)
An alternate method of determining high-quality feature matches is the ratio test proposed by David Lowe in his paper on SIFT (page 20 for an explanation). This test rejects poor matches by computing the ratio between the best and second-best match. If the ratio is below some threshold, the match is discarded as being low-quality.
std::vector<std::vector<cv::DMatch>> matches;
cv::BFMatcher matcher;
matcher.knnMatch(descriptors_1, descriptors_2, matches, 2); // Find two nearest matches
vector<cv::DMatch> good_matches;
for (int i = 0; i < matches.size(); ++i)
{
const float ratio = 0.8; // As in Lowe's paper; can be tuned
if (matches[i][0].distance < ratio * matches[i][1].distance)
{
good_matches.push_back(matches[i][0]);
}
}
By comparing all feature detection algorithms I found a good combination, which gives me a lot more matches. Now I am using FAST for feature detection, SIFT for feature extraction and BruteForce for the matching. Combined with the check, whether the matches is inside a defined region I get a lot of matches, see the image:
(source: codemax.de)
The relevant code:
Ptr<FeatureDetector> detector;
detector = new DynamicAdaptedFeatureDetector ( new FastAdjuster(10,true), 5000, 10000, 10);
detector->detect(leftImageGrey, keypoints_1);
detector->detect(rightImageGrey, keypoints_2);
Ptr<DescriptorExtractor> extractor = DescriptorExtractor::create("SIFT");
extractor->compute( leftImageGrey, keypoints_1, descriptors_1 );
extractor->compute( rightImageGrey, keypoints_2, descriptors_2 );
vector< vector<DMatch> > matches;
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce");
matcher->knnMatch( descriptors_1, descriptors_2, matches, 500 );
//look whether the match is inside a defined area of the image
//only 25% of maximum of possible distance
double tresholdDist = 0.25 * sqrt(double(leftImageGrey.size().height*leftImageGrey.size().height + leftImageGrey.size().width*leftImageGrey.size().width));
vector< DMatch > good_matches2;
good_matches2.reserve(matches.size());
for (size_t i = 0; i < matches.size(); ++i)
{
for (int j = 0; j < matches[i].size(); j++)
{
Point2f from = keypoints_1[matches[i][j].queryIdx].pt;
Point2f to = keypoints_2[matches[i][j].trainIdx].pt;
//calculate local distance for each possible match
double dist = sqrt((from.x - to.x) * (from.x - to.x) + (from.y - to.y) * (from.y - to.y));
//save as best match if local distance is in specified area and on same height
if (dist < tresholdDist && abs(from.y-to.y)<5)
{
good_matches2.push_back(matches[i][j]);
j = matches[i].size();
}
}
}
Besides ratio test, you can:
Only use symmetric matches:
void symmetryTest(const std::vector<cv::DMatch> &matches1,const std::vector<cv::DMatch> &matches2,std::vector<cv::DMatch>& symMatches)
{
symMatches.clear();
for (vector<DMatch>::const_iterator matchIterator1= matches1.begin();matchIterator1!= matches1.end(); ++matchIterator1)
{
for (vector<DMatch>::const_iterator matchIterator2= matches2.begin();matchIterator2!= matches2.end();++matchIterator2)
{
if ((*matchIterator1).queryIdx ==(*matchIterator2).trainIdx &&(*matchIterator2).queryIdx ==(*matchIterator1).trainIdx)
{
symMatches.push_back(DMatch((*matchIterator1).queryIdx,(*matchIterator1).trainIdx,(*matchIterator1).distance));
break;
}
}
}
}
and since its a stereo image use ransac test:
void ransacTest(const std::vector<cv::DMatch> matches,const std::vector<cv::KeyPoint>&keypoints1,const std::vector<cv::KeyPoint>& keypoints2,std::vector<cv::DMatch>& goodMatches,double distance,double confidence,double minInlierRatio)
{
goodMatches.clear();
// Convert keypoints into Point2f
std::vector<cv::Point2f> points1, points2;
for (std::vector<cv::DMatch>::const_iterator it= matches.begin();it!= matches.end(); ++it)
{
// Get the position of left keypoints
float x= keypoints1[it->queryIdx].pt.x;
float y= keypoints1[it->queryIdx].pt.y;
points1.push_back(cv::Point2f(x,y));
// Get the position of right keypoints
x= keypoints2[it->trainIdx].pt.x;
y= keypoints2[it->trainIdx].pt.y;
points2.push_back(cv::Point2f(x,y));
}
// Compute F matrix using RANSAC
std::vector<uchar> inliers(points1.size(),0);
cv::Mat fundemental= cv::findFundamentalMat(cv::Mat(points1),cv::Mat(points2),inliers,CV_FM_RANSAC,distance,confidence); // confidence probability
// extract the surviving (inliers) matches
std::vector<uchar>::const_iterator
itIn= inliers.begin();
std::vector<cv::DMatch>::const_iterator
itM= matches.begin();
// for all matches
for ( ;itIn!= inliers.end(); ++itIn, ++itM)
{
if (*itIn)
{ // it is a valid match
goodMatches.push_back(*itM);
}
}
}

SIFT matching gives very poor results

I'm working on a project where I will use homography as features in a classifier. My problem is in automatically calculating homographies, i'm using SIFT descriptors to find the points between the two images on which to calculate homography but SIFT are giving me very poor results, hence i can't use them in my work.
I'm using OpenCV 2.4.3.
At first I was using SURF, but I had similar results and I decided to use SIFT which are slower but more precise. My first guess was that the image resolution in my dataset was too low but i ran my algorithm on a state-of-the-art dataset (Pointing 04) and I obtained pretty much the same results, so the problem lies in what I do and not in my dataset.
The match between the SIFT keypoints found in each image is done with the FlannBased matcher, i tried the BruteForce one but the results were again pretty much the same.
This is an example of the match I found (image from Pointing 04 dataset)
The above image shows how poor is the match found with my program. Only 1 point is a correct match. I need (at least) 4 correct matches for what I have to do.
Here is the code i use:
This is the function that extracts SIFT descriptors from each image
void extract_sift(const Mat &img, vector<KeyPoint> &keypoints, Mat &descriptors, Rect* face_rec) {
// Create masks for ROI on the original image
Mat mask1 = Mat::zeros(img.size(), CV_8U); // type of mask is CV_8U
Mat roi1(mask1, *face_rec);
roi1 = Scalar(255, 255, 255);
// Extracts keypoints in ROIs only
Ptr<DescriptorExtractor> featExtractor;
Ptr<FeatureDetector> featDetector;
Ptr<DescriptorMatcher> featMatcher;
featExtractor = new SIFT();
featDetector = FeatureDetector::create("SIFT");
featDetector->detect(img,keypoints,mask1);
featExtractor->compute(img,keypoints,descriptors);
}
This is the function that matches two images' descriptors
void match_sift(const Mat &img1, const Mat &img2, const vector<KeyPoint> &kp1,
const vector<KeyPoint> &kp2, const Mat &descriptors1, const Mat &descriptors2,
vector<Point2f> &p_im1, vector<Point2f> &p_im2) {
// Matching descriptor vectors using FLANN matcher
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("FlannBased");
std::vector< DMatch > matches;
matcher->match( descriptors1, descriptors2, matches );
double max_dist = 0; double min_dist = 100;
// Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors1.rows; ++i ){
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
// Draw only the 4 best matches
std::vector< DMatch > good_matches;
// XXX: DMatch has no sort method, maybe a more efficent min extraction algorithm can be used here?
double min=matches[0].distance;
int min_i = 0;
for( int i = 0; i < (matches.size()>4?4:matches.size()); ++i ) {
for(int j=0;j<matches.size();++j)
if(matches[j].distance < min) {
min = matches[j].distance;
min_i = j;
}
good_matches.push_back( matches[min_i]);
matches.erase(matches.begin() + min_i);
min=matches[0].distance;
min_i = 0;
}
Mat img_matches;
drawMatches( img1, kp1, img2, kp2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
imwrite("imgMatch.jpeg",img_matches);
imshow("",img_matches);
waitKey();
for( int i = 0; i < good_matches.size(); i++ )
{
// Get the points from the best matches
p_im1.push_back( kp1[ good_matches[i].queryIdx ].pt );
p_im2.push_back( kp2[ good_matches[i].trainIdx ].pt );
}
}
And these functions are called here:
extract_sift(dataset[i].img,dataset[i].keypoints,dataset[i].descriptors,face_rec);
[...]
// Extract keypoints from i+1 image and calculate homography
extract_sift(dataset[i+1].img,dataset[i+1].keypoints,dataset[i+1].descriptors,face_rec);
dataset[front].points_r.clear(); // XXX: dunno if clearing the points every time is the best way to do it..
match_sift(dataset[front].img,dataset[i+1].img,dataset[front].keypoints,dataset[i+1].keypoints,
dataset[front].descriptors,dataset[i+1].descriptors,dataset[front].points_r,dataset[i+1].points_r);
dataset[i+1].H = findHomography(dataset[front].points_r,dataset[i+1].points_r, RANSAC);
Any help on how to improve the matching performance would be really appreciated, thanks.
You apparently use the "best four points" in your code w.r.t. the distance of the matches. In other words, you consider that a match is valid if both descriptors are really similar. I believe this is wrong. Did you try to draw all of the matches? Many of them should be wrong, but many should be good as well.
The distance of a match just tells how similar both points are. This doesn't tell if the match is coherent geometrically. Selecting the best matches should definitely consider the geometry.
Here is how I would do:
Detect the corners (you already do this)
Find the matches (you already do this)
Try to find a homography transform between both images by using the matches (don't filter them before!) using findHomography(...)
findHomography(...) will tell you which are the inliers. Those are your good_matches.

OpenCV Orb not finding matches once rotation/scale invariances are introduced

I am working on a project using the Orb feature detector in OpenCV 2.3.1 . I am finding matches between 8 different images, 6 of which are very similar (20 cm difference in camera position, along a linear slider so there is no scale or rotational variance), and then 2 images taken from about a 45 degree angle from either side. My code is finding plenty of accurate matches between the very similar images, but few to none for the images taken from a more different perspective. I've included what I think are the pertinent parts of my code, please let me know if you need more information.
// set parameters
int numKeyPoints = 1500;
float distThreshold = 15.0;
//instantiate detector, extractor, matcher
detector = new cv::OrbFeatureDetector(numKeyPoints);
extractor = new cv::OrbDescriptorExtractor;
matcher = new cv::BruteForceMatcher<cv::HammingLUT>;
//Load input image detect keypoints
cv::Mat img1;
std::vector<cv::KeyPoint> img1_keypoints;
cv::Mat img1_descriptors;
cv::Mat img2;
std::vector<cv::KeyPoint> img2_keypoints
cv::Mat img2_descriptors;
img1 = cv::imread(fList[0].string(), CV_LOAD_IMAGE_GRAYSCALE);
img2 = cv::imread(fList[1].string(), CV_LOAD_IMAGE_GRAYSCALE);
detector->detect(img1, img1_keypoints);
detector->detect(img2, img2_keypoints);
extractor->compute(img1, img1_keypoints, img1_descriptors);
extractor->compute(img2, img2_keypoints, img2_descriptors);
//Match keypoints using knnMatch to find the single best match for each keypoint
//Then cull results that fall below given distance threshold
std::vector<std::vector<cv::DMatch> > matches;
matcher->knnMatch(img1_descriptors, img2_descriptors, matches, 1);
int matchCount=0;
for (int n=0; n<matches.size(); ++n) {
if (matches[n].size() > 0){
if (matches[n][0].distance > distThreshold){
matches[n].erase(matches[n].begin());
}else{
++matchCount;
}
}
}
I ended up getting enough useful matches by changing my process for filtering matches. My previous method was discarding a lot of good matches based solely on their distance value. This RobustMatcher class that I found in the OpenCV2 Computer Vision Application Programming Cookbook ended up working great. Now that all of my matches are accurate, I've been able to get good enough results by bumping up the number of keypoints that the ORB detector is looking. Using the RobustMatcher with SIFT or SURF still gives much better results, but I'm getting usable data with ORB now.
//RobustMatcher class taken from OpenCV2 Computer Vision Application Programming Cookbook Ch 9
class RobustMatcher {
private:
// pointer to the feature point detector object
cv::Ptr<cv::FeatureDetector> detector;
// pointer to the feature descriptor extractor object
cv::Ptr<cv::DescriptorExtractor> extractor;
// pointer to the matcher object
cv::Ptr<cv::DescriptorMatcher > matcher;
float ratio; // max ratio between 1st and 2nd NN
bool refineF; // if true will refine the F matrix
double distance; // min distance to epipolar
double confidence; // confidence level (probability)
public:
RobustMatcher() : ratio(0.65f), refineF(true),
confidence(0.99), distance(3.0) {
// ORB is the default feature
detector= new cv::OrbFeatureDetector();
extractor= new cv::OrbDescriptorExtractor();
matcher= new cv::BruteForceMatcher<cv::HammingLUT>;
}
// Set the feature detector
void setFeatureDetector(
cv::Ptr<cv::FeatureDetector>& detect) {
detector= detect;
}
// Set the descriptor extractor
void setDescriptorExtractor(
cv::Ptr<cv::DescriptorExtractor>& desc) {
extractor= desc;
}
// Set the matcher
void setDescriptorMatcher(
cv::Ptr<cv::DescriptorMatcher>& match) {
matcher= match;
}
// Set confidence level
void setConfidenceLevel(
double conf) {
confidence= conf;
}
//Set MinDistanceToEpipolar
void setMinDistanceToEpipolar(
double dist) {
distance= dist;
}
//Set ratio
void setRatio(
float rat) {
ratio= rat;
}
// Clear matches for which NN ratio is > than threshold
// return the number of removed points
// (corresponding entries being cleared,
// i.e. size will be 0)
int ratioTest(std::vector<std::vector<cv::DMatch> >
&matches) {
int removed=0;
// for all matches
for (std::vector<std::vector<cv::DMatch> >::iterator
matchIterator= matches.begin();
matchIterator!= matches.end(); ++matchIterator) {
// if 2 NN has been identified
if (matchIterator->size() > 1) {
// check distance ratio
if ((*matchIterator)[0].distance/
(*matchIterator)[1].distance > ratio) {
matchIterator->clear(); // remove match
removed++;
}
} else { // does not have 2 neighbours
matchIterator->clear(); // remove match
removed++;
}
}
return removed;
}
// Insert symmetrical matches in symMatches vector
void symmetryTest(
const std::vector<std::vector<cv::DMatch> >& matches1,
const std::vector<std::vector<cv::DMatch> >& matches2,
std::vector<cv::DMatch>& symMatches) {
// for all matches image 1 -> image 2
for (std::vector<std::vector<cv::DMatch> >::
const_iterator matchIterator1= matches1.begin();
matchIterator1!= matches1.end(); ++matchIterator1) {
// ignore deleted matches
if (matchIterator1->size() < 2)
continue;
// for all matches image 2 -> image 1
for (std::vector<std::vector<cv::DMatch> >::
const_iterator matchIterator2= matches2.begin();
matchIterator2!= matches2.end();
++matchIterator2) {
// ignore deleted matches
if (matchIterator2->size() < 2)
continue;
// Match symmetry test
if ((*matchIterator1)[0].queryIdx ==
(*matchIterator2)[0].trainIdx &&
(*matchIterator2)[0].queryIdx ==
(*matchIterator1)[0].trainIdx) {
// add symmetrical match
symMatches.push_back(
cv::DMatch((*matchIterator1)[0].queryIdx,
(*matchIterator1)[0].trainIdx,
(*matchIterator1)[0].distance));
break; // next match in image 1 -> image 2
}
}
}
}
// Identify good matches using RANSAC
// Return fundemental matrix
cv::Mat ransacTest(
const std::vector<cv::DMatch>& matches,
const std::vector<cv::KeyPoint>& keypoints1,
const std::vector<cv::KeyPoint>& keypoints2,
std::vector<cv::DMatch>& outMatches) {
// Convert keypoints into Point2f
std::vector<cv::Point2f> points1, points2;
cv::Mat fundemental;
for (std::vector<cv::DMatch>::
const_iterator it= matches.begin();
it!= matches.end(); ++it) {
// Get the position of left keypoints
float x= keypoints1[it->queryIdx].pt.x;
float y= keypoints1[it->queryIdx].pt.y;
points1.push_back(cv::Point2f(x,y));
// Get the position of right keypoints
x= keypoints2[it->trainIdx].pt.x;
y= keypoints2[it->trainIdx].pt.y;
points2.push_back(cv::Point2f(x,y));
}
// Compute F matrix using RANSAC
std::vector<uchar> inliers(points1.size(),0);
if (points1.size()>0&&points2.size()>0){
cv::Mat fundemental= cv::findFundamentalMat(
cv::Mat(points1),cv::Mat(points2), // matching points
inliers, // match status (inlier or outlier)
CV_FM_RANSAC, // RANSAC method
distance, // distance to epipolar line
confidence); // confidence probability
// extract the surviving (inliers) matches
std::vector<uchar>::const_iterator
itIn= inliers.begin();
std::vector<cv::DMatch>::const_iterator
itM= matches.begin();
// for all matches
for ( ;itIn!= inliers.end(); ++itIn, ++itM) {
if (*itIn) { // it is a valid match
outMatches.push_back(*itM);
}
}
if (refineF) {
// The F matrix will be recomputed with
// all accepted matches
// Convert keypoints into Point2f
// for final F computation
points1.clear();
points2.clear();
for (std::vector<cv::DMatch>::
const_iterator it= outMatches.begin();
it!= outMatches.end(); ++it) {
// Get the position of left keypoints
float x= keypoints1[it->queryIdx].pt.x;
float y= keypoints1[it->queryIdx].pt.y;
points1.push_back(cv::Point2f(x,y));
// Get the position of right keypoints
x= keypoints2[it->trainIdx].pt.x;
y= keypoints2[it->trainIdx].pt.y;
points2.push_back(cv::Point2f(x,y));
}
// Compute 8-point F from all accepted matches
if (points1.size()>0&&points2.size()>0){
fundemental= cv::findFundamentalMat(
cv::Mat(points1),cv::Mat(points2), // matches
CV_FM_8POINT); // 8-point method
}
}
}
return fundemental;
}
// Match feature points using symmetry test and RANSAC
// returns fundemental matrix
cv::Mat match(cv::Mat& image1,
cv::Mat& image2, // input images
// output matches and keypoints
std::vector<cv::DMatch>& matches,
std::vector<cv::KeyPoint>& keypoints1,
std::vector<cv::KeyPoint>& keypoints2) {
// 1a. Detection of the SURF features
detector->detect(image1,keypoints1);
detector->detect(image2,keypoints2);
// 1b. Extraction of the SURF descriptors
cv::Mat descriptors1, descriptors2;
extractor->compute(image1,keypoints1,descriptors1);
extractor->compute(image2,keypoints2,descriptors2);
// 2. Match the two image descriptors
// Construction of the matcher
//cv::BruteForceMatcher<cv::L2<float>> matcher;
// from image 1 to image 2
// based on k nearest neighbours (with k=2)
std::vector<std::vector<cv::DMatch> > matches1;
matcher->knnMatch(descriptors1,descriptors2,
matches1, // vector of matches (up to 2 per entry)
2); // return 2 nearest neighbours
// from image 2 to image 1
// based on k nearest neighbours (with k=2)
std::vector<std::vector<cv::DMatch> > matches2;
matcher->knnMatch(descriptors2,descriptors1,
matches2, // vector of matches (up to 2 per entry)
2); // return 2 nearest neighbours
// 3. Remove matches for which NN ratio is
// > than threshold
// clean image 1 -> image 2 matches
int removed= ratioTest(matches1);
// clean image 2 -> image 1 matches
removed= ratioTest(matches2);
// 4. Remove non-symmetrical matches
std::vector<cv::DMatch> symMatches;
symmetryTest(matches1,matches2,symMatches);
// 5. Validate matches using RANSAC
cv::Mat fundemental= ransacTest(symMatches,
keypoints1, keypoints2, matches);
// return the found fundemental matrix
return fundemental;
}
};
// set parameters
int numKeyPoints = 1500;
//Instantiate robust matcher
RobustMatcher rmatcher;
//instantiate detector, extractor, matcher
detector = new cv::OrbFeatureDetector(numKeyPoints);
extractor = new cv::OrbDescriptorExtractor;
matcher = new cv::BruteForceMatcher<cv::HammingLUT>;
rmatcher.setFeatureDetector(detector);
rmatcher.setDescriptorExtractor(extractor);
rmatcher.setDescriptorMatcher(matcher);
//Load input image detect keypoints
cv::Mat img1;
std::vector<cv::KeyPoint> img1_keypoints;
cv::Mat img1_descriptors;
cv::Mat img2;
std::vector<cv::KeyPoint> img2_keypoints
cv::Mat img2_descriptors;
std::vector<std::vector<cv::DMatch> > matches;
img1 = cv::imread(fList[0].string(), CV_LOAD_IMAGE_GRAYSCALE);
img2 = cv::imread(fList[1].string(), CV_LOAD_IMAGE_GRAYSCALE);
rmatcher.match(img1, img2, matches, img1_keypoints, img2_keypoints);
I had a similar problem with opencv python and came here via google.
To solve my problem I wrote python code for matching-filtering based on #KLowes solution. I will share it here in case someone else has the same problem:
""" Clear matches for which NN ratio is > than threshold """
def filter_distance(matches):
dist = [m.distance for m in matches]
thres_dist = (sum(dist) / len(dist)) * ratio
sel_matches = [m for m in matches if m.distance < thres_dist]
#print '#selected matches:%d (out of %d)' % (len(sel_matches), len(matches))
return sel_matches
""" keep only symmetric matches """
def filter_asymmetric(matches, matches2, k_scene, k_ftr):
sel_matches = []
for match1 in matches:
for match2 in matches2:
if match1.queryIdx < len(k_ftr) and match2.queryIdx < len(k_scene) and \
match2.trainIdx < len(k_ftr) and match1.trainIdx < len(k_scene) and \
k_ftr[match1.queryIdx] == k_ftr[match2.trainIdx] and \
k_scene[match1.trainIdx] == k_scene[match2.queryIdx]:
sel_matches.append(match1)
break
return sel_matches
def filter_ransac(matches, kp_scene, kp_ftr, countIterations=2):
if countIterations < 1 or len(kp_scene) < minimalCountForHomography:
return matches
p_scene = []
p_ftr = []
for m in matches:
p_scene.append(kp_scene[m.queryIdx].pt)
p_ftr.append(kp_ftr[m.trainIdx].pt)
if len(p_scene) < minimalCountForHomography:
return None
F, mask = cv2.findFundamentalMat(np.float32(p_ftr), np.float32(p_scene), cv2.FM_RANSAC)
sel_matches = []
for m, status in zip(matches, mask):
if status:
sel_matches.append(m)
#print '#ransac selected matches:%d (out of %d)' % (len(sel_matches), len(matches))
return filter_ransac(sel_matches, kp_scene, kp_ftr, countIterations-1)
def filter_matches(matches, matches2, k_scene, k_ftr):
matches = filter_distance(matches)
matches2 = filter_distance(matches2)
matchesSym = filter_asymmetric(matches, matches2, k_scene, k_ftr)
if len(k_scene) >= minimalCountForHomography:
return filter_ransac(matchesSym, k_scene, k_ftr)
To filter matches filter_matches(matches, matches2, k_scene, k_ftr) has to be called where matches, matches2 represent matches obtained by orb-matcher and k_scene, k_ftr are corresponding keypoints.
I don't think there is anything very wrong with your code. From my experience opencv's ORB is sensitive to scale variations.
You can probably confirm this with a small test, make some images with rotation only and some with scale variations only. The rotation ones will probably match fine but the scale ones won't (i think decreasing scale is the worst).
I also advise you to try the opencv version from the trunk (see opencv's site for compile instructions), ORB as been updated since 2.3.1 and performs a little better but still has those scale problems.