How to loop a function till a new mqtt message arrives? - c++

I'm writing a mqtt app in C++ with Paho. I'm using Paho.mqtt C library that can be found here.
When I receive a message in the callback function, it calls another function to print the message. I want to be able to loop that function until a new message arrives.
bool start = false;
void loopMessage(std::string message){
start = true;
while(start){
std::out << "message: " << message;
}
}
int messageArrivedCallback(mqtt message){
start = false;
loopMessage(message);
}
The code above is not working; I can receive one message and run the while loop in the loopMessage function. After that the client disconnects. I think this is because it is in blocking mode and the broker disconnects the client after the keep alive interval (I'm using MQTTClient). If I quickly send a new message before disconnection, the client doesn't receive it.
I tried to use the asynchronus client version (MQTTAsync) but it is giving me the same problem.
Any suggestions on how to do this?

The Paho client will start a thread to handle the network loop and collect new messages so just remove the loopMessage function and print the message in the messageArrivedCallback.
You should not make blocking calls (which is what this infinite loop does) in the messageArrivedCallback because it has to return to allow the client to continue to receive messages.
If you want to print the message content over and over agian until a new message arrives then you need to do it on a separate thread.

Related

Can you unblock boost::asio::io_context while waiting for async_read?

im trying to connect to a server via boost asio and beast. I need to send heartbeats to the server every 40 seconds, but when I try to, my write requests get stuck in a queue and never get executed, unless the server sends something first.
I have this code to look for new messages that come in.
this->ioContext.run();
thread heartbeatThread(&client::heartbeatCycle, this);
while (this->p->is_socket_open()) {
this->ioContext.restart();
this->p->asyncQueue("", true);
this->ioContext.run();
}
The asyncQueue function just calls async_read, and blocks the io context. The heartbeatCycle tries to send heartbeats, but gets stuck in the queue. If I force it to send anyways, I get
Assertion failed: (id_ != T::id), function try_lock, file soft_mutex.hpp, line 89.
When the server sends a message, the queue is unblocked, and all the queued messages go through, until there is no more work, and the io_context starts blocking again.
So my main question is, is there any way to unblock the io context without having the server send a message? If not, is there a way to emulate the server sending a message?
Thanks!
EDIT:
I have this queue function that queues messages being sent called asyncQueue.
void session::asyncQueue(const string& payload, const bool& madeAfterLoop)
{
if(!payload.empty())
{
queue_.emplace_back(payload);
}
if(payload.empty() && madeAfterLoop)
{
queue_.emplace_back("KEEPALIVE");
}
// If there is something to write, write it.
if(!currentlyQueued_ && !queue_.empty() && queue_.at(0) != "KEEPALIVE")
{
currentlyQueued_ = true;
ws_.async_write(
net::buffer(queue_.at(0)),
beast::bind_front_handler(
&session::on_write,
shared_from_this()));
queue_.erase(queue_.begin());
}
// If there is nothing to write, read the buffer to keep stream alive
if(!currentlyQueued_ && !queue_.empty())
{
currentlyQueued_ = true;
ws_.async_read(
buffer_,
beast::bind_front_handler(
&session::on_read,
shared_from_this()));
queue_.erase(queue_.begin());
}
}
The problem is when the code has nothing no work left to do, it calls async read, and gets stuck until the server sends something.
In the function where I initialized the io_context, I also created a separate thread to send heartbeats every x seconds.
void client::heartbeatCycle()
{
while(this->p->is_socket_open())
{
this->p->asyncQueue(bot::websocket::sendEvents::getHeartbeatEvent(cache_), true );
this_thread::sleep_for(chrono::milliseconds(10000));
}
}
Lastly, I have these 2 lines in my on_read function that runs whenever async read is called.
currentlyQueued_ = false;
asyncQueue();
Once there is no more work to do, the program calls async_read but currentlyQueued_ is never set to false.
The problem is the io_context is stuck looking for something to read. What can I do to stop the io_context from blocking the heartbeats from sending?
The only thing I have found that stops the io_context from blocking is when the server sends me a message. When it does, currentlyQueued_ is set to false, and the queue able to run and the queue is cleared.
That is the reason im looking for something that can emulate the server sending me a message. So is there a function that can do that in asio/beast? Or am I going about this the wrong way.
Thanks so much for your help.
The idea is to run the io_service elsewhere (on a thread, or in main, after starting an async chain).
Right now you're calling restart() on it which simply doesn't afford continuous operation. Why stop() or let it run out of work at all?
Note, manually starting threads is atypical and unsafe.
I would give examples, but lots already exist (also on this site). I'd need to see question code with more detail to give concrete suggestions.

Unix socket hangs on recv, until I place/remove a breakpoint anywhere

[TL;DR version: the code below hangs indefinitely on the second recv() call both in Release and Debug mode. In Debug, if I place or remove a breakpoint anywhere in the code, it makes the execution continue and everything behaves normally]
I'm coding a simple client-server communication using UNIX sockets. The server is in C++ while the client is in python. The connection (TCP socket on localhost) gets established no problem, but when it comes to receiving data on the server side, it hangs on the recv function. Here is the code where the problem happens:
bool server::readBody(int csock) // csock is the socket filedescriptor
{
int bytecount;
// protobuf-related variables
google::protobuf::uint32 siz;
kinMsg::request message;
// if the code is working, client will send false
// I initialize at true to be sure that the message is actually read
message.set_endconnection(true);
// First, read 4-characters header for extracting data size
char buffer_hdr[5];
if((bytecount = recv(csock, buffer_hdr, 4, MSG_WAITALL))== -1)
::std::cerr << "Error receiving data "<< ::std::endl;
buffer_hdr[4] = '\0';
siz = atoi(buffer_hdr);
// Second, read the data. The code hangs here !!
char buffer [siz];
if((bytecount = recv(csock, (void *)buffer, siz, MSG_WAITALL))== -1)
::std::cerr << "Error receiving data " << errno << ::std::endl;
//Finally, process the protobuf message
google::protobuf::io::ArrayInputStream ais(buffer,siz);
google::protobuf::io::CodedInputStream coded_input(&ais);
google::protobuf::io::CodedInputStream::Limit msgLimit = coded_input.PushLimit(siz);
message.ParseFromCodedStream(&coded_input);
coded_input.PopLimit(msgLimit);
if (message.has_endconnection())
return !message.endconnection();
return false;
}
As can be seen in the code, the protocol is such that the client will first send the number of bytes in the message in a 4-character array, followed by the protobuf message itself. The first recv call works well and does not hang. Then, the code hangs on the second recv call, which should be recovering the body of the message.
Now, for the interesting part. When run in Release mode, the code hangs indefinitely and I have to kill either the client or the server. It does not matter whether I run it from my IDE (qtcreator), or from the CLI after a clean build (using cmake/g++).
When I run the code in Debug mode, it also hangs at the same recv() call. Then, if I place or remove a breakpoint ANYWHERE in the code (before or after that line of code), it starts again and works perfectly : the server receives the data, and reads the correct message.endconnection() value before returning out of the readBody function. The breakpoint that I have to place to trigger this behavior is not necessarily trigerred. Since the readBody() function is in a loop (my C++ server waits for requests from the python client), at the next iteration, the same behavior happens again, and I have to place or remove a breakpoint anywhere in the code, which is not necessarily triggered, in order to go past that recv() call. The loop looks like this:
bool connection = true;
// server waiting for client connection
if (!waitForConnection(connectionID)) std::cerr << "Error accepting connection" << ::std::endl;
// main loop
while(connection)
{
if((bytecount = recv(connectionID, buffer, 4, MSG_PEEK))== -1)
{
::std::cerr << "Error receiving data "<< ::std::endl;
}
else if (bytecount == 0)
break;
try
{
if(readBody(connectionID))
{
sendResponse(connectionID);
}
// if client is requesting disconnection, break the while(true)
else
{
std::cout << "Disconnection requested by client. Exiting ..." << std::endl;
connection = false;
}
}
catch(...)
{
std::cerr << "Erro receiving message from client" << std::endl;
}
}
Finally, as you can see, when the program returns from readBody(), it sends back another message to the client, which processes it and prints in the standard output (python code working, not shown because the question is already long enough). From this last behavior, I can conclude that the protocol and client code are OK. I tried to put sleep instructions at many points to see whether it was a timing problem, but it did not change anything.
I searched all over Google and SO for a similar problem, but did not find anything. Help would be much appreciated !
The solution is to not use any flags. Call recv with 0 for the flags or just use read instead of recv.
You are requesting the socket for data that is not there. The recv expects 10 bytes, but the client only sent 6. The MSG_WAITALL states clearly that the call should block until 10 bytes are available in the stream.
If you dont use any flags, the call will succeed with a bytecount at 6, which is the exact same effect than with MSG_DONTWAIT, without the potential side effects of non-blocking calls.
I did the test on the github project, it works.
The solution is to replace MSG_WAITALL by MSG_DONTWAIT in the recv() calls. It now works fine. To summarize, it makes the recv() calls non blocking, which makes the whole code work fine.
However, this still raises many questions, the first of which being: why was it working with this weird breakpoint changing thing ?
If the socket was blocking in the first place, one could assume that it is because there is no data on the socket. Let's assume both situations here :
There is no data on the socket, which is the reason why the blocking recv() call was not working. Changing it to a non blocking recv() call would then, in the same situation, trigger an error. If not, the protobuf deserialization would afterwards fail trying to deserialize from an empty buffer. But it does not ...
There is data on the socket. Then, why on earth would it block in the first place ?
Obviously there is something that I don't get about sockets in C, and I'd be very happy if somebody has an explanation for this behavior !

Trigger from thread to main thread in XCB Event Loop

Does anyone have any ideas on how I can get my main thread event loop which looks like:
const int MY_CUST_MSG(877);
xcb_generic_event_t *event;
while (event = xcb_wait_for_event(connection)) {
switch (event->response_type & ~0x80) {
case MY_CUST_MSG:
// do something
break;
default:
// Unknown event type, ignore it
debug_log("Unknown event: ", event->response_type);
}
free(event);
}
To react to a message from a secondary thread?
xcb_wait_for_event() waits for an event to be received from the server. You'd have to send a message to yourself, through the server, but I would suggest an alternative approach:
Use xcb_file_descriptor() to get the underlying file descriptor for the X connection.
Set up an internal pipe that your application can use to send messages to itself, between thread.
Use xcb_poll_for_event() which is a non-blocking version of xcb_wait_for_event(), to implement a non-blocking check if there's an event that has been read, and if so, read it.
Do a non-blocking read on your internal pipe, to check for any internal message from another thread.
If neither step 3 or 4 produced a message, use poll() to wait for one or the other event.
You will also need to use xcb_flush() to flush any events manually, and xcb_connection_has_error() to check for a fatal connection error to the X server.
See the tutorial for more information.

How would one avoid race conditions from multiple threads of a server sending data to a client? C++

I was following a tutorial on youtube on building a chat program using winsock and c++. Unfortunately the tutorial never bothered to consider race conditions, and this causes many problems.
The tutorial had us open a new thread every time a new client connected to the chat server, which would handle receiving and processing data from that individual client.
void Server::ClientHandlerThread(int ID) //ID = the index in the SOCKET Connections array
{
Packet PacketType;
while (true)
{
if (!serverptr->GetPacketType(ID, PacketType)) //Get packet type
break; //If there is an issue getting the packet type, exit this loop
if (!serverptr->ProcessPacket(ID, PacketType)) //Process packet (packet type)
break; //If there is an issue processing the packet, exit this loop
}
std::cout << "Lost connection to client ID: " << ID << std::endl;
}
When the client sends a message, the thread will process it and send it by first sending packet type, then sending the size of the message/packet, and finally sending the message.
bool Server::SendString(int ID, std::string & _string)
{
if (!SendPacketType(ID, P_ChatMessage))
return false;
int bufferlength = _string.size();
if (!SendInt(ID, bufferlength))
return false;
int RetnCheck = send(Connections[ID], _string.c_str(), bufferlength, NULL); //Send string buffer
if (RetnCheck == SOCKET_ERROR)
return false;
return true;
}
The issue arises when two threads (Two separate clients) are synchronously trying to send a message at the same time to the same ID. (The same third client). One thread may send to the client the int packet type, so the client is now prepared to receive an int, but then the second thread sends a string. (Because the thread assumes the client is waiting for that). The client is unable to process correctly and results in the program being unusable.
How would I solve this issue?
One solution I had:
Rather than allow each thread to execute server commands on their own, they would set an input value. The main server thread would loop through all the input values from each thread and then execute the commands one by one.
However I am unsure this won't have problems of its own... If a client sends multiple messages in the time frame of a single server loop, only one of the messages will send (since the new message would over-write the previous message). Of course there are ways around this, such as arrays of input or faster loops, but it still poses a problem.
Another issue that I thought of was that a client with a lower ID would always end up having their message sent first each loop. This isn't that big of a deal but if there was a situation, say, a trivia game, where two clients entered the correct answer in the same loop then the client with the lower ID would end up saying the answer "first" every time.
Thanks in advance.
If all I/O is being handled through a central server, a simple (but certainly not elegant) solution is to create a barrier around the I/O mechanisms to each client. In the simplest case this can just be a mutex. Associate that barrier with each client and anytime someone wants to send that client something (a complete message), lock the barrier. Unlock it when the complete message is handled. That way only one client can actually send something to another client at a time. In C++11, see std::mutex.

C++ Server - Client Message Sync

I writing a small program that can Send File from Client -> Server (Send) and Server -> Client(Request).
Well done this part but the problems comes when:
1. I found the File on Server, How can I execute a cin on the client side?
2. How can I force my messages between Server and Client to be synced? I mean I dont want the Server to move to next step or freeze on the receive.
For Example(No Threading applied in this porblem):-
Server: Waiting a Message from Client.
Client: Send the Message.
Client: Waiting a Message from Client.
Server: Send the Message.
.....etc.
In a rare times the messages arrive on order but 99.999% of the time they don't and the program on two sides freeze.
The problem with the inorder messages was a thread on the client side who kept reading the inc replies without allowing the actual functions to see them.
However, about point 1.
I am trying in this code:
1. No shared resources so i am trying to define everything inside this function (part of it where the problem happening)
2. I was trying to pass this function to a thread so the server can accept more clients.
3. send & receive nothing special about them just a normal send/recv calls.
3. Question: if SendMyMessage & ReceiveMyMessage is going to be used by different threads, should I pass the socket to them with the message?
void ExecuteRequest(void * x)
{
RequestInfo * req = (RequestInfo *) x;
// 1st Message Direction get or put
fstream myFile;
myFile.open(req->_fName);
char tmp;
string _MSG= "";
string cFile = "*";
if(req->_fDir.compare("put") == 0)
{
if(myFile.is_open())
{
SendMyMessage("*F*");
cFile = ReceiveMyMessage();
// I want here to ask the client what to do after he found the that file exist on the server,
// I want the client to to get a message "*F*", then a cin command appear to him
// then the client enter a char
// then a message sent back to the server
// then the server continue executing the code
//More code
}
Client side:
{
cout <<"Waiting Message" <<endl;
temps = ReceiveMessage();
if(temps.compare("*F*") == 0)
{
cout <<"File found on Server want to:\n(1)Replace it.\n(2)Append to it." <<endl;
cin>>temps;
SendMyMessage(temps);
}}
I am using visual studio 2013
Windowx 7
thread am using: _beginthread (I removed all threads)
Regards,
On linux, there is a system call "select" using which the server can wait on the open sockets. As soon as there is an activity, like client wrote something, the server wakes up on that sockets and processes the data.
You are on windows platform. So :
http://msdn.microsoft.com/en-us/library/windows/desktop/ms740141%28v=vs.85%29.aspx