Haskell count elements in a list tail recursion - list

I have to get the amount of a Card in a list of cards through tail recursion. I was given the following code:
amountCard :: Int -> Card -> [Card] -> Int
My attempt so far:
amountCard n c [] = n
amountCard n k (x:xs) = if k == x then amountCard (n+1) k xs else amountCard n k xs
Did I use tail recursion here?

Well this Wikipedia article says:
[A] tail call is a subroutine call performed as the final action
of a procedure. If a tail call might lead to the same subroutine
being called again later in the call chain, the subroutine is said to
be tail-recursive, which is a special case of recursion. Tail
recursion (or tail-end recursion) is particularly useful, and often
easy to handle in implementations.
(formatting added)
Now if you use an if-then-else and nothing after that, you know that the body of the then and else clause will be the last things the "procedure" will do. Since in the body of these then and else clauses are simple calls (there is no "post processing" like 1 + (amountCard n k xs)), yes this is indeed tail-recursion.
I would however say that it is more elegant to use guards than an if-then-else structure:
amountCard n c [] = n
amountCard n k (x:xs) | k == x = amountCard (n+1) k xs
| otherwise = amountCard n k xs
Furthermore in Haskell usually the wildcard pattern is used if a variable is of no importance, like:
amountCard n _ [] = n
amountCard n k (x:xs) | k == x = amountCard (n+1) k xs
| otherwise = amountCard n k xs
Furthermore as is noted by #chepner, you can easily convert your code to:
amountCard n c [] = n
amountCard n k (x:xs) = amountCard (if k == x then n + 1 else n) k xs
And now it obviously is tail recursive, since the body of the second clause contains only one call to the same function (with different arguments).

Related

Outputting elements from the list except first n elements

How do you write a F# recursive function that accepts a positive integer n and a list xs as input, and returns a list except first n elements in xs?
let rec something n xs = .. something 7 [1..10] = [8; 9; 10]
I don't think that recursion is the most efficient way to solve this problem, but you can do it like this:
let rec something n xs =
if n > List.length xs || n < 0 then failwith "incorrect parameter n - out of range"
else if n = 0 then xs
else something (n-1) (xs |> List.tail)
let res = something 7 [1..10]
open System
Console.WriteLine(res)
//something 7 [1..10] = [8; 9; 10]
The simple answer is to use List.skip ... i.e. [0..10] |> List.skip 5
To reimplement List.skip you'd be looking at something like:
let rec listSkip n list =
match (n, list) with
| 0, list -> list
| _, [] -> failwith "The index is outside the legal range"
| n, _ when n < 0 -> failwith "The index cannot be negative"
| n, _ :: tl -> listSkip (n - 1) tl
As this is recursion is eligible for tail-call optimization, performance should be similar to an explicit loop.
I've avoided an explicit guard checking List.length against n because List.length requires iteration of the entire list ( which we'd have to check each round of the recursion ). Thus it's cheaper just to try and remove n items and fail if we run into an empty list before n reaches 0.

Implementing Haskell's `take` function using `foldl`

Implementing Haskell's take and drop functions using foldl.
Any suggestions on how to implement take and drop functions using foldl ??
take x ls = foldl ???
drop x ls = foldl ???
i've tried these but it's showing errors:
myFunc :: Int -> [a] -> [a]
myFunc n list = foldl func [] list
where
func x y | (length y) > n = x : y
| otherwise = y
ERROR PRODUCED :
*** Expression : foldl func [] list
*** Term : func
*** Type : a -> [a] -> [a]
*** Does not match : [a] -> [a] -> [a]
*** Because : unification would give infinite type
Can't be done.
Left fold necessarily diverges on infinite lists, but take n does not. This is so because left fold is tail recursive, so it must scan through the whole input list before it can start the processing.
With the right fold, it's
ntake :: Int -> [a] -> [a]
ntake 0 _ = []
ntake n xs = foldr g z xs 0
where
g x r i | i>=n = []
| otherwise = x : r (i+1)
z _ = []
ndrop :: Int -> [a] -> [a]
ndrop 0 xs = xs
ndrop n xs = foldr g z xs 0 xs
where
g x r i xs#(_:t) | i>=n = xs
| otherwise = r (i+1) t
z _ _ = []
ndrop implements a paramorphism nicely and faithfully, up to the order of arguments to the reducer function g, giving it access to both the current element x and the current list node xs (such that xs == (x:t)) as well as the recursive result r. A catamorphism's reducer has access only to x and r.
Folds usually encode catamorphisms, but this shows that right fold can be used to code up a paramorphism just as well. It's universal that way. I think it is beautiful.
As for the type error, to fix it just switch the arguments to your func:
func y x | ..... = .......
The accumulator in the left fold comes as the first argument to the reducer function.
If you really want it done with the left fold, and if you're really sure the lists are finite, two options:
ltake n xs = post $ foldl' g (0,id) xs
where
g (i,f) x | i < n = (i+1, f . (x:))
| otherwise = (i,f)
post (_,f) = f []
rltake n xs = foldl' g id xs r n
where
g acc x = acc . f x
f x r i | i > 0 = x : r (i-1)
| otherwise = []
r _ = []
The first counts from the left straight up, potentially stopping assembling the prefix in the middle of the full list traversal that it does carry to the end nevertheless, being a left fold.
The second also traverses the list in full turning it into a right fold which then gets to work counting down from the left again, being able to actually stop working as soon as the prefix is assembled.
Implementing drop this way is bound to be (?) even clunkier. Could be a nice exercise.
I note that you never specified the fold had to be over the supplied list. So, one approach that meets the letter of your question, though probably not the spirit, is:
sillytake :: Int -> [a] -> [a]
sillytake n xs = foldl go (const []) [1..n] xs
where go f _ (x:xs) = x : f xs
go _ _ [] = []
sillydrop :: Int -> [a] -> [a]
sillydrop n xs = foldl go id [1..n] xs
where go f _ (_:xs) = f xs
go _ _ [] = []
These each use left folds, but over the list of numbers [1..n] -- the numbers themselves are ignored, and the list is just used for its length to build a custom take n or drop n function for the given n. This function is then applied to the original supplied list xs.
These versions work fine on infinite lists:
> sillytake 5 $ sillydrop 5 $ [1..]
[6,7,8,9,10]
Will Ness showed a nice way to implement take with foldr. The least repulsive way to implement drop with foldr is this:
drop n0 xs0 = foldr go stop xs0 n0
where
stop _ = []
go x r n
| n <= 0 = x : r 0
| otherwise = r (n - 1)
Take the efficiency loss and rebuild the whole list if you have no choice! Better to drive a nail in with a screwdriver than drive a screw in with a hammer.
Both ways are horrible. But this one helps you understand how folds can be used to structure functions and what their limits are.
Folds just aren't the right tools for implementing drop; a paramorphism is the right tool.
You are not too far. Here are a pair of fixes.
First, note that func is passed the accumulator first (i.e. a list of a, in your case) and then the list element (an a). So, you need to swap the order of the arguments of func.
Then, if we want to mimic take, we need to add x when the length y is less than n, not greater!
So we get
myFunc :: Int -> [a] -> [a]
myFunc n list = foldl func [] list
where
func y x | (length y) < n = x : y
| otherwise = y
Test:
> myFunc 5 [1..10]
[5,4,3,2,1]
As you can see, this is reversing the string. This is because we add x at the front (x:y) instead of at the back (y++[x]). Or, alternatively, one could use reverse (foldl ....) to fix the order at the end.
Also, since foldl always scans the whole input list, myFunc 3 [1..1000000000] will take a lot of time, and myFunc 3 [1..] will fail to terminate. Using foldr would be much better.
drop is more tricky to do. I don't think you can easily do that without some post-processing like myFunc n xs = fst (foldl ...) or making foldl return a function which you immediately call (which is also a kind of post-processing).

Core's `List.init` in Pervasives?

I'm used to JaneStreet's Core library. Its List module has a neat init function:
List.init;;
- : int -> f:(int -> 'a) -> 'a list = <fun>
It allows you to create a list with using a custom function to initialize elements:
List.init 5 ~f:(Fn.id);;
- : int list = [0; 1; 2; 3; 4]
List.init 5 ~f:(Int.to_string);;
- : string list = ["0"; "1"; "2"; "3"; "4"]
However, this function doesn't seem to exist in Pervasives, which is sad. Am I missing something, or do I have to implement it myself? And if I do need to write it, how do I achieve this?
EDIT:
I have written an imperative version of init, but it doesn't feel right to have to resort to OCaml's imperative features in such a case. :(
let init n ~f =
let i = ref 0 in
let l = ref [] in
while !i < n do
l := (f !i) :: !l;
incr i;
done;
List.rev !l
;;
EDIT 2:
I've opened a pull request on OCaml's GitHub to have this feature included.
EDIT 3:
The feature was released in OCaml 4.06.
A recursive implementation is fairly straightforward. However, it is not tail-recursive, which means that you'll risk a stack overflow for large lists:
let init_list n ~f =
let rec init_list' i n f =
if i >= n then []
else (f i) :: (init_list' (i+1) n f)
in init_list' 0 n f
We can transform it into a tail-recursive version using the usual techniques:
let init_list n ~f =
let rec init_list' acc i n f =
if i >= n then acc
else init_list' ((f i) :: acc) (i+1) n f
in List.rev (init_list' [] 0 n f)
This uses an accumulator and also needs to reverse the intermediate result, as the list is constructed in reverse. Note that we could also use f (n-i-1) instead of f i to avoid reversing the list, but this may lead to unexpected behavior if f has side-effects.
An alternative and shorter solution is to simply use Array.init as a starting point:
let init_list n ~f = Array.(init n f |> to_list)
You can copy the code from JaneStreet and use it.
The code look's like (but not exactly the same) :
let init n ~f =
if n < 0 then raise (Invalid_argument "init");
let rec loop i accum =
if i = 0 then accum
else loop (i-1) (f (i-1) :: accum)
in
loop n []
;;
You can find the original code inside core_list0.ml from the package core_kernel.

OCaml. Return first n elements of a list

I am new to OCaml and functional programming as a whole. I am working on a part of an assignment where I must simply return the first n elements of a list. I am not allowed to use List.Length.
I feel that what I have written is probably overly complicated for what I'm trying to accomplish. What my code attempts to do is concatenate the front of the list to the end until n is decremented to 1. At which point the head moves a further n-1 spots to that the tail of the list and then return the tail. Again, I realize that there is probably a much simpler way to do this, but I am stumped and probably showing my inability to grasp functional programming.
let rec take n l =
let stopNum = 0 - (n - 1) in
let rec subList n lst =
match lst with
| hd::tl -> if n = stopNum then (tl)
else if (0 - n) = 0 then (subList (n - 1 ) tl )
else subList (n - 1) (tl # [hd])
| [] -> [] ;;
My compiler tells me that I have a syntax error on the last line. I get the same result regardless of whether "| [] -> []" is the last line or the one above it. The syntax error does not exist when I take out the nested subList let. Clearly there is something about nested lets that I am just not understanding.
Thanks.
let rec firstk k xs = match xs with
| [] -> failwith "firstk"
| x::xs -> if k=1 then [x] else x::firstk (k-1) xs;;
You might have been looking for this one.
What you have to do here, is to iterate on your initial list l and then add elements of this list in an accumulator until n is 0.
let take n l =
let rec sub_list n accu l =
match l with
| [] -> accu (* here the list is now empty, return the partial result *)
| hd :: tl ->
if n = 0 then accu (* if you reach your limit, return your result *)
else (* make the call to the recursive sub_list function:
- decrement n,
- add hd to the accumulator,
- call with the rest of the list (tl)*)
in
sub_list n [] l
Since you're just starting with FP, I suggest you look for the simplest and most elegant solution. What you're looking for is a way to solve the problem for n by building it up from a solution for a smaller problem.
So the key question is: how could you produce the first n elements of your list if you already had a function that could produce the first (n - 1) elements of a list?
Then you need to solve the "base" cases, the cases that are so simple that the answer is obvious. For this problem I'd say there are two base cases: when n is 0, the answer is obvious; when the list is empty, the answer is obvious.
If you work this through you get a fairly elegant definition.

Haskell: Splitting a list into 2 at index k

I'm pretty new to Haskell, and I'm having a little trouble. I'm trying to implement a function that takes a list, and an int. the int is supposed to be the index k at which the list is split into a pair of lists. The first one containing the first k elements of the list, and the second from k+1 to the last element. Here's what I have so far:
split :: [a] -> Int -> ([a], [a])
split [] k = error "Empty list!"
split (x:[]) k = ([x],[])
split xs k | k >= (length xs) = error "Number out of range!"
| k < 0 = error "Number out of range!"
I can't actually figure out how to do the split. Any help would be appreciated.
First of all, note that the function you are trying to construct is already in the standard library, in the Prelude - it is called splitAt. Now, directly looking at its definition is confusing, as there are two algorithms, one which doesn't use the standard recursive structure at all -splitAt n xs = (take n xs, drop n xs) - and one that is hand-optimized making it ugly. The former makes more intuitive sense, as you are simply taking a prefix and a suffix and putting them in a pair. However, the latter teaches more, and has this overall structure:
splitAt :: Int -> [a] -> ([a], [a])
splitAt 0 xs = ([], xs)
splitAt _ [] = ([], [])
splitAt n (x:xs) = (x:xs', xs'')
where
(xs', xs'') = splitAt (n - 1) xs
The basic idea is that if a list is made up of a head and a tail (it is of the form x:xs), then the list going from index k+1 onwards will be the same as the list going from k onwards once you remove the first element - drop (k + 1) (x : xs) == drop k xs. To construct the prefix, you similarly remove the first element, take a smaller prefix, and stick the element back on - take (k + 1) (x : xs) == x : take k xs.
What about this:
splitAt' = \n -> \xs -> (take n xs, drop n xs)
Some tests:
> splitAt' 3 [1..10]
> ([1,2,3],[4,5,6,7,8,9,10])
> splitAt' 0 [1..10]
> ([],[1,2,3,4,5,6,7,8,9,10])
> splitAt' 3 []
> ([],[])
> splitAt' 11 [1..10]
> ([1,2,3,4,5,6,7,8,9,10],[])
> splitAt' 2 "haskell"
> ("ha","skell")
Basically, you need some way of passing along partial progress as you recurse through the list. I used a second function that takes an accumulator parameter; it is called from split and then calls itself recursively. There are almost certainly better ways..
EDIT: removed all the length checks., but I believe the use of ++ means it's still O(n^2).
split xs k | k < 0 = error "Number out of range!"
split xs k = ssplit [] xs k
ssplit p xs 0 = (p, xs)
ssplit p (x:xs) k = ssplit (p++[x]) xs (k-1)
ssplit p [] k = error "Number out of range!"
to get the behavior in the original post or
ssplit p [] k = (p,[])
To get the more forgiving behavior of the standard splitAt function.
A common trick for getting rid of quadratic behavior in building a list is to build it up backwards, then reverse it, modifying Mark Reed's solution:
split xs k | k < 0 = error "Number out of range!"
split xs k = (reverse a, b)
where
(a,b) = ssplit [] xs k
ssplit p xs 0 = (p, xs)
ssplit p (x:xs) k = ssplit (x:p) xs (k-1)
ssplit p [] k = error "Number out of range!"
The error check in ssplit is fine since won't get checked (one of the earlier patterns will match) unless there is an actual error.
In practice you might want to add a few strictness annotations to ssplit to manage stack growth, but that's a further refinement.
See splitAt in the prelude:
ghci> :t flip splitAt
flip splitAt :: [a] -> Int -> ([a], [a])
ghci> flip splitAt ['a'..'j'] 5
("abcde","fghij")